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Abstract

In this work we investigate whether the innate visual recognition and learning capabilities of untrained humans can be used
in conducting reliable microscopic analysis of biomedical samples toward diagnosis. For this purpose, we designed
entertaining digital games that are interfaced with artificial learning and processing back-ends to demonstrate that in the
case of binary medical diagnostics decisions (e.g., infected vs. uninfected), with the use of crowd-sourced games it is
possible to approach the accuracy of medical experts in making such diagnoses. Specifically, using non-expert gamers we
report diagnosis of malaria infected red blood cells with an accuracy that is within 1.25% of the diagnostics decisions made
by a trained medical professional.
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Introduction

Crowd-sourcing is an emerging concept that has attracted

significant attention in recent years as a strategy for solving

computationally expensive and difficult problems [1–6]. In this

computing paradigm, pieces of difficult computational problems

are distributed to a large number of individuals. Each participant

completes one piece of the computational puzzle, sending the

results back to a central system where they are all combined

together to formulate the overall solution to the original problem.

In this context, crowd-sourcing is often used as a solution to

various pattern-recognition and analysis tasks that may take

computers long times to solve. One of the underlying assumptions

of such an approach is that humans are better than machines at

certain computational and pattern recognition tasks.

There has been much work in the general field of ‘gaming’ as a

method for crowd-sourcing of computational tasks [1,7–13].

Digital games have been used as effective means to engage an

individual’s attention to computational tasks of interest. If a

pattern-recognition task can be embedded as part of an engaging

game, then a gamer may help in solving this task together with

other gamers. Recently a number of gaming platforms have been

created to tackle problems in e.g., biology and medical sciences,

allowing non-experts to take part in solving such problems. FoldIt

[7–8], as an example, is a game in which players attempt to

digitally simulate folding of various proteins, helping researchers to

achieve better predictions about protein structures. EteRNA [9] is

another game, which likewise makes use of crowds to get a better

understanding of RNA folding.

In this work, we take a similar strategy and demonstrate a

platform to use digital gaming and machine learning to crowd-

source the analysis of optical microscopy images of biomedical

specimens through engaging the interest of human game players

(i.e., gamers). The primary goal of this methodology is to

accurately diagnose medical conditions, approaching the overall

accuracy of medical experts, while only using non-expert gamers

(see Figure 1). The same method can also function as a

telemedicine platform, where trained medical experts could be

made part of our gamer crowd through various incentives.

In general there is much detail and subtlety associated with

medical images, and therefore accurate analysis and interpretation

of such images often become tedious and time consuming, even for

highly trained professionals. Crowd-sourcing of microscopic

analysis and related diagnosis through gaming is rather timely in

several ways. First, with rapid advances in mobile telecommuni-

cation and internet technologies such as mobile-phones, tablet

PCs, etc., we have hundreds of millions of active users and

potential gamers in the cloud that are all connected to a global

network. In addition to this massive crowd volume, over the last

few years, there has been a significant effort to create cost-effective,

compact and lightweight microscope designs such that even

mobile-phones could be converted into microscopic analysis tools

[14–21]. Similar to the development of the PC, this is a very

important development since it could enable wide-spread use of

optical microscopy globally, with several orders of magnitude

increase in the number of microscope users over the next decade.

As will be further discussed in this manuscript, these recent

advances make it feasible to create a self-learning platform that

leverages crowd-sourcing and gaming concepts to conduct
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accurate and sensitive microscopic analysis of biomedical speci-

mens.

We believe that this crowd-sourcing and gaming based micro-

analysis platform could in particular be significant for telemedicine

applications such that diagnostics decisions can be remotely made

without the need for a local medical expert (e.g., a pathologist),

especially impacting the medical infrastructure in resource-poor

countries. We hypothesise that the gaming community can

develop better recognition skills over time for specific medical

conditions through a scoring system built in the games to identify

such abilities of individuals (some of whom may also be health-care

professionals that e.g., are even paid for each image that is

diagnosed as part of the game). In addition to providing accurate

remote diagnosis, the datasets of biomedical images characterized

through this distributed platform can potentially be used as

training images for automated machine learning based algorithms

that over time self-learn to make reliable diagnosis (Figure 1). As

such, through this crowd-sourcing and gaming platform we can

create a self-learning integrated network of microscopes and

imagers toward intelligent automated biomedical micro-analysis

and diagnosis. Once scaled up, this smart network may have a

significant impact on e.g., medical, environmental, and biological

sciences, among others, through various innovative uses of this

network and its constantly expanding database. For instance, by

creating large data libraries of various specimens (e.g., microbial

communities, parasites, pathology slides, blood/sputum/pap

smears etc.) we may be able to dynamically track both temporal

and spatial evolution of different pathogens, diseases, or infectious

outbreaks and be able to better investigate and identify the cause-

effect relationships of these spatiotemporal patterns (see Figure 1).

To demonstrate the proof-of-concept of the above outlined

framework, we chose malaria as the medical condition to be

diagnosed, and developed a crowd-sourcing and distributed

gaming platform that allows individuals from anywhere in the

world to assist in identifying malaria infected red blood cells

(RBCs) imaged under light microscopes. In addition, we developed

an automated algorithm for diagnosing the same images using

computer vision, and created a novel hybrid platform for

combining human and machine resources toward efficient,

accurate and remote diagnosis of malaria.

For this initial demonstration, we chose malaria since it is still a

major health problem in many tropical and sub-tropical climates,

including much of sub-Saharan Africa (see Figure 1). It is the cause

of ,20% of all childhood deaths in this region, and almost 40% of

all hospitalizations in whole of Africa. For diagnosis of malaria,

conventional light microscopy remains the gold standard method.

A pathologist must typically check between 100 and 300 different

field-of-views (FOVs) of a thin blood smear (corresponding to

inspection of at least 1,000 individual RBCs) using a light

microscope with 100X objective lens before being able to reliably

call a thin smear sample negative (i.e. not infected). This, however,

is a very time-consuming task and a significant challenge given the

large number of cases observed in these resource-poor settings (see

Figure 1). Furthermore, approximately 60% of the cases reported

in sub-Saharan Africa are actually false-positives,[22] leading to

unnecessary treatments and hospitalizations.

For the same purpose of malaria diagnosis in resource poor

conditions, rapid diagnostic tests (RDTs) are also being developed

to create an alternative to optical microscopy. However, RDTs

Figure 1. Proposed platform. A) Biomedical data (e.g., images of thin blood smear samples) from individual light microscopes all around the
world are transmitted to data centres where they are pre-processed and digitally distributed among gamers, which in turn diagnose and transmit
their responses back. These individual results of the gamers are then fused toward a final diagnosis, the result of which is transmitted back to the
point-of-care or the clinic/hospital. In the map above, orange-coloured regions show locations where risk of contraction of malaria still exists. B) Block
diagram of the presented platform.
doi:10.1371/journal.pone.0037245.g001

Figure 2. Malaria Diagnosis Game Interface: the gamer can use
the syringe tool to ‘‘kill’’ infected RBCs or use the blood bank
button to ‘‘bank/collect’’ all the healthy RBCs.
doi:10.1371/journal.pone.0037245.g002
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still have various shortcomings such as: (i) being relatively

expensive compared to microscopy, costing ,0.5–2.0 USD per

test; (ii) existence of insufficient information on their quality and

the lack of ability to test their performance in the field, (i.e., the

lack of quality controls); (iii) poor heat and humidity stability; and

(iv) mistrust of RDTs by health-care workers and community

members (which is technically coupled to issues i and iv
mentioned above) [22]. Therefore, microscopic imaging of blood

smears still remains as the gold standard method toward diagnosis

of malaria.

There have been prior attempts based on machine vision

algorithms to automate the process of malaria diagnosis in

Giemsa-stained thin blood smears using optical microscopy images

with promising performance results [23–27]. However, there are a

number of factors that can negatively affect the performance of

such algorithms, including variations in blood smear preparation

and cell density on the slide, as well as variations in illumination,

digital recording conditions, optical aberrations and the lens

quality. As a result, these methodologies have not yet been able to

find their ways into mainstream malaria diagnostics tools to start

replacing manual inspection of blood smears.

The human visual system, however, does not suffer from the

above mentioned limitations, and can correctly recognise patterns

of parasitic infection even under severe variations in sample

preparation, density and imaging/recording conditions. As such,

we believe that scaling up accurate, automated, and remote

diagnosis of malaria through a crowd-sourcing and gaming

platform may achieve significant impact in the developing world

through: (i) Elimination of the overuse and misuse of anti-malarial

drugs, which is quite important for avoiding long-term drug

resistance issues; (ii) Improved management of non-malaria fevers

by allowing malaria to be ruled out, so that patients can receive

more appropriate treatment; (iii) Much better use of existing funds

and reduction in drug stock-outs; and (iv) Reduced risks due to

long-term side-effects of anti-malarial drugs on patients who do

not actually need treatment. Finally, we should also emphasize

that the same crowd-sourcing and gaming based micro-analysis

and medical diagnosis platform could further scale up for a variety

of other biomedical and environmental applications where

microscopic images need to be examined by experts.

Methods

Game Design
We developed a digital gaming platform through which we

allow an unlimited number of gamers from any location in the

world to access and diagnose images of human RBCs that are

potentially infected with P. falciparum. The game (see Figure 2) was

implemented to be run both on PCs (using Adobe Flash running

on any internet browser such as Internet Explorer, Mozilla Firefox

etc.) and on Android-based mobile devices, including mobile-

phones as well as tablet PCs. We preferred an open-source

operating system for mobile devices such that other game

developers could easily contribute to the same crowd-sourcing

platform in the future.

Before starting to play the game, each gamer was given a brief

online tutorial explaining the rules of the game and how malaria

infected RBCs typically look with some example images. After this,

each gamer played a training game where s/he was required to

successfully complete in order to continue playing the rest of the

game. This test game consisted of 261 unique RBC images, where

20 of them were infected. The gamers were required to achieve

.99% accuracy in this training game, and in the case of failure,

they were asked to re-play it until they achieved 99%. This way all

the gamers became familiar with the rules of the game and were

briefly trained on the diagnostics task. Note that this training game

was required only once at the time when the gamers registered on

our platform. Upon registration, a unique user ID was assigned to

each gamer and her/his individual diagnostics performance was

tracked. Furthermore, this training game provided direct feedback

to the players on their performance and their mistakes through a

scoring mechanism. Since the labels (i.e., infected cell vs. healthy

cell) of all the images were known a priori for the purposes of this

training game, the player’s score was updated throughout the

game (i.e., positive score for correct diagnosis, and negative score

for incorrect diagnosis). It is important to note that there exists a

large body of work on educational games [28–29]. However, given

that our focus was not to educate the players, and in fact it was to

demonstrate the quality of diagnostic results that can be achieved

through untrained (non-expert) individuals, this initial test/

training game was designed in a simple repetitive fashion.

Figure 3. Overview of the gaming analysis framework. The images are treated as a sequence of binary values that are broadcast by the server.
The gamers are effectively noisy repeaters that in the most ideal case output the correct symbol for the inputs that they receive. Each repeater
transmits its own noisy version of the same input symbol to a decoder. The decoder combines all the received repeater outputs and decodes a final
output zi, which ideally will be the correct label/diagnosis for the input images. The repeaters can be modelled as Binary Communication Channels
(top-left). pij corresponds to the probability of receiving symbol j when in fact symbol i was transmitted.
doi:10.1371/journal.pone.0037245.g003
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As the gamer goes through the game, s/he is presented with

multiple frames of RBC images. The gamer has the option of using

a ‘‘syringe’’ tool to ‘‘kill’’ the infected cells one by one, or use a ‘‘collect-

all’’ tool to designate all the remaining cells in the current frame as

‘‘healthy’’, which significantly speeds up the cell diagnosis process

since most of the RBCs are healthy. Within each frame, there are

a certain number of cells whose labels (infected or healthy) are

known to the game, but unknown to the gamers. These control cell

images allow us to dynamically estimate the performance of the

gamers (in terms of correct and incorrect diagnosis) as they go

through each frame and also help us assign a score for every frame

that they pass through (Note that this is different in the training

game where all the images are effectively control images). Once a

frame is completed, a score is assigned based on the performance

of the gamer only on the control images. These control images

(roughly 20% of all the images) along with the scoring system allow

the game to provide some feedback to the gamer on their

performance such that as the gamers continue to play, they can

improve their diagnostics performance. The images and their

order of appearance were identical among different gamers, thus

allowing us to make a fair comparison among their relative

performances.

Image Database
To build a malaria infected RBC database, we used thin blood

smear slides that contained mono-layers of cultured human RBCs

which were infected by Plasmodium falciparum (P. falciparum) forming

the source for our image dataset (refer to Reference [17] for

further details). These malaria slides were then scanned with a

bright-field optical microscope using a 100X oil-immersion

Figure 4. The hybrid (human + machine) diagnostics frame-
work. As new images are generated, they are diagnosed by pre-trained
machine learning algorithms. The confidence of these algorithms in
their decisions determines whether the images should be passed on to
human gamers or not. Once the difficult-to-diagnose images for these
algorithms are crowd-sourced and are diagnosed by the human
gamers, they are merged with the easy-to-diagnose images to compute
the final diagnostics results. The data is then fed back through the
system and added to the training dataset used by the machine learning
algorithms. During each cycle, self-learning algorithms will improve as a
result of added training data. ‘T’ refers to a threshold value.
doi:10.1371/journal.pone.0037245.g004

T
a

b
le

1
.

Su
m

m
ar

y
o

f
e

xp
e

ri
m

e
n

ta
l

re
su

lt
s

fo
r

d
ia

g
n

o
si

s
o

f
m

al
ar

ia
in

fe
ct

e
d

re
d

b
lo

o
d

ce
lls

.

E
x

p
e

ri
m

e
n

t

D
e

sc
ri

p
ti

o
n

o
f

T
e

st
Im

a
g

e
s

G
a

m
e

rs
P

o
si

ti
v

e
R

B
C

s
N

e
g

a
ti

v
e

R
B

C
s

C
o

n
tr

o
l

Im
a

g
e

s
A

cc
u

ra
cy

S
E

S
P

P
P

V
N

P
V

1
5

0
5

5
te

st
R

B
C

im
ag

e
s

cr
o

w
d

-s
o

u
rc

e
d

to
h

u
m

an
g

am
e

rs
1

9
4

7
1

4
5

8
4

1
2

6
6

9
9

.0
1

%
9

5
.1

2
%

9
9

.4
1

%
9

4
.3

2
%

9
9

.5
0

%

2
5

0
5

5
te

st
R

B
C

im
ag

e
s

p
re

se
n

te
d

to
a

b
o

o
st

e
d

se
t

o
f

cl
as

si
fi

e
rs

,
tr

ai
n

e
d

o
n

1
2

6
6

R
B

C
im

ag
e

s
N

A
4

7
1

4
5

8
4

1
2

6
6

(T
ra

in
in

g
Im

ag
e

s)
9

6
.2

6
%

6
9

.6
4

%
9

9
.0

0
%

8
7

.7
0

%
9

6
.9

5
%

3
4

5
9

lo
w

-c
o

n
fi

d
e

n
ce

te
st

im
ag

e
s

ta
ke

n
fr

o
m

th
e

re
su

lt
s

o
f

e
xp

e
ri

m
e

n
t

2
2

7
2

7
4

1
8

5
1

2
6

6
9

5
.4

2
%

9
7

.8
1

%
9

1
.8

9
%

9
4

.7
0

%
9

6
.5

9
%

4
H

yb
ri

d
d

ia
g

n
o

si
s

re
su

lt
s

u
si

n
g

e
xp

e
ri

m
e

n
ts

2
&

3
2

7
4

7
1

4
5

8
4

1
2

6
6

9
8

.5
0

%
8

9
.3

8
%

9
9

.4
3

%
9

4
.1

8
%

9
8

.9
1

%

5
7

0
4

5
te

st
R

B
C

im
ag

e
s

cr
o

w
d

-s
o

u
rc

e
d

to
h

u
m

an
g

am
e

rs
2

0
1

5
4

9
5

4
9

6
2

3
4

9
9

8
.7

8
%

9
7

.8
1

%
9

9
.0

5
%

9
6

.6
8

%
9

9
.3

8
%

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
3

7
2

4
5

.t
0

0
1

Distributed Medical Diagnosis through Gaming

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e37245



objective lens (numerical aperture: 1.25). At each FOV, the

captured RBC images were passed on to an infectious disease

expert for identification of P. falciparum signatures and digital

labeling of each RBC image (positive vs. negative). This process

generated a dataset of 7116 unique RBC images, with 1603 of

them infected by the malaria parasite. To form the set of images to

be used in our games, each individual RBC image was cropped

and resized to fixed dimensions of 50650 pixels. To further

increase the total number of images and their diversity (in terms of

sample preparation, density and imaging conditions), we also used

a set of images provided by the Center for Disease Control (CDC),

yielding an addition of 118 infected and 595 uninfected RBC

images. With this, we had a total of 7829 characterized human

RBC images, with 1721 of them infected with P. falciparum,

forming our ground truth database for evaluating our crowd-sourcing,

gaming, and machine-vision based diagnostics platform. Please

refer to Text S1 for further details and Figure S4 for sample

images. No IRB approval was required since the digital red blood

cell images that we used in our work were not linked to any patient

data or diagnosis and were digitally created and shared for

microscopic training purposes.

Diagnostic Analysis
When analysing the game results, we have access to the

individual performance parameters and diagnoses (for both the

control images and the unknown test images). We fuse the results

from all gamers that have completed a particular game and

generate a more accurate set of diagnoses for the test RBC images.

Given that each RBC image either corresponds to a healthy cell or

an infected cell, we can use binary labels to identify them: 0 for

healthy and 1 for infected. Recasting our setup as a communications

system, our server will act as a broadcaster of a binary sequence and

each gamer will act as a noisy Binary Channel [30], retransmitting the

symbols back along with some errors. Therefore, we model the

framework of our games as a noisy communication network consisting

of a broadcast unit, multiple repeaters, and a receiver/decoder

unit for the final diagnosis (see Figure 3). In the ideal scenario, the

repeaters (i.e. the gamers) would simply receive a set of incoming

symbols (images to be diagnosed) from the broadcast unit (through

various light microscopes located in e.g., point-of-care offices or

malaria clinics), and transmit them to the receiver/decoder block,

which in turn computes the optimal ‘‘correct’’ label for each

individual unknown RBC image using a Maximum a Posteriori

Probability (MAP) approach. In Text S1 (Section II) we provide a

theoretical description of how this performance analysis is done

and is used to diagnose unknown RBCs based on gamers’

responses.

Results and Discussion

To test the viability of our crowd-sourced gaming-based malaria

diagnosis platform, different experiments were run with 31 unique

participants (non-experts), ranging between the ages of 18 and 40. In

total, five different experiments were performed, the results of

which are summarized in Table 1.

We initially tested the capability of the presented platform

through a game consisting of 5055 images, of which 471 were of

infected RBCs and 4584 were of healthy RBCs (see Table 1).

Additionally, 1266 (103 positives and 1163 negatives) RBC images

were embedded as control images within the same game such that

each gamer had to go through 6321 RBC images. The combined

accuracy of the gamer diagnoses was 99%, with sensitivity (SE) of

95.1% and specificity (SP) of 99.4%. The positive predictive value

(PPV) and negative predictive value (NPV) were also quite high at

Figure 5. The Crowd Effect: gamer performance results for experiment #5. The plots show the worst case scenarios where the diagnoses
from the worst performing players are used to generate an overall diagnosis for each RBC in the game. Note that the specificity (or true negative rate)
is always very high for the gamers, and does not improve much as more gamers are added to the mix. However, the sensitivity (or true positive rate)
benefits the most as more players are added, and climbs above 95% once 15-gamers form the crowd. The accuracy also increases as more players are
added, but since it reflects both the specificity and the sensitivity its increase is not as drastic as that of the sensitivity.
doi:10.1371/journal.pone.0037245.g005
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94.3% and 99.5% respectively (for definitions of SE, SP, PPV, and

NPV refer to Table S1).

In addition to the gaming and the crowd-sourcing platform

described earlier, we also developed an automated computer

vision-based algorithm to detect the presence of malaria parasites

(refer to Text S1–Section III and Figure S1 for details of

implementation). In doing so our aim was to ultimately create a

hybrid system such that machine vision and human vision can be

coupled to each other, creating a more efficient and accurate

biomedical diagnostics platform. For this purpose, independent of the

human crowd, we next tested the automated diagnosis performance

of our machine-vision algorithm, which was trained on 1266 RBC

images (same as the control images used in experiment #1) and was tested

on a total of 5055 unique RBC images (471 positives and 4584

negatives – see Table 1). This algorithm was able to achieve an

overall accuracy of 96.3%, with SE-SP of 69.6%–99.0%, and

PPV-NPV of 87.7%–96.9%. In terms of performance, our gamer

crowd did better than this machine algorithm as summarized in

Table 1. However, we should note that with an even larger

training dataset (containing e.g., .10,000 RBC images) and more

advanced classifiers, it may be possible to significantly improve the

performance of our automated algorithm. This feat may be

achieved through the coupling of statistical learning and crowd-

sourcing into a hybrid model as illustrated in Figure 4, where a

feedback exists between the gamers and the automated algorithm,

yielding an ever-enlarging training dataset as more games are

played. This uni-directional feedback loop has the effect of

labelling more and more images as training data for the automated

algorithm, potentially leaving only the most difficult ones to be

labelled by human gamers.

Following this initial comparison between human vision and

machine vision for identification of malaria infected RBCs, to

assess the viability of the above discussed hybrid diagnosis

methodology, we conducted another test (experiments #3 & #4

in Table 1), where among all the RBC images characterized using

our machine-vision algorithm, we extracted the ones with a

diagnosis confidence level that is less than 30% of the maximum

achieved confidence level, i.e. a total of 459 RBC images that were

relatively difficult to diagnose were extracted. The training dataset

(1266 RBC images that were used to train our machine algorithm,

which also served as the control images of experiment #1) were

then mixed with these ‘‘difficult-to-diagnose’’ 459 RBC images and

were used to form a new game that is crowd-sourced to 27 human

gamers. This new game (experiment #3) yielded an accuracy of

95.4%, with SE-SP at 97.8%–91.9%, and PPV-NPV at 94.7%–

96.6% on these 459 difficult-to-diagnose RBC images. Next, we

merged the results from the crowd-sourced game (experiment #3)

and our machine algorithm (experiment #2) to arrive at an overall

accuracy of 98.5%, with SE-SP of 89.4%–99.4% and PPV-NPV of

94.2%–98.9% (see experiment #4, Table 1). Thus, in this hybrid case

we were able to increase the specificity and positive predictive value by 20%

and 7%, respectively, and achieved a performance comparable to that of a

completely human-labelled system (experiment #1), but with only 10% of

the number of cells actually being labelled by humans. This significantly

increases the efficiency of the presented gaming platform such that

the innate visual and pattern-recognition abilities of the human

crowd/gamers is put to much better use by only focusing on the

‘difficult-to-diagnose’ images through the hybrid system (Figure 4).

In our next experiment (# 5) we increased the number of

infected RBC images in the game by three-fold to simulate a

scaled up version of the gaming platform. A total of 7829 unique

RBC images were incorporated into the game, of which 784 were

taken as control images that were repeatedly inserted into the

game for a total of 2349 times. As a result, each gamer would go

through 9394 RBC images, a quarter of which (2349) are known

control images. Within the remaining 7045 test RBC images, there

were 1549 (22%) positive images and 5496 negative images, which

were all treated as unknown images to be diagnosed by the human

crowd at the single cell level. The same ratio of positive to negative

images was also chosen for the control RBC images in the game to

eliminate any unfair estimation biases that may result from

differing distributions. Completing this game (i.e. experiment # 5)

took on average less than one hour for each gamer, and we can see

in Table 1 that the accuracy of the overall human crowd (non-

professionals) is within 1.25% of the diagnostic decisions made by

the infectious disease expert. This experiment yielded an SE of

97.8% and an SP of 99.1%. The PPV was 96.7% and the NPV

was 99.4%. The performance results of the individual players and

their combined performances are shown in Figures S2 and S3.

Based on experiment #5, Figure 5 summarizes ‘‘the effect of the

crowd’’ on diagnosis accuracy and sensitivity, i.e., how the overall

performance of the crowd’s diagnosis is improved as more gamers

are added to the system. We can see significant boosts in the

sensitivity (i.e., the true positive rate) as diagnosis results from more

gamers are added into the system. This is quite important as one of

the major challenges in malaria diagnosis in sub-Saharan Africa is

the unacceptably high false-positive rate, reaching ,60% of the

reported cases [22]. Our overall diagnosis accuracy also steadily

improves as more gamers are added as shown in Figure 5. This

crowd effect may seem like a deviation from the traditional

benefits of crowd-sourcing, in that multiple players are inaccu-

rately solving the whole puzzle and then their results are combined

to yield a more accurate solution. However, we should also note

that cell images from a single blood smear slide can be broken up

into multiple batches, where each batch is crowd-sourced to a

group of players. In other words, each unique group of players will

focus on one common batch of cell images, and in the end the

diagnosis results will be combined once at the group level to boost

the accuracies for each cell, and again at the slide level to make a

correct overall diagnosis per patient. Therefore, the contribution

of the crowd is twofold. First, it allows for the analysis problem to

be broken up into smaller batches, and second, the analysis of the

same batch by multiple individuals from the crowd allows for

significantly higher overall diagnosis accuracies.

We should emphasise that throughout the manuscript we

discuss diagnosis results for ‘individual’ RBCs, not for patients. In

reality, malaria diagnosis using a blood smear sample correspond-

ing to a patient is a relatively easier task compared to single cell

diagnosis since a thin blood smear for each patient sample already

contains thousands of RBCs on it. Therefore statistical errors in

the parasite recognition task could be partially hidden if the

diagnostics decisions are made on a per blood-smear slide basis.

To better demonstrate the proof of concept of our gaming based

crowd-sourcing approach we aimed for the diagnosis of individual

RBCs, rather than patients. Since any given patient’s blood smear

slide will be digitally divided into smaller images (containing e.g., a

handful of RBCs per image), and .1,000 RBC images per patient

will be distributed to the crowd, we expect much higher levels of

accuracy and sensitivity for diagnosis of individual patients.

Furthermore, our single-cell-diagnosis-based gaming approach

could also be very useful to estimate the parasitemia rate of

patients which can be quite important and valuable for monitoring

the treatment of malaria patients.

We should also emphasise that the work presented in this paper

is a proof of concept and not the complete envisioned system, with

potentially thousands of gamers and many patient slides to be

diagnosed, which is left as future work. In addition to generating

remote biomedical diagnosis through engaging games, the
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presented platform can serve as an information hub for the global

healthcare community as summarized in Figure 1. This digital hub

will allow for the creation of very large databases of microscopic

images that can be used for e.g., the purposes of training and fine

tuning automated computer vision algorithms. It can also serve as

an analysis tool for health-care policy makers toward e.g., better

management and/or prevention of pandemics.

Next, we would like to briefly discuss regulatory and practical

issues that need to be addressed for deployment of the presented

gaming and crowd-sourcing-based diagnosis and telemedicine

platform. As a potential future expansion of the platform,

incentives (e.g., monetary ones) can be used to recruit health-

care professionals who are trained and educated to diagnose such

biomedical conditions, making them part of our gamer crowd. In

such a scenario, one can envision the gaming platform to serve as

an intelligent telemedicine backbone that helps the sharing of

medical resources through e.g., remote diagnosis and centralised

data collection/processing. In other words, it would be a platform

whereby the diagnosis can take place by professionals far away

from the point-of-care. At the same time, it also enables the

resolution of possible conflicting diagnostics decisions among

medical experts, potentially improving the diagnostics outcome.

For this potentially highly trained crowd of ‘‘professional’’

gamers, the final decisions made through the crowd can be used

for direct treatment of the patient (without the need for regulatory

approval). Furthermore, since these are trained medical profes-

sionals, the number of gamers assigned to an image that is waiting

to be diagnosed can be significantly lower as compared to the case

where ‘‘non-professional’’ gamers are assigned to the same image.

On the other hand, if an image is diagnosed by entirely non-

professional gamers, the result of the diagnosis can still be very

useful to reduce the workload of health-care professionals located

at point-of-care offices or clinics where the raw images were

acquired. In the case of malaria diagnosis, this is especially

relevant since the health-care professional is required to look at

.1,000 RBC images for accurate diagnosis. Hence even a non-

professional crowd’s diagnostics decisions could be highly valuable

in guiding the local medical expert through the examination of a

malaria slide, such that the most relevant RBC images are quickly

screened first, eliminating the need for conducting a manual

random scan for rare parasite signatures.

Finally, the proposed methodology can be expanded to include

a ‘training platform’. Assuming the expansion of this crowd-

sourced diagnostics platform and the generation of large image

databases with correct diagnostics labels, software can be created

to make use of such databases to assist in the training of medical

professionals. Through such software, medical students and/or

trainees can spend time looking at thousands of images, attempting

diagnosis, and getting real-time feedback on their performances.

Based on the concepts described in this paper, we also envision this

platform to expand to other micro-analysis and diagnostics needs

where biomedical images need to be examined by experts.

Supporting Information

Figure S1 Local Colour Peak Histograms (LCPH). For

every window block, a colour histogram is calculated. The

dominant pair of colours is used to compute an index (e.g., with

5 bins, there are a total of 10 different index values). A histogram

of all index values is computed and used as part of the feature

vector. In addition to colour-based features, we also used a

number of more basic image features such as mean, variance, and

gradient magnitude histograms to form our final feature vectors.

(TIF)

Figure S2 Individual performance results for experi-
ment 5 of the Main Text. A total of 20 individual gamers

played this game that consisted of 7045 test cell images with 1549

cells infected and 5496 cells healthy. We use a maximum a

posterior probability (MAP) based approach to combine the results

of multiple gamers and obtain higher performance levels. In order

to show the worst case scenario, the worst N performances are

combined in each MAP estimation.

(TIF)

Figure S3 Combined performance of gamers using the
described MAP approach. We observe that if we combine all

the available gamer data, we can determine the best gamer relative

to others regardless of the ground truth data, lending itself to a

scoring and ranking mechanism for gamers.

(TIF)

Figure S4 Examples of RBC images used in experi-
ments and games. The images exhibit significantly different

illumination conditions, colours and backgrounds, mimicking a

real-life scenario where various different optical microscopes

located at e.g., point-of-care offices and malaria clinics would be

used in our games.

(TIF)

Table S1 Definition of acronyms used in the manu-
script.

(PDF)

Text S1 This supporting text describes the mathemat-
ical and algorithmic details of the proposed framework.

(PDF)
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SUPPLEMENTARY TEXT 

I- Definitions of acronyms used in the manuscript 

The acronyms used in this manuscript are defined in Table S1. 

 

II- Theoretical Framework for Crowd-sourced Malaria Diagnosis Game 

In this section we will describe the theoretical framework with which we have approached the 

problem of fusing the data from multiple individuals playing the game. In doing so, we used 

communications and probability theory based methods. 

Binary Channel Model for Gamers Diagnosing Red Blood Cells: Since we are attempting to 

combine decisions that are received from many gamers, we will be feeding them the same set 

of images to label. Therefore, there is a single sequence of images to be labelled, and each 

gamer will output a decision sequence. Ideally, the output of each gamer yields the correct 

diagnostic labels for the blood cell images. Given that each image either corresponds to a 

healthy cell or an infected cell, we can use binary labels to identify them: 0 for healthy and 1 for 

infected. Recasting our setup as a communications system, our server will act as a broadcaster 

of a binary sequence and each gamer will act as a noisy Binary Channel 1, retransmitting the 

symbols back along with some errors (see Figure 3 of Main Text for further details). Note that 

since the gamers may not necessarily make mistakes symmetrically, the probability of a gamer 

mislabelling a healthy cell may be different from that of mislabelling an infected cell. 

System Overview: We model the framework of our games as a communications system 

consisting of a broadcast unit, multiple repeaters, and a receiver/decoder as shown in Figure 3 

of the Main Text. In the ideal scenario, the repeaters (i.e., the gamers) would simply receive a 

set of incoming symbols (images to be diagnosed) from the broadcast unit, and transmit them 

to the receiver/decoder block, which in turn combines and stores the decisions (image labels). 

Broadcast Unit - The Source of the Microscopic Images: We can model the source of our 

microscopic images as a broadcast unit. In this analogy, the cell images are essentially treated 

as binary symbols. We assume the equivalency of the two image classes infected and healthy 

with binary symbols 1 and 0 respectively.  

The sequence of symbols          is broadcast to   repeater units (i.e., the gamers within the 

crowd) that can be viewed as   parallel noisy channels (see Figure 3 of Main Text). To be able 

to decode the outputs of these channels reliably, it is necessary to learn the channels 

adaptively. As such, it is crucial to embed some known symbols (i.e., control images) in the 
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output of the broadcast unit. Knowing the binary value of certain symbols/images at specific 

times, we can learn the conditional probabilities           as more symbols are transmitted by 

the broadcast unit and passed through the repeaters/gamers. 

Additionally, an encoder unit can also be placed after the broadcast unit to increase the 

redundancy of the transmission, and allow for error correction at the decoder. 

Gamers as Repeaters in the Communication System: Each gamer is modelled as an 

independent repeater that behaves as a binary channel (see Figure 3 of the Main Text). We 

define the error probabilities using the notation          , corresponding to the probability that 

the     user will output the symbol    when observing the symbol    (i.e.     image). In general 

the error probabilities are asymmetric, i.e.,          is not the same for different values of  . 

However, it is difficult to accurately estimate this asymmetric probability in our games due to 

the imbalance in the existence of positive and negative training data (which is true not only for 

malaria diagnosis but also for various biomedical image analysis/diagnosis problems such that 

disease signatures are relatively rare compared to healthy data) which causes a bias towards 

better estimating the error probabilities when     (healthy case). In addition to this, another 

practical limitation is due to the general infeasibility of embedding large numbers of training 

images within the game. It is therefore more straightforward to estimate a simpler bit-flip 

probability, assuming a Binary Symmetric Channel (BSC)1. It was observed in our experiments 

that a BSC model performs better than an asymmetric model. This observation stems from the 

fact that there is an inherent imbalance in the number of positive and negative image samples. 

Since we are using a limited number of control images to estimate the probability densities of 

the gamers’ performances, this imbalance in the control data translates to having a small 

number positive samples for accurate estimation of    and    . 

Error Control Coding (ECC) in Malaria Diagnosis Games: Similar to traditional communications 

systems, our broadcast unit can also include an encoder to increase the information 

redundancy prior to transmission to the repeaters/gamers. Given that the symbols being 

transmitted by the broadcast unit are not known a priori, the only appropriate coding scheme is 

the repetition code, where each symbol is repeated for an odd number of times prior to 

transmission. At the decoder, a majority vote is taken on the channel outputs.  

Leaving the communications system analogy, an ECC amounts to asking the gamer to play each 

image an odd number of times, and the most frequently assigned label is taken to be his or her 

answer for that particular image. This can also be interpreted as the gamer’s confidence in the 

given diagnosis response. In other words, if the gamer is absolutely sure of a particular 

diagnosis for an image, then he or she will choose the same label on every observation. 

However, if the image is difficult to diagnose, then there is the chance that the gamer would 

not be consistent in making a decision, thus producing a lower confidence level. 
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Decoder for fusing Gamers’ Decisions toward Malaria Diagnosis: In designing the decoder for 

our gaming platform, we take a Maximum a Posteriori Probability (MAP) approach. Suppose 

that we have   symbols/images         being broadcast and relayed through     

repeaters/gamers and are received by the decoder. Also assume that we have estimates of the 

repeater/gamer error probabilities           for the     repeater and the     symbol. We then 

would like to estimate    given all the repeater outputs   
      

  (see Figure 3 of the Main 

Text). For a particular transmitted symbol    we have:  

 

We can then have: 

 

 

The value of    is taken to be    that maximizes the above posterior. Therefore, we have: 

 

 

Automated Malaria Diagnosis using Machine Vision: In addition to the gaming and the crowd-

sourcing platform described earlier, we also developed an automated machine-learning-based 

algorithm to detect the presence of malaria parasites (i.e., P. falciparum). In doing so our aim 

was to ultimately create a hybrid system such that machine vision and human vision can be 

coupled to each other to create a more efficient and accurate diagnostics platform as illustrated 

in Figure 4 of the Main Text. 

 

Toward this end, instead of developing a very specific machine vision algorithm that is only 

applicable to malaria diagnosis we opted to create one that could potentially be also applied to 
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other infections that may have different visual properties. As such we developed a machine 

learning algorithm that extracts local colour features from cell images and feeds them into a 

classifier. In training the classifier, we used a small subset of the cell images in our dataset 

(same images that are embedded as ‘control images’ in the game) as the training set. We then 

used a variation of Adaptive Boosting 2,3 to create an ensemble of relatively weak classifiers that 

together produce accurate classification results as detailed in our Results section of the Main 

Text. For further details of our machine-learning based malaria diagnosis algorithm, please refer 

to the Section III of this Supplementary Text. 

Hybrid (Machine + Human) Diagnosis Framework: As briefly pointed out earlier, the two 

discussed diagnosis methodologies (crowd-sourced gaming and machine vision) naturally lend 

themselves to a third hybrid diagnostics platform (see Figure 4 of the Main Text) where the 

images are initially processed by automated machine vision algorithms with a measure of 

confidence for each diagnostics decision. Images for which the machine decisions are not above 

a certain threshold (e.g., T) are then passed on to the human gamers to be re-diagnosed by the 

crowd. As demonstrated in our Experiment #4 of the Main Text, this can significantly increase 

the efficiency of the human gamers, since only those images that are deemed as “difficult-to-

diagnose” by the machine vision algorithm are passed to the gamers, allowing the same 

number of gamers to assist in e.g., the diagnosis of more blood smears and patients per unit 

time. 

III- Details of our Automated Recognition Algorithm for Malaria 

Parasites 

In this manuscript our focus with regards to machine learning algorithms was to develop a 

general methodology such that it can also be applied to other parasites or disease signatures 

beyond malaria with small modifications in the visual features used for analysis. Therefore, in 

addition to the gaming based crowd-sourcing platform, we also developed an automated 

machine learning algorithm to detect the presence of malaria parasites, which helps us to 

compare our gaming platform’s diagnosis accuracy to state-of-the-art machine vision 

algorithms as well as to ultimately create a hybrid system such that machine vision and human 

vision can be coupled to each other to create a more efficient and accurate diagnostic platform 

as illustrated in experiment #4 of the Main Text. In the next sub-sections we will go over some 

details of our algorithm. 

 

Selection of Image Features for Recognition of Malaria Parasites: On a thin blood smear, 

malaria parasites are usually stained with Giemsa stain and are digitally imaged under a 
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brightfield microscope using a 100X oil-immersion objective lens. Giemsa stains the nuclear 

material in the parasite with a blue tint, and does not affect the RBC morphology. 

In general, there are two possible approaches in extracting features from the acquired 

microscope images for the purpose of building a digital classifier. One can either attempt to 

extract very specific, hand-coded features or try to learn discriminative features from a large 

set of training examples. The advantage of using hard-coded features is that we can use prior 

knowledge of the physical/structural properties of the parasites. For example, we can look for 

“ring-shaped objects” within the RBC image as an indicator for the existence of the parasite. 

The advantage of using such features is that they lend themselves to very fast implementations 

and make the job of the classifier much easier. On the other hand, they are difficult to design, 

and are in general very inflexible to variations in sample preparation or illumination/recording 

conditions. For example, custom-designed malaria feature-sets that use shape and colour may 

not be easily modified to detect a different parasite type. 

In contrast to hand-coded features, ‘learned’ features can be very generic and easily modified 

and applied to similar detection problems. They also take less time and effort to design for a 

particular problem, and put most of the burden of classification on the classifier itself. In this 

work, we preferred the second approach (i.e., learned features) and used a set of generic 

colour-based features for training a classifier to discriminate between RBC images that contain 

P. falciparum and those which do not. 

We used two types of histogram-based features as input to our classifier. The first is a simple 

colour histogram of the image in grayscale. This is a feature that carries information about the 

general distribution of image values. We used a second, more complicated colour feature which 

we dubbed Local Colour Peak Histograms (LCPH). The LCPH for an image is formed by first 

generating highly quantized colour histograms in the Hue-Saturation space over local windows. 

For each window the two most occurring histogram bins are found. Any given pair of bins 

corresponds to a particular index value. In other words, an index can be assigned to the 

occurrence of each pair of values in the histogram, and this is the value that is recorded for 

each local window in the image. A second histogram is generated over the recorded indexes of 

all the local windows and used as the LCPH features. This feature essentially measures the 

relative occurrences of various colour pair co-occurrences throughout the image (see Error! 

Reference source not found.). 

In addition to the above mentioned colour-based features, we used a number of more basic 

image features such as mean, variance, and gradient magnitude histograms to form our final 

feature vectors. 
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Classifier Training: In training our malaria classifier, we used a variation of Adaptive Boosting 2,3 

and trained many weak decision-tree classifiers that together can produce a very strong 

classifier. In classical Adaptive Boosting, the overall classifier is tested on the complete training 

dataset at each iteration. Data points that are not correctly classified are then assigned larger 

weights for the next classifier to be trained. This is where we deviate from the classical 

algorithm in that instead of re-weighting the full training set and training a new classifier, we 

use the weights to probabilistically select a small subset of the training data for the next weak 

classifier to be trained. This allows for completely disjoint training data for the weak classifiers 

and results in very fast convergence of the boosted classifier. Refer to Algorithm S1 shown 

below for further details of our implementation. 

 

 

Algorithm S1 Summary of our Adaptive Boosting Algorithm. The total number of training points 

is fixed for each weak classifier, i.e., for each weak classifier a total of    training vectors are 

chosen based on the weights      . 

IV- Detailed analysis of gamers’ performance 

Detailed analysis of our largest gaming experiment (#5 - see Table 1 of the Main Text) is shown 

in Figures S2 and S3.  

 

V- Sources of our Microscopic Data 

The RBC images used in this work were obtained from multiple sources, which is quite 

important as it mimics a real-life scenario where various different optical microscopes located 
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at e.g., point-of-care offices and malaria clinics would be used in our gaming based diagnosis 

platform. The bulk of the images were captured using an in-house optical microscope with a 

100X oil-immersion objective lens (numerical aperture: 1.25). Roughly 5% of the positive 

images and 10% of the negative images were also obtained from Center for Disease Control 

(CDC) database. Figure S4 shows representative images demonstrating the colour, illumination 

and background variability observed among these RBC images that were used in our crowd-

sourced games. 
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Term Acronym Definition 

True Positive TP Number of correctly labelled positive samples 

False Positive FP 
Number of negative samples incorrectly 
labelled as positive 

True Negative TN Number of correctly labelled negative samples 

False Negative FN 
Number of positive samples incorrectly labelled 
as negative 

Accuracy ACC 
     

           
 

Sensitivity or True Positive Rate SE or TPR 
  

     
 

False Positive Rate FPR 
  

     
 

Specificity or True Negative 
Rate 

SP or TNR 
  

     
 

Positive Predictive Value PPV 
  

     
 

Negative Predictive Value NPV 
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