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We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial res-
olution over a large field of view and depth of field. After its training, the only input to this network is an image
acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning
approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network
rapidly outputs an image with better resolution, matching the performance of higher numerical aperture lenses and
also significantly surpassing their limited field of view and depth of field. These results are significant for various fields
that use microscopy tools, including, e.g., life sciences, where optical microscopy is considered as one of the most
widely used and deployed techniques. Beyond such applications, the presented approach might be applicable to other
imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computa-
tional imagers that get better as they continue to image specimens and establish new transformations among different
modes of imaging. © 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (180.0180) Microscopy; (100.3010) Image reconstruction techniques; (100.4996) Pattern recognition, neural networks;

(100.3190) Inverse problems; (110.1758) Computational imaging.
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1. INTRODUCTION

Deep learning is a class of machine learning techniques that uses
multilayered artificial neural networks for automated analysis of
signals or data [1,2]. The name comes from the general structure
of deep neural networks, which consist of several layers of artificial
neurons stacked over each other. One type of a deep neural net-
work is the deep convolutional neural network (CNN). Typically,
an individual layer of a deep convolutional network is composed
of a convolutional layer and a nonlinear operator. The kernels
(filters) in these convolutional layers are randomly initialized and
can then be trained to learn how to perform specific tasks using
supervised or unsupervised machine learning techniques. CNNs
form a rapidly growing research field with various applications in,
e.g., image classification [3], annotation [4], style transfer [5],
compression [6], and deconvolution in photography [7–10],
among others [11–14]. Recently, deep neural networks have also
been successfully applied to solve numerous imaging-related
problems in, e.g., computed tomography [15], magnetic reso-
nance imaging [16], photoacoustic tomography [17], and phase
retrieval [18], among others.

Here, we demonstrate the use of a deep neural network to
significantly enhance the performance of an optical microscope
without changing its design or hardware. This network uses a sin-
gle image that is acquired under a standard microscope as input,

and quickly outputs an improved image of the same specimen,
e.g., in less than 1 s using a laptop, matching the resolution of
higher-numerical-aperture (NA) objectives, while at the same
time surpassing their limited field of view (FOV) and depth of
field (DOF). The first step in this deep-learning-based micros-
copy framework involves learning the statistical transformation
between low-resolution and high-resolution microscopic images,
which is used to train a CNN. Normally, this transformation can
be physically understood as a spatial convolution operation fol-
lowed by an under-sampling step (going from a high-resolution
and high-magnification microscopic image to a low-resolution
and low-magnification one). However, the proposed CNN frame-
work instead focuses on training multiple layers of artificial neural
networks to statistically relate low-resolution images (input) to
high-resolution images (output) of a specimen. In fact, to train
and blindly test this deep-learning-based imaging framework,
we have chosen bright-field microscopy with spatially and tem-
porally incoherent broadband illumination, which presents chal-
lenges to provide an exact analytical or numerical modelling of
light–sample interaction and the related physical image formation
process, making the relationship between high-resolution images
and low-resolution ones significantly more complicated to exactly
model or predict. Although bright-field microscopic imaging has
been our focus in this paper, the same deep learning framework
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might be applicable to other microscopy modalities, including,
e.g., holography, dark-field, fluorescence, multi-photon, optical
coherence tomography, among others.

2. METHODS

Sample Preparation: A de-identified formalin-fixed paraffin-
embedded (FFPE) hematoxylin and eosin (H&E)-stained human
breast tissue section from a breast cancer patient, a Masson’s-
trichrome-stained lung tissue section from two pneumonia
patients, and a Masson’s-trichrome-stained kidney tissue section
from a moderately advanced diabetic nephropathy patient were
obtained from the Translational Pathology Core Laboratory at
UCLA. Sample staining was done at the Histology Lab at UCLA.
All the samples were obtained after de-identification of the patient
and related information and were prepared from the existing
specimen. Therefore, this work did not interfere with standard
practices of care or sample collection procedures.

Microscopic Imaging: Image data acquisition was performed
using an Olympus IX83 microscope equipped with a motorized
stage and controlled by MetaMorph microscope automation soft-
ware (Molecular Devices, LLC). The images were acquired using
a set of Super Apochromat objectives, (UPLSAPO 40X2 / 0.95NA,
100XO / 1.4NA—oil immersion objective lens). The color images
were obtained using a Qimaging Retiga 4000R camera with a pixel
size of 7.4 μm.

3. RESULTS

To initially train the deep neural network, we acquired micros-
copy images of Masson’s-trichrome-stained lung tissue sections
using a pathology slide, obtained from an anonymous pneumonia
patient. The lower-resolution images were acquired with a 40 ×
∕0.95NA objective lens, providing a FOV of 150 μm × 150 μm
per image, while the higher-resolution training images were
acquired with a 100 × ∕1.4NA oil-immersion objective lens,
providing a FOV of 60 μm × 60 μm per image, i.e., 6.25-fold
smaller in area. Both the low-resolution and high-resolution im-
ages were acquired with 0.55-NA condenser illumination, leading
to a diffraction-limited resolution of ∼0.36 μm and ∼0.28 μm,
respectively, both of which were adequately sampled by the image
sensor chip, with an “effective” pixel size of ∼0.18 μm and
∼0.07 μm, respectively. Following a digital registration procedure
to match the corresponding FOVs of each set of images (Section 2
in Supplement 1), we generated 179 low-resolution images cor-
responding to different regions of the lung tissue sample, which
were used as input to our network, together with their corre-
sponding high-resolution labels for each FOV. Out of these
images, 149 low-resolution input images and their corresponding
high-resolution labels were randomly selected to be used as our
training image set, while 10 low-resolution images and their
corresponding high-resolution labels were used for selecting and
validating the final network model, and the remaining 20 low-
resolution inputs and their corresponding high-resolution labels
formed our test images used to blindly quantify the average per-
formance of the final network (see the structural similarity index,
SSIM, reported in Table S1 in Supplement 1). This training
dataset was further augmented by extracting 60 × 60-pixel and
150 × 150-pixel image patches with 40% overlap from the
low-resolution and high-resolution images, respectively, which
effectively increased our training data size by more than 6-fold.

As shown in Fig. 1(a) and further detailed in Section 1 in
Supplement 1, these training image patches were randomly as-
signed to 149 batches, each containing 64 randomly drawn
low- and high-resolution image pairs, forming a total of 9,536
input patches for the network training process (Section 3 in
Supplement 1, Table S2 in Supplement 1). The pixel count and
the number of the image patches were empirically determined
to allow rapid training of the network, while at the same time
containing distinct sample features in each patch. In this training
phase, as further detailed in the supplementary information, we
utilized an optimization algorithm to adjust the network’s param-
eters using the training image set and utilized the validation image
set to determine the best network model, also helping to avoid
overfitting to the training image data.

After this training procedure, which needs to be performed
only once, the CNN is fixed (Fig. 1(b), Sections 1 and 4 in
Supplement 1) and ready to blindly output high-resolution im-
ages of samples of any type, i.e., not necessarily from the same
tissue type that the CNN has been trained on. To demonstrate
the success of this deep-learning-enhanced microscopy approach,
first we blindly tested the network’s model on entirely different
sections of Masson’s-trichrome-stained lung tissue, which were
not used in our training process, and in fact were taken from
another anonymous patient. These samples were imaged using
the same 40 × ∕0.95NA and 100 × ∕1.4NA objective lenses with

Fig. 1. Schematics of the deep neural network trained for microscopic
imaging. (a) The input is composed of a set of lower-resolution images,
and the training labels are their corresponding high-resolution images.
The deep neural network is trained by optimizing various parameters,
which minimize the loss function between the network’s output and
the corresponding high-resolution training labels. (b) After the training
phase is complete, the network is blindly given an N × N pixel input
image and rapidly outputs an �N × L� × �N × L� image, showing
improved spatial resolution, field of view, and depth of field.
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0.55-NA condenser illumination, generating various input images
for our CNN. The output images of the CNN for these input
images are summarized in Fig. 2, which clearly demonstrate
the ability of the network to significantly enhance the spatial res-
olution of the input images, whether or not they were initially
acquired with a 40 × ∕0.95NA or a 100 × ∕1.4NA objective lens.
For the network output image shown in Fig. 2(a), we used an

input image acquired with a 40 × ∕0.95NA objective lens, and
therefore it has a FOV that is 6.25-fold larger compared to the
100 × objective lens FOV, which is highlighted with a red box
in Fig. 2(a). Zoomed-in regions of interest (ROI) corresponding
to various input and output images are also shown in
Figs. 2(b)–2(p), better illustrating the fine spatial improvements
in the network output images compared to the corresponding

Fig. 2. Deep neural network output image corresponding to a Masson’s-trichrome-stained lung tissue section taken from a pneumonia patient. The
network was trained on images of a Masson’s-trichrome-stained lung tissue sample taken from another patient. (a) Image of the deep neural network
output corresponding to a 40 × ∕0.95NA input image. The red highlighted region denotes the FOV of a 100 × ∕1.4NA objective lens. (b, g, l) Zoomed-
in regions of interest (ROIs) of the input image (40 × ∕0.95NA). (c, h, m) Zoomed-in ROIs of the neural network output image. (d, i, n) Zoomed-in
ROIs of the neural network output image, taking the first output of the network, shown in (c, h) and (m), as input. (e, j, o) Comparison images of the
same ROIs, acquired using a 100 × ∕1.4NA objective lens (also see Fig. S7 in Supplement 1 for difference maps). (f, k, p) Result of the same deep neural
network model applied on the 100 × ∕1.4NA objective lens images (also see Fig. S8 in Supplement 1). The yellow arrows in (o) point to some of the out-
of-focus features that are brought to focus in the network output image shown in (n). Red circles in (j, k) point to some dust particles in the images
acquired with our 100 × ∕1.4NA objective lens, and that is why they do not appear in (g–i). The average network computation time for different ROIs is
listed in Table S3 in Supplement 1.
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input images. To give an example of the computational load of
this approach, the network output images shown in Fig. 2(a) and
Figs. 2(c), 2(h), and 2(m) (with FOVs of 378.8 × 378.8 μm and
29.6 × 29.6 μm, respectively) took on average ∼0.695 s and
0.037 s, respectively, to compute using a dual graphics processing
unit (GPU) running on a laptop computer (see Section 5 and
Table S3 in Supplement 1).

In Fig. 2, we also illustrate that “self-feeding” the output of the
network as its new input significantly improves the resulting out-
put image, as demonstrated in Figs. 2(d), 2(i), and 2(n). A minor
disadvantage of this self-feeding approach is increased computa-
tion time, e.g., ∼0.062 s on average for Figs. 2(d), 2(i), and 2(n)
on the same laptop computer, in comparison to ∼0.037 s on aver-
age for Figs. 2(c), 2(h), and 2(m) (see Section 5 and Table S3 in

Fig. 3. Deep neural network output image of a Masson’s-trichrome-stained kidney tissue section obtained from a moderately advanced diabetic nephro-
pathy patient. The network was trained on images of a Masson’s-trichrome-stained lung tissue taken from another patient. (a) Result of two successive
applications of the same deep neural network on a 40 × ∕0.95NA image of the kidney tissue that is used as input. The red highlighted region denotes the
FOV of a 100 × ∕1.4NA objective lens. (b, g, l) Zoomed-in ROIs of the input image (40 × ∕0.95NA). (c, h,m) Zoomed-in ROIs of the neural network
output image, taking the corresponding 40 × ∕0.95NA images as input. (d, i, n) Zoomed-in ROIs of the neural network output image, taking the first
output of the network, shown in (c, h, m) as input. (e, j, o) Extended depth-of-field image, algorithmically calculated using Nz � 5 images taken at
different depths using a 100 × ∕1.4NA objective lens. (f, k, p) The auto-focused images of the same ROIs, acquired using a 100 × ∕1.4NA objective lens.
The yellow arrows in (p) point to some of the out-of-focus features that are brought to focus in the network output images shown in (n). Also see Fig. S8
in Supplement 1.
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Supplement 1). After one cycle of feeding the network with its
own output, the next cycles of self-feeding do not change the out-
put images in a noticeable manner, as also highlighted in Fig. S6
in Supplement 1.

Quite interestingly, when we use the same deep neural network
model on input images acquired with a 100 × ∕1.4NA objective
lens, the network output also demonstrates significant enhance-
ment in spatial details that appear blurry in the original input
images. These results are demonstrated in Figs. 2(f ), 2(k), and
2(p) and in Fig. S8 in Supplement 1, revealing that the same
learned model (which was trained on the transformation of
40 × ∕0.95NA images into 100 × ∕1.4NA images) can also be
used to super-resolve images that were captured with higher-
magnification and higher-numerical-aperture lenses compared to
the input images of the training model. This feature suggests the
scale-invariance of the image transformation (from lower-resolution
input images to higher-resolution ones) that the CNN is trained on.

Next, we blindly applied the same lung-tissue-trained CNN
for improving the microscopic images of a Masson’s-trichrome-
stained kidney tissue section obtained from an anonymous
moderately advanced diabetic nephropathy patient. The network
output images shown in Fig. 3 emphasize several important
features of our deep-learning-based microscopy framework. First,

this tissue type, although stained with the same dye (Masson’s
trichrome) is entirely new to our lung-tissue-trained CNN, and
yet, the output images clearly show a similarly outstanding per-
formance as in Fig. 2. Second, similar to the results shown in
Fig. 2, self-feeding the output of the same lung tissue network
as a fresh input back to the network further improves our recon-
structed images, even for a kidney tissue that has not been part of
our training process; see, e.g., Figs. 3(d), 3(i), and 3(n). Third, the
output images of our deep learning model also exhibit a signifi-
cantly larger DOF. To better illustrate this, the output image of
the lung-tissue-trained CNN on a kidney tissue section imaged
with a 40 × ∕0.95NA objective was compared to an extended
DOF image, which was obtained by using a depth-resolved stack
of five images acquired using a 100 × ∕1.4NA objective lens (with
0.4-μm axial increments). To create the gold standard, i.e., the
extended DOF image used for comparison to our network out-
put, we merged these five depth-resolved images acquired with a
100 × ∕1.4NA objective lens using a wavelet-based depth-fusion
algorithm [19]. The network’s output images, shown in Figs. 3(d),
3(i), and 3(n), clearly demonstrate that several spatial features of
the sample that appear in focus in the deep network output image
can only be inferred by acquiring a depth-resolved stack of
100 × ∕1.4NA objective images because of the shallow DOF

Fig. 4. Deep-neural-network-based imaging of H&E-stained breast tissue section. The output images of two different deep neural networks are com-
pared to each other. (a) The first network is trained on H&E-stained breast tissue, taken from a different tissue section that is not used in the training
phase. (b) The second network is trained on a different tissue type and stain, i.e., Masson’s-trichrome-stained lung tissue sections. (c–n) Illustrate zoomed-
in images of different ROIs of the input and output images, similar to Figs. 2–3. A similar comparison is also provided in Fig. S9 in Supplement 1.
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of such high-NA objective lenses—also see the yellow pointers in
Figs. 3(n) and 3(p) to better visualize this DOF enhancement.
Stated differently, the network output image not only has 6.25-fold
larger FOV (∼379 × 379 μm) compared to the images of a
100 × ∕1.4NA objective lens, but it also exhibits a significantly
enhanced DOF. The same extended DOF feature of the deep
neural network image inference is further demonstrated using lung
tissue samples shown in Figs. 2(n) and 2(o).

Until now, we have focused on bright-field microscopic images
of different tissue types, all stained with the same dye (Masson’s
trichrome), and used a deep neural network to blindly transform
lower-resolution images of these tissue samples into higher-
resolution ones, also showing significant enhancement in FOV
and DOF of the output images. Next, we tested to see if a CNN
that is trained on one type of stain can be applied to other tissue
types that are stained with another dye. To investigate this, we
trained a new CNN model (with the same network architecture)
using microscopic images of a hematoxylin and eosin (H&E)-
stained human breast tissue section obtained from an anonymous
breast cancer patient. As before, the training pairs were created
from 40 × ∕0.95NA lower-resolution images and 100 × ∕1.4NA
high-resolution images (see Tables S1, S2 in Supplement 1 for
specific implementation details). First, we blindly tested the re-
sults of this trained deep neural network on images of breast tissue
samples (which were not part of the network training process)
acquired using a 40 × ∕0.95NA objective lens. Figure 4 illustrates
the success of this blind testing phase, which is expected since this
network has been trained on the same type of stain and tissue
(i.e., H&E-stained breast tissue). To compare, in the same Fig. 4
we also report the output images of a previously used deep neural
network model (trained using lung tissue sections stained with
Masson’s trichrome) for the same input images reported in Fig. 4.
Except a relatively minor color distortion, all the spatial features of
the H&E-stained breast tissue sample have been resolved using a
CNN trained on Masson’s-trichrome-stained lung tissue. These
results, together with the earlier ones discussed so far, clearly dem-
onstrate the universality of the deep neural network approach,
and how it can be used to output enhanced microscopic images
of various types of samples from different patients and organs and
using different types of stains. A similarly outstanding result, with
the same conclusion, is provided in Fig. S9 in Supplement 1,
where the deep learning network trained on H&E-stained breast
tissue images was applied on Masson’s-trichrome-stained lung
tissue samples imaged using a 40 × ∕0.95NA objective lens, rep-
resenting the opposite case of Fig. 4. To mitigate possible color
distortions when inferring images that are stained differently com-
pared to the training image set, one can train a universal network
with various types of samples, as demonstrated in, e.g., Ref. [18]
for holography and phase recovery. Such an approach would then
increase the number of feature maps and the overall complexity of
the network [18].

4. DISCUSSION

To quantify the effect of our deep neural network on the spatial
frequencies of the output image, we have applied the CNN that
was trained using the lung tissue model on a resolution test target,
which was imaged using a 100 × ∕1.4NA objective lens with a
0.55-NA condenser. The objective lens was oil-immersed as de-
picted in Fig. 5(a), while the interface between the resolution test
target and the sample cover glass was not oil-immersed, leading to

an effective NA of ≤1 and a lateral diffraction-limited resolution
of ≥0.355 μm. The modulation transfer function (MTF) was
evaluated by calculating the contrast of different elements of the
resolution test target (Section 6 in Supplement 1). Based on this
experimental analysis, the MTFs for the input image and the out-
put image of the deep neural network that was trained on lung
tissue are compared to each other in Fig. 5(e) and Table S4 in
Supplement 1. The output image of the deep neural network,
despite the fact that it was trained on tissue samples imaged with
a 40 × ∕0.95NA objective lens, shows an increased modulation
contrast for a significant portion of the spatial frequency spectrum
at especially high frequencies, while also resolving a period of
0.345 μm (Table S4 in Supplement 1).

To conclude, we have demonstrated how deep learning signifi-
cantly enhances optical microscopy images by improving their
resolution, FOV, and DOF. This deep learning approach is
extremely fast to output an improved image, e.g., taking on aver-
age ∼0.69 s per image with a FOV of ∼379 × 379 μm even using
a laptop computer, and only needs a single image taken with a
standard optical microscope without the need for extra hardware
or user-specified post-processing. After appropriate training, this
framework and its derivatives might be applicable to other forms
of optical microscopy and imaging techniques and can be used to
transfer images that are acquired under low-resolution systems
into high-resolution and wide-field images, significantly extend-
ing the space bandwidth product of the output images.
Furthermore, using the same deep learning approach we have also
demonstrated the extension of the spatial frequency response of
the imaging system along with an extended DOF. In addition to

Fig. 5. Modulation transfer function (MTF) comparison for the input
image and the output image of a deep neural network that is trained on
images of a lung tissue section. (a) Experimental apparatus: the US Air
Force (USAF) resolution target lies on a glass slide with an air gap
in between, leading to an effective numerical aperture of ≤1. The
resolution test target was illuminated using a condenser with a numerical
aperture of 0.55, leading to lateral diffraction-limited resolution of
≥0.355 μm. (b) Input image acquired with a 100 × ∕1.4NA lens.
(c), Zoom-in on the green highlighted ROI highlighted in (b). (d) Output
image of the deep neural network applied on (b, c). (e) MTF calculated
from the input and output images of the deep network. (f) Cross-sectional
profile of group 11, element 4 (period: 0.345 μm) extracted from the
network output image shown in (d).
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optical microscopy, this entire framework can also be applied to
other computational imaging approaches, also spanning different
parts of the electromagnetic spectrum, and can be used to design
computational imagers with improved resolution, FOV,
and DOF.
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1. DEEP LEARNING NETWORK ARCHITECTUREThe schematics of the architecture for training our deep neural network is depicted in Fig. S1. The input images are mapped into 3 color channels: red, green and blue (RGB). The input convolutional layer maps the 3 input color channels, into 32 channels, as depicted in Fig. S2. The number of output channels of the first convolutional layer was empirically determined to provide the optimal balance between the deep neural network’s size (which affects the computational complexity and image output time) and its image transform performance. The input convolutional layer is followed by K=5 residual blocks [1]. Each residual block is composed of 2 convolutional layers and 2 rectified linear units (ReLU)  [2,3], as shown in Fig. S1. The ReLU is an activation function which performs ReLU( ) max(0, )x x= . The formula of each residual block can be summarized as: 
(1) (2)

1 ReLU(ReLU( ) ),k k k k kX X X W W+ = + ∗ ∗       (S1)where ∗ refers to convolution operation, kX  is the input to the k-th block, 1kX + denotes its output, (1)
kW  and (2)

kW  denote an ensemble of learnable convolution kernels of the k-th block, where the bias terms are omitted for simplicity. The output feature maps of the convolutional layers in the network are calculated as follows: 
, , , , , ,k j k i k i j k j

i

g f w β= ∗ + Ω   (S2) 

where , ,k i jw   is a learnable 2D kernel (i.e., the (i,j)-th kernel of 
kW ) applied to the i-th input feature map, ,k if  (which is an 

M×M-pixel image in the residual blocks), ,k jβ is a learnable bias term, Ω is an M×M matrix with all its entries set as 1, and ,k jg is the convolutional layer j-th output feature map (which is also an 
M×M-pixel image in the residual blocks). The size of all the kernels (filters) used throughout the network’s convolutional layers is 3×3. To resolve the dimensionality mismatch of Eq. (2), prior to convolution, the feature map ,k if  is zero-padded to a size of(M+2)×(M+2) pixels, where only the central M×M-pixel part is taken following the convolution with kernel , ,k i jw . To allow high level feature inference we increase the number of features learnt in each layer, by gradually increasing the number of channels, using the pyramidal network concept [4].  Using such pyramidal networks helps to keep the network’s width compact in comparison to designs that sustain a constant number of channels throughout the network. The channel increase formula was empirically set according to [4]: 

1 (( ) / 0.5)k kA A floor k Kα−= + × + (S3)where 0 32A = , k=[1:5], which is the residual block number, 
K=5 is the total number of residual blocks used in our architecture and α is a constant that determines the number of channels that will be added at each residual block. In our implementation, we used α=10, which yields 5 62A =  channels at the output of thefinal residual block.  In addition, we utilized the concept of residual connections (shortcutting the block’s input to its output, see Fig. S1), which was demonstrated to improve the training of deep neural networks by providing a clear path for information flow [3] and speed up the convergence of the training phase. Nevertheless, 
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validation images, as detailed in Table S1. The output images of the network were quantified using the structural similarity index (SSIM) [11]. SSIM, which has a scale between 0 and 1, quantifies a human observer’s perceptual loss from a gold standard image by considering the relationship among the contrast, luminance, and structure components of the image. SSIM is defined as 1 for an image that is identical to the gold standard image.   
Table S4. Calculated contrast values for the USAF resolution test 
target elements.  Period (Cycles/mm) 100×/1.4NA input contrast (a.u.) Network output contrast (a.u.) 256 0.801144658 0.75627907 287.3502844 0.790853855 0.729511618 322.5397888 0.790801661 0.72449378 362.038672 0.795555918 0.709122843 406.3746693 0.787270294 0.726269147 456.1401437 0.771249585 0.774461828 512 0.713336904 0.681675286 574.7005687 0.636153491 0.640392221 645.0795775 0.577148622 0.588478766 724.0773439 0.517576094 0.585453198 812.7493386 0.516547441 0.63392948 912.2802874 0.439410917 0.597450901 1024 0.368925748 0.585228416 1149.401137 0.400244051 0.53887823 1290.159155 0.303987367 0.496261545 1448.154688 0.228926978 0.4729755 1625.498677 0.20194026 0.542857143 1824.560575 0.12865681 0.454976303 2048 0.110901071 0.259743799 2298.802275 0 0.254320988 2580.31831 0 0.182785747 2896.309376 0 0.072 3250.997354 0 0 3649.12115 0 0 

5. IMPLEMENTATION DETAILS The program was implemented using Python version 3.5.2, and the deep neural network was implemented using TensorFlow framework version 0.12.1 (Google). We used a laptop computer with Core i7-6700K CPU @ 4GHz (Intel) and 64GB of RAM, running a Windows 10 professional operating system (Microsoft). The network training and testing were performed using GeForce GTX 1080 GPUs (NVidia). For the training phase, using a dual-GPU configuration resulted in ~33% speedup compared to training the network with a single GPU. The training time of the deep neural networks for the lung and breast tissue image datasets is summarized in Table S2 (for the dual-GPU configuration).   Following the conclusion of the training stage, the fixed deep neural network intakes an input stream of 100 low-resolution images each with 2,048×2,048-pixels, and outputs for each input image a 5,120×5,120-pixel high-resolution image at a total time of ~119.3 seconds (for all the 100 images) on a single laptop GPU. This runtime was calculated as the average of 5 different runs. Therefore, for L=2.5 the network takes 1.193 sec per output image on a single GPU. When employing a dual-GPU for the same task, the average runtime reduces to 0.695 sec per 2,048×2,048-pixel input image (see Table S3 for additional details on the network output runtime corresponding to other input image sizes, including self-feeding of the network output).   
6. MODULATION TRANSFER FUNCTION (MTF)
ANALYSIS   To quantify the effect of our deep neural network on the spatial frequencies of the output image, we have applied the CNN that was trained using the Masson’s trichrome stained lung tissue samples on a resolution test target (Extreme USAF Resolution Target on 4×1 mm Quartz Circle Model 2012B, Ready Optics), which was imaged using a 100×/1.4NA objective lens, with a 0.55NA condenser. The objective lens was oil immersed as depicted in Fig. 5(a), while the interface between the resolution test target and the sample cover glass was not oil immersed, leading to an effective objective NA of ≤1 and a lateral diffraction limited resolution ≥ 0.354µm (assuming an average illumination wavelength of 550 nm). MTF was evaluated by calculating the contrast of different elements of the resolution test target  [12]  For each element, we horizontally averaged the resulting image along the element lines (~80-90% of the line length). We then located the center pixels of the element’s minima and maxima and used their values for contrast calculation. To do that, we calculated the length of the element’s cross-section from the resolution test target group and element number in micrometers, cut out a corresponding cross section length from the center of the horizontally averaged element lines. This also yielded the center pixel locations of the 

Table S3. Average runtime for different regions-of-interest shown in Fig. 2.  Single GPU runtime (sec) Dual GPU runtime (sec) Image FOV Number of Pixels (input) Network Output Network Output x2(Self-feeding) 378.8 × 378.8 µm (e.g., Fig. 2A) 2048×2048 1.193 8.343 0.695 4.615 151.3 × 151.3 µm (e.g., red box in Fig. 2A) 818×818 0.209 1.281 0.135 0.730 29.6 × 29.6 µm (e.g., Figs. 2B-L) 160×160 0.038 0.081 0.037 0.062 

Network Output Network Output x2(Self-feeding) 
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element’s local maximum values (2 values) and minimum values (3 values). The maximum value, maxI , was set as the maximum of the local maximum values and the minimum value, minI , was set as the minimum of the local minimum values.  For the elements, where the minima and maxima of the pattern matched their calculated locations in the averaged cross section, the contrast value was calculated as: max min max min( ) / ( )I I I I− + . For the elements where the minima and maxima were not at their expected positons, thus the modulation of the element was not preserved, we set the contrast to 0. Based on this experimental analysis, the calculated contrast values are given Table S4 and the MTFs for the input image and the output image of the deep neural network (trained on Masson’s trichrome lung tissue) are compared to each other in Supplementary Fig. 5(e). 
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