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All-optical machine learning using
diffractive deep neural networks
Xing Lin1,2,3*, Yair Rivenson1,2,3*, Nezih T. Yardimci1,3, Muhammed Veli1,2,3,
Yi Luo1,2,3, Mona Jarrahi1,3, Aydogan Ozcan1,2,3,4†

Deep learning has been transforming our ability to execute advanced inference tasks using
computers. Here we introduce a physical mechanism to perform machine learning by
demonstrating an all-optical diffractive deep neural network (D2NN) architecture that can
implement various functions following the deep learning–based design of passive
diffractive layers that work collectively. We created 3D-printed D2NNs that implement
classification of images of handwritten digits and fashion products, as well as the function
of an imaging lens at a terahertz spectrum. Our all-optical deep learning framework can
perform, at the speed of light, various complex functions that computer-based neural
networks can execute; will find applications in all-optical image analysis, feature detection,
and object classification; and will also enable new camera designs and optical components
that perform distinctive tasks using D2NNs.

D
eep learning is one of the fastest-growing
machine learning methods (1). This ap-
proach uses multilayered artificial neural
networks implemented in a computer to
digitally learn data representation and ab-

straction and to perform advanced tasks in a
manner comparable or even superior to the per-
formance of human experts. Recent examples in
which deep learning hasmademajor advances in
machine learning includemedical image analysis
(2), speech recognition (3), language transla-
tion (4), and image classification (5), among others
(1, 6). Beyond some of these mainstream appli-
cations, deep learning methods are also being
used to solve inverse imaging problems (7–13).
Herewe introduce an all-optical deep learning

framework in which the neural network is phys-
ically formed by multiple layers of diffractive
surfaces that work in collaboration to optically
perform an arbitrary function that the network
can statistically learn.Whereas the inference and
prediction mechanism of the physical network
is all optical, the learning part that leads to its
design is done through a computer.We term this
framework a diffractive deep neural network
(D2NN) and demonstrate its inference capabil-
ities through both simulations and experiments.
Our D2NN can be physically created by using
several transmissive and/or reflective layers (14),
where each point on a given layer either trans-
mits or reflects the incomingwave, representing
an artificial neuron that is connected to other
neurons of the following layers through optical
diffraction (Fig. 1A). In accordance with the
Huygens-Fresnel principle, our terminology is

based on each point on a given layer acting as a
secondary source of a wave, the amplitude and
phase of which are determined by the product
of the input wave and the complex-valued trans-
mission or reflection coefficient at that point [see
(14) for an analysis of the waves within aD2NN].
Therefore, an artificial neuron in a D2NN is con-
nected to other neurons of the following layer
through a secondary wave modulated in ampli-
tude and phase by both the input interference
pattern created by the earlier layers and the local
transmission or reflection coefficient at that point.
As an analogy to standard deep neural networks
(Fig. 1D), one can consider the transmission or
reflection coefficient of each point or neuron as
amultiplicative “bias” term, which is a learnable
network parameter that is iteratively adjusted
during the training process of the diffractive net-
work, using an error back-propagation method.
After this numerical training phase, the D2NN
design is fixed and the transmission or reflec-
tion coefficients of the neurons of all layers are
determined. This D2NNdesign—once physically
fabricated using techniques such as 3D-printing
or lithography—can then perform, at the speed
of light, the specific task for which it is trained,
using only optical diffraction and passive optical
components or layers that do not need power,
thereby creating an efficient and fast way of
implementing machine learning tasks.
In general, the phase and amplitude of each

neuron can be learnable parameters, providing
a complex-valued modulation at each layer,
which improves the inference performance of
the diffractive network (fig. S1) (14). For coher-
ent transmissive networks with phase-only mod-
ulation, each layer can be approximated as a thin
optical element (Fig. 1). Through deep learning,
the phase values of the neurons of each layer of
the diffractive network are iteratively adjusted
(trained) to perform a specific function by feed-
ing training data at the input layer and then
computing the network’s output through optical

diffraction. On the basis of the calculated error
with respect to the target output, determined by
the desired function, the network structure and
its neuron phase values are optimized via an error
back-propagation algorithm, which is based on
the stochastic gradient descent approach used
in conventional deep learning (14).
To demonstrate the performance of the D2NN

framework, we first trained it as a digit classifier
to perform automated classification of hand-
written digits, from 0 to 9 (Figs. 1B and 2A). For
this task, phase-only transmission masks were
designed by training a five-layer D2NN with
55,000 images (5000 validation images) from the
MNIST (Modified National Institute of Stan-
dards and Technology) handwritten digit data-
base (15). Input digits were encoded into the
amplitude of the input field to the D2NN, and
the diffractive networkwas trained tomap input
digits into 10 detector regions, one for each digit.
The classification criterion was to find the de-
tector with themaximumoptical signal, and this
was also used as a loss function during the net-
work training (14).
After training, the design of the D2NN digit

classifier was numerically tested using 10,000
images from theMNIST test dataset (whichwere
not used as part of the training or validation
image sets) and achieved a classification accu-
racy of 91.75% (Fig. 3C and fig. S1). In addition to
the classification performance of the diffractive
network, we also analyzed the energy distribu-
tion observed at the network output plane for the
same 10,000 test digits (Fig. 3C), the results of
which clearly demonstrate that the diffractive
network learned to focus the input energy of
each handwritten digit into the correct (i.e., the
target) detector region, in accord with its train-
ing.With the use of complex-valuedmodulation
and increasing numbers of layers, neurons, and
connections in the diffractive network, our classi-
fication accuracy can be further improved (figs.
S1 and S2). For example, fig. S2 demonstrates a
Lego-like physical transfer learning behavior for
D2NN framework, where the inference perform-
ance of an already existing D2NN can be further
improved by adding new diffractive layers—or, in
some cases, by peeling off (i.e., discarding) some
of the existing layers—where the new layers to
be added are trained for improved inference
(coming from the entire diffractive network: old
and new layers). By using a patch of two layers
added to an existing and fixedD2NNdesign (N =
5 layers), we improved our MNIST classification
accuracy to 93.39% (fig. S2) (14); the state-of-the-
art convolutional neural network performance
has been reported as 99.60 to 99.77% (16–18).
More discussion on reconfiguringD2NNdesigns
is provided in the supplementarymaterials (14).
Following these numerical results, we 3D-

printed our five-layer D2NN design (Fig. 2A),
with each layer having an area of 8 cm by 8 cm,
followed by 10 detector regions defined at the
output plane of the diffractive network (Figs. 1B
and 3A). We then used continuous-wave illumi-
nation at 0.4 THz to test the network’s inference
performance (Figs. 2, C and D). Phase values of
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each layer’s neurons were physically encoded
using the relative thickness of each 3D-printed
neuron. Numerical testing of this five-layerD2NN
design achieved a classification accuracy of 91.75%
over ~10,000 test images (Fig. 3C). To quantify the
match between these numerical testing results
and our experiments, we 3D-printed 50 hand-
written digits (five different inputs per digit),
selected among the same91.75%of the test images
for which numerical testing was successful. For
each input object that is uniformly illuminated
with the terahertz source, we imaged the output
plane of the D2NN to map the intensity distri-
bution for each detector region that is assigned
to a digit. The results (Fig. 3B) demonstrate the
success of the 3D-printed diffractive neural net-
work and its inference capability: The average
intensity distribution at the output plane of the
network for each input digit clearly reveals that
the 3D-printed D2NNwas able to focus the input
energy of the beam and achieve a maximum sig-
nal at the corresponding detector region assigned
for that digit. Despite 3D-printing errors, possible
alignment issues, and other experimental error
sources in our setup (14), thematch between the
experimental and numerical testing of our five-
layer D2NNdesignwas found to be 88% (Fig. 3B).
This relatively small reduction in the perform-

ance of the experimental network compared to
our numerical testing is especially pronounced
for the digit 0 because it is challenging to 3D-
print the large void region at the center of the
digit. Similar printing challenges were also ob-
served for other digits that have void regions;
e.g., 6, 8, and 9 (Fig. 3B).
Next, we tested the classification performance

of D2NN framework with a more complicated
image dataset—i.e., the Fashion-MNIST dataset
(19), which includes 10 classes, each representing
a fashion product (t-shirts, trousers, pullovers,
dresses, coats, sandals, shirts, sneakers, bags, and
ankle boots; see fig. S3 for sample images). In gen-
eral, for a coherently illuminated D2NN, we can use
the amplitude and/or phase channels of the input
plane to represent data to be classified or processed.
In our digit classification results reported earlier,
input objects were encoded by using the ampli-
tude channel, and to demonstrate the utility of
the phase channel of the network input, we en-
coded each input image corresponding to a fash-
ion product as a phase-only object modulation
(14). Our D2NN inference results (as a function of
the number of layers, neurons, and connections)
for classification of fashion products are sum-
marized in figs. S4 and S5. To provide an example
of our performance, a phase-only and a complex-

valued modulation D2NN with N = 5 diffractive
layers (sharing the same physical network dimen-
sions as the digit classification D2NN shown
in Fig. 2A) reached an accuracy of 81.13 and
86.33%, respectively (fig. S4). By increasing the
number of diffractive layers to N = 10 and the
total number of neurons to 0.4 million, our
classification accuracy increased to 86.60% (fig.
S5). For convolutional neural net–based standard
deep learning, the state-of-the-art performance
for Fashion-MNIST classification accuracy has
been reported as 96.7%, using ~8.9million learn-
able parameters and ~2.5 million neurons (20).
To experimentally demonstrate the perform-

ance of fashion product classification using a
physical D2NN, we 3D-printed our phase-only
five-layer design and 50 fashion products used
as test objects (five per class) on the basis of the
same procedures employed for the digit classi-
fication diffractive network (Figs. 2A and 3),
except that each input object information was
encoded in the phase channel. Our results are
summarized in Fig. 4, revealing a 90% match
between the experimental and numerical testing
of our five-layer D2NN design, with five errors
out of 50 fashion products. Comparedwith digit
classification (six errors out of 50 digits; Fig. 3),
this experiment yielded a slightly better match
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Fig. 1. Diffractive deep neural networks (D2NNs). (A) A D2NN comprises
multiple transmissive (or reflective) layers, where each point on a given layer acts
as a neuron, with a complex-valued transmission (or reflection) coefficient. The
transmission or reflection coefficients of each layer can be trained by using deep
learning to perform a function between the input and output planes of the
network. After this learning phase, the D2NN design is fixed; once fabricated or
3D-printed, it performs the learned function at the speed of light. L, layer. (B and
C) We trained and experimentally implemented different types of D2NNs:
(B) classifier (for handwritten digits and fashion products) and (C) imager.

d, distance. (D) Comparison between a D2NN and a conventional neural network
(14). Based on coherent waves, the D2NN operates on complex-valued inputs,
with multiplicative bias terms.Weights in a D2NN are based on free-space
diffraction and determine the interference of the secondary waves that are phase-
and/or amplitude-modulated by the previous layers. “o” denotes a Hadamard
product operation. “Electronic neural network” refers to the conventional neural
network virtually implemented in a computer.Y, optical field at a given layer;
Y, phase of the optical field; X, amplitude of the optical field; F, nonlinear rectifier
function [see (14) for a discussion of optical nonlinearity in D2NN].
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between the experimental and numerical test-
ing results (despite themore challenging nature
of Fashion-MNIST dataset), perhaps because we
used the phase channel, which does not suffer
from the challenges associatedwith 3D-printing
of void regions [such as in digits 0, 6, 8, and 9
(Fig. 3)], to encode input image information for
fashion products.
Next, we tested the performance of a phase-

only D2NN, composed of five 3D-printed trans-
mission layers to implement amplitude imaging
(Fig. 2B). This network was trained using
the ImageNet database (21) to create a unit-
magnification image of the input optical field
amplitude at its output plane (~9 cm by 9 cm)—
that is, the output image has the same physi-
cal size as the input object (14). As illustrated in
fig. S6, A and C, the trained network initially
connects every amplitude point at the input
plane to various neurons and features of the fol-

lowing layers, which then focus the light back
to a point at the output (i.e., image) plane, which
is, as expected, quite different than the case of
free-space diffraction (i.e., without the presence
of the diffractive network), illustrated in fig. S6,
B and D.
After training and blind testing, which served

to numerically prove the imaging capability of
the network (figs. S6 and S7), we then 3D-printed
this designed D2NN. Using the same experimen-
tal setup shown in Fig. 2, C andD, we imaged the
output plane of the 3D-printed D2NN for various
input objects that were uniformly illuminated by
continuous-wave radiation at 0.4 THz. Figure S8
summarizes our experimental results achieved
with this 3D-printed D2NN, which successfully
projected unit-magnification images of the in-
put patterns at the output plane of the network,
learning the function of an imager, or a phys-
ical auto-encoder. To evaluate the point spread

function of this D2NN, we imaged pinholes with
different diameters (1, 2, and 3 mm), which
resulted in output images, each with a full width
at half maximum of 1.5, 1.4, and 2.5 mm, re-
spectively (fig. S8B). Our results also revealed
that the printed network can resolve a linewidth
of 1.8 mm at 0.4 THz (corresponding to a wave-
length of 0.75 mm in air), which is slightly worse
in resolution compared with the numerical test-
ing of ourD2NNdesign, where the network could
resolve a linewidth of ~1.2 mm (fig. S7C). This
experimental degradation in the performance
of the diffractive network can be due to factors
such as 3D-printing errors, potential misalign-
ments, and absorption-related losses in the 3D-
printed network (14).
Optical implementation of machine learning

in artificial neural networks is promising because
of the parallel computing capability and power ef-
ficiency of optical systems (22–24). Compared
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Fig. 2. Experimental testing of 3D-printed D2NNs. (A and B) After the training phase, the final designs of five different layers (L1, L2, …, L5) of the handwritten
digit classifier, fashion product classifier, and the imager D2NNs are shown.To the right of the network layers, an illustration of the corresponding 3D-printed D2NN
is shown. (C and D) Schematic (C) and photo (D) of the experimental terahertz setup. An amplifier-multiplier chain was used to generate continuous-wave
radiation at 0.4 THz, and a mixer-amplifier-multiplier chain was used for the detection at the output plane of the network. RF, radio frequency; f, frequency.
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with previous optoelectronics-based learning ap-
proaches (22, 25–27), the D2NN framework
provides a distinctive all-opticalmachine learning
engine that efficiently operates at the speed of light
using passive components and optical diffrac-
tion. An important advantage of D2NNs is

that they can be easily scaled up using various
high-throughput and large-area 3D-fabrication
methods (such as soft lithography and additive
manufacturing), as well as wide-field optical
components and detection systems, to cost-
effectively reach tens to hundreds of millions of

neurons and hundreds of billions of connec-
tions in a scalable and power-efficient manner.
For example, integration of D2NNs with lensfree
on-chip imaging systems (28, 29) could provide
extreme parallelism within a cost-effective and
portable platform. Such large-scale D2NNs may
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Fig. 3. Handwritten digit classifier
D2NN. (A) A 3D-printed D2NN
successfully classifies handwritten
input digits (0, 1, …, 9) on the
basis of 10 different detector
regions at the output plane of
the network, each corresponding
to one digit. As an example, the
output image of the 3D-printed
D2NN for a handwritten input of
“5” is demonstrated, where the
red dashed squares represent
the trained detector regions for
each digit. Other examples of
our experimental results are
shown in fig. S9. (B) Confusion
matrix and energy distribution
percentage for our experimental
results, using 50 different
handwritten digits (five for each
digit) that were 3D-printed,
selected among the images for
which numerical testing was
successful. (C) Same as (B),
except summarizing our numerical
testing results for 10,000 different
handwritten digits (~1000 for
each digit), achieving a classification
accuracy of 91.75% using a five-layer design. Our classification accuracy increased to 93.39% by increasing the number of diffractive layers
to seven, using a patch of two additional diffractive layers added to an existing and fixed D2NN (fig. S2).
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Fig. 4. Fashion product classifier
D2NN. (A) As an example, the
output image of the 3D-printed
D2NN for a sandal input (Fashion-
MNIST class 5) is demonstrated.
The red dashed squares represent
the trained detector regions for
each fashion product. Other
examples of our experimental
results are shown in fig. S10.
(B) Confusion matrix and energy
distribution percentage for our
experimental results, using
50 different fashion products
(five per class) that were
3D-printed, selected among
the images for which numerical
testing was successful. (C) Same
as (B), except summarizing our
numerical testing results for
10,000 different fashion products
(~1000 per class), achieving a
classification accuracy of 81.13%
using a five-layer design. By
increasing the number of diffractive
layers to 10, our classification accu-
racy increased to 86.60% (fig. S5).
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be transformative for various applications, includ-
ing image analysis, feature detection, and object
classification, and may also enable new micro-
scope or camera designs that can perform specific
imaging tasks using D2NNs. To achieve these new
technologies, nonlinear optical materials (14) and
amonolithicD2NNdesign that combines all layers
of the network as part of a 3D-fabricationmethod
would be desirable. Among other techniques,
laser lithography based on two-photon polym-
erization (30) can provide solutions for creating
such D2NNs.
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Materials and Methods 

TensorFlow-based design and 3D-printing of a D2NN. We implemented D2NN design using TensorFlow 

(Google Inc.) framework, as shown in Fig. S11. Because we consider coherent illumination, the input information 

can be encoded in the amplitude and/or phase channels of the input plane. The free-space propagation module is 

implemented using the angular spectrum method. To help with the 3D-printing and fabrication of the D2NN 

design, a sigmoid function was used to limit the phase value of each neuron to 0-2π and 0-π, for imaging and 

classifier networks, respectively. For each layer of the D2NN, we set the neuron size to be 400 µm and 300 µm, 

for the classifier networks and the imaging network, respectively. With a higher resolution 3D-printer or 

fabrication method, smaller neurons can also be used in our D2NN design to increase the number of neurons and 

connections to learn more complicated tasks. Furthermore, as illustrated in Fig. S7A, the number of the network 

layers and the axial distance between the layers are also design parameters. 

At the detector/output plane, we measured the intensity of the network output, and as a loss function to train the 

imaging D2NN, we used its mean square error (MSE) against the target image. The classification D2NNs were 

also trained using a nonlinear loss function, where we aimed to maximize the normalized signal of each target’s 

corresponding detector region, while minimizing the total signal outside of all the detector regions (see e.g., Fig. 

3A). We used the stochastic gradient descent algorithm, Adam (31), to back-propagate the errors and update the 

layers of the network to minimize the loss function. The digit classifier and lens D2NNs were trained with MNIST 

(15) and ImageNet (21) datasets, respectively, and achieved the desired mapping functions between the input and 

output planes after 10 and 50 epochs, respectively. The training batch size was set to be 8 and 4, for the digit 

classifier network and the imaging network, respectively. The training phase of the fashion product classifier 

network shared the same details as the digit classifier network, except using the Fashion MNIST dataset (19).  

The networks were implemented using Python version 3.5.0. and TensorFlow framework version 1.4.0 (Google 

Inc.). Using a desktop computer (GeForce GTX 1080 Ti Graphical Processing Unit, GPU and Intel(R) Core(TM) 

i7-7700 CPU @3.60GHz and 64GB of RAM, running a Windows 10 operating system, Microsoft), the above-
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outlined TensorFlow based design of a D2NN architecture took approximately 8 hours and 10 hours to train for 

the classifier and the lens networks, respectively.  

After the training phase of the optimized D2NN architecture, the 3D model of the network layers to be 3D-printed 

was generated by Poisson surface reconstruction (32) (see Fig. S12). First, neurons’ phase values were converted 

into a relative height map (∆𝑧𝑧 = 𝜆𝜆𝜆𝜆/2𝜋𝜋∆𝑛𝑛), where ∆𝑛𝑛 is the refractive index difference between the 3D printing 

material (VeroBlackPlus RGD875) and air. The refractive index 𝑛𝑛 and the extinction coefficient (𝑘𝑘) of this 3D-

printing material at 0.4 THz were measured as 1.7227 and 0.0311, respectively, which corresponds to an 

attenuation coefficient of 𝛼𝛼 = 520.7177 𝑚𝑚−1. Before the 3D-printing process, we also added a uniform substrate 

thickness of 0.5 mm to each layer of a D2NN. A 3D mesh processing software, Meshlab (33-34), was used to 

calculate the 3D structure, which was then used as input to a 3D-printer (Objet30 Pro 3D, Stratasys Ltd, Eden 

Prairie, Minnesota USA). For the training of MNIST digit classifier D2NN and Fashion-MNIST classifier D2NN, 

we padded input images with zeros to fit the input aperture of the diffractive network (8 cm x 8 cm). In our THz 

experiments we used aluminum foil to create zero transmission regions at the input plane, to match our training 

settings for each D2NN design. 

Following the corresponding D2NN design, the axial distance between two successive 3D-printed layers was set 

to be 3.0 cm and 4.0 mm for the classifier and lens networks, respectively. The larger axial distance between the 

successive layers of the classifier D2NNs increased the number of neuron connections to ~8 billion, which is 

approximately 100-fold larger compared to the number of the neuron connections of the imaging D2NN, which 

is much more compact in depth (see Figs. 2(A, B)).  

Terahertz Set-up. The schematic diagram of the experimental setup is given in Fig. 2C. The electromagnetic 

wave was generated through a WR2.2 modular amplifier/multiplier chain (AMC) made by Virginia Diode Inc. 

(VDI). A 16 dBm sinusoidal signal at 11.111 GHz (𝑓𝑓𝑅𝑅𝑅𝑅1) was sent as RF input signal and multiplied 36 times by 

AMC to generate continuous-wave (CW) radiation at 0.4 THz. We used a horn antenna compatible with WR 2.2 

modular AMC. The source was electrically-modulated at 1 KHz. The illumination beam profile was characterized 
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as a Gaussian (Fig. S13), and the distance between the object and the source planes was selected as approximately 

81 mm, 173 mm, and 457 mm to provide a beam spot size of ~20 mm, ~40 mm, and ~104 mm, full-width half-

maximum (FWHM), for the imaging D2NN, the digit classification D2NN, and the fashion product classification 

D2NN, respectively. The beam passed through the input object and then the optical neural network, before 

reaching the output plane, which was scanned by a single-pixel detector placed on an XY positioning stage. This 

XY stage was built by placing two linear motorized stages (Thorlabs NRT100) vertically to allow precise control 

of the position of the detector. The detector scanning step size was set to be ~600 µm, ~1.2 mm, and ~1.6 mm for 

the imaging lens D2NN, the digit classifier D2NN, and the fashion classifier D2NN, respectively. The distance 

between detector/output plane and the last layer of the optical neural network was adjusted as 3 cm and 7 mm for 

the classifier D2NNs and the lens D2NN, respectively. We used a Mixer/AMC made by VDI to detect the 

amplitude of the transmitted wave (𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜). A 10-dBm sinusoidal signal at 11.138 GHz (fRF2) was used as a local 

oscillator. This signal was multiplied by 36 through the multiplier and mixed with the detected signal. The mixing 

product (𝑓𝑓𝐼𝐼𝑅𝑅 = |𝑓𝑓𝑅𝑅𝑅𝑅1 − 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜|) was obtained at 1 GHz frequency. This down-converted signal passed through an 

amplification stage which consisted of two low-noise amplifiers (Mini-Circuits ZRL-1150-LN+) to amplify the 

signal by 80 dBm and a 1 GHz (+/-10 MHz) bandpass filter (KL Electronics 3C40-1000/T10-O/O) to get rid of 

the noise coming from unwanted frequency bands. After this, the signal went through a low-noise power detector 

(Mini-Circuits ZX47-60) and the output voltage was read by a lock-in amplifier (Stanford Research SR830). The 

modulation signal was used as the reference signal for the lock-in amplifier. The dynamic range of the setup was 

measured as 80 dB. 

Wave analysis in a D2NN. Following the Rayleigh-Sommerfeld diffraction equation (35), one can consider every 

single neuron of a given D2NN layer as a secondary source of a wave that is composed of the following optical 

mode: 

                     𝑤𝑤𝑖𝑖
𝑙𝑙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑧𝑧−𝑧𝑧𝑖𝑖

𝑟𝑟2
� 1
2𝜋𝜋𝑟𝑟

+ 1
𝑗𝑗𝑗𝑗
� 𝑒𝑒𝑥𝑥𝑒𝑒 �𝑗𝑗2𝜋𝜋𝑟𝑟

𝑗𝑗
�,                       (1) 
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where l represents the l-th layer of the network, i represents the i-th neuron located at (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖) of layer l, 𝜆𝜆 is 

the illumination wavelength, 𝑟𝑟 = �(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)2 + (𝑧𝑧 − 𝑧𝑧𝑖𝑖)2 and 𝑗𝑗 = √−1. The amplitude and relative 

phase of this secondary wave are determined by the product of the input wave to the neuron and its transmission 

coefficient (𝑡𝑡), both of which are complex-valued functions. Based on this, for the l-th layer of the network, one 

can write the output function (𝑛𝑛𝑖𝑖𝑙𝑙) of the i-th neuron located at (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖) as:  

       𝑛𝑛𝑖𝑖𝑙𝑙(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑤𝑤𝑖𝑖
𝑙𝑙(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∙ 𝑡𝑡𝑖𝑖𝑙𝑙(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖) ∙ ∑ 𝑛𝑛𝑘𝑘𝑙𝑙−1(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖) = 𝑤𝑤𝑖𝑖

𝑙𝑙(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑘𝑘 ∙ |𝐴𝐴| ∙ 𝑒𝑒𝑗𝑗∆𝜃𝜃 ,            (2) 

where we define 𝑚𝑚𝑖𝑖
𝑙𝑙(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) = ∑ 𝑛𝑛𝑘𝑘𝑙𝑙−1(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖)𝑘𝑘  as the input wave to i-th neuron of layer l, |𝐴𝐴| refers to the 

relative amplitude of the secondary wave, and ∆𝜃𝜃 refers to the additional phase delay that the secondary wave 

encounters due to the input wave to the neuron and its transmission coefficient. These secondary waves diffract 

between the layers and interfere with each other forming a complex wave at the surface of the next layer, feeding 

its neurons. The transmission coefficient of a neuron is composed of amplitude and phase terms, i.e., 

𝑡𝑡𝑖𝑖𝑙𝑙(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖) = 𝑎𝑎𝑖𝑖𝑙𝑙(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖)𝑒𝑒𝑥𝑥𝑒𝑒(𝑗𝑗𝜆𝜆𝑖𝑖𝑙𝑙(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖)) , and for a phase-only D2NN architecture the amplitude 

𝑎𝑎𝑖𝑖𝑙𝑙(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖)  is assumed to be a constant, ideally 1, ignoring the optical losses, which is discussed in this 

Supplementary Materials document under the sub-section “Optical Losses in a D2NN”. In general, a complex-

valued modulation at each network layer improves the inference performance of the diffractive network (see e.g., 

figs. S1 and S4). 

Forward Propagation Model. The forward model of our D2NN architecture is illustrated in Fig. 1A and its 

corresponding TensorFlow implementation is summarized in Fig. S11A. To simplify the notation of the forward 

model, we can rewrite Eq. (2) as follows: 

                                                                  �
 𝑛𝑛𝑖𝑖,𝑜𝑜𝑙𝑙 = 𝑤𝑤𝑖𝑖,𝑜𝑜

𝑙𝑙 ∙ 𝑡𝑡𝑖𝑖𝑙𝑙 ∙ 𝑚𝑚𝑖𝑖
𝑙𝑙   

𝑚𝑚𝑖𝑖
𝑙𝑙 = ∑ 𝑛𝑛𝑘𝑘,𝑖𝑖

𝑙𝑙−1
𝑘𝑘       

𝑡𝑡𝑖𝑖𝑙𝑙 = 𝑎𝑎𝑖𝑖𝑙𝑙𝑒𝑒𝑥𝑥𝑒𝑒(𝑗𝑗𝜆𝜆𝑖𝑖𝑙𝑙)
,                          

(3) 



 6 

where i refers to a neuron of the l-th layer, and p refers to a neuron of the next layer, connected to neuron i by 

optical diffraction. The same expressions would also apply for a reflective D2NN with a reflection coefficient per 

neuron: 𝑟𝑟𝑖𝑖𝑙𝑙. The input pattern ℎ𝑘𝑘0, which is located at layer 0 (i.e., the input plane), is in general a complex-valued 

quantity and can carry information in its phase and/or amplitude channels. The resulting wave function due to the 

diffraction of the illumination plane-wave interacting with the input can be written as: 

                                                        𝑛𝑛𝑘𝑘,𝑜𝑜
0 = 𝑤𝑤𝑘𝑘,𝑜𝑜

0 ∙ ℎ𝑘𝑘0,              

(4) 

which connects the input to the neurons of layer 1. Assuming that the D2NN design is composed of M layers 

(excluding the input and output planes), then a detector at the output plane measures the intensity of the resulting 

optical field: 

                                                                               𝑠𝑠𝑖𝑖𝑀𝑀+1 = �𝑚𝑚𝑖𝑖
𝑀𝑀+1�

2
.              (5) 

The comparison of the forward model of a conventional artificial neural network and a diffractive neural network 

is summarized in Fig. 1D of main text. Based on this forward model, the results of the network output plane are 

compared with the targets (for which the diffractive network is being trained for) and the resulting errors are back-

propagated to iteratively update the layers of the diffractive network, which will be detailed next. 

Error Backpropagation. To train a D2NN design, we used the error back-propagation algorithm along with the 

stochastic gradient descent optimization method. A loss function was defined to evaluate the performance of the 

D2NN output with respect to the desired target, and the algorithm iteratively optimized the diffractive neural 

network parameters to minimize the loss function. Without loss of generality, here we focus on our imaging D2NN 

architecture, and define the loss function (𝐸𝐸) using the mean square error between the output plane intensity 𝑠𝑠𝑖𝑖𝑀𝑀+1 

and the target, 𝑔𝑔𝑖𝑖𝑀𝑀+1: 

                                                                     𝐸𝐸(𝜆𝜆𝑖𝑖𝑙𝑙) = 1
𝐾𝐾
∑ (𝑠𝑠𝑘𝑘𝑀𝑀+1 − 𝑔𝑔𝑘𝑘𝑀𝑀+1)2𝑘𝑘 ,             (6) 
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where K refers to the number of measurement points at the output plane. Different loss functions can also be used 

in D2NN. Based on this error definition, the optimization problem for a D2NN design can be written as: 

                                                                   min
𝜙𝜙𝑖𝑖
𝑙𝑙
𝐸𝐸 (𝜆𝜆𝑖𝑖𝑙𝑙), 𝑠𝑠. 𝑡𝑡.        0 ≤ 𝜆𝜆𝑖𝑖𝑙𝑙 < 2𝜋𝜋.                                (7) 

To apply the backpropagation algorithm for training a D2NN, the gradient of the loss function with respect to all 

the trainable network variables needs to be calculated, which is then used to update the network layers during 

each cycle of the training phase. The gradient of the error with respect to 𝜆𝜆𝑖𝑖𝑙𝑙 of a given layer l can be calculated 

as:  

                𝜕𝜕𝜕𝜕(𝜙𝜙𝑖𝑖
𝑙𝑙)

𝜕𝜕𝜙𝜙𝑖𝑖
𝑙𝑙 = 4

𝐾𝐾
∑ (𝑠𝑠𝑘𝑘𝑀𝑀+1 − 𝑔𝑔𝑘𝑘𝑀𝑀+1)𝑘𝑘 ∙ 𝑅𝑅𝑒𝑒𝑎𝑎𝑅𝑅{(𝑚𝑚𝑘𝑘

𝑀𝑀+1)∗ ∙ 𝜕𝜕𝑚𝑚𝑘𝑘
𝑀𝑀+1

𝜕𝜕𝜙𝜙𝑖𝑖
𝑙𝑙 }.                                  

(8) 

In Eq. (8), 𝜕𝜕𝑚𝑚𝑘𝑘
𝑀𝑀+1

𝜕𝜕𝜙𝜙𝑖𝑖
𝑙𝑙  quantifies the gradient of the complex-valued optical field at the output layer (𝑚𝑚𝑘𝑘

𝑀𝑀+1 =

∑ 𝑛𝑛𝑘𝑘1,𝑘𝑘
𝑀𝑀

𝑘𝑘1 ) with respect to the phase values of the neurons in the previous layers, 𝑅𝑅 ≤ 𝑀𝑀. For every layer, 𝑅𝑅, this 

gradient can be calculated using: 

𝜕𝜕𝑚𝑚𝑘𝑘
𝑀𝑀+1

𝜕𝜕𝜙𝜙𝑖𝑖
𝑙𝑙=𝑀𝑀 = 𝑗𝑗 ∙ 𝑡𝑡𝑖𝑖𝑀𝑀 ∙ 𝑚𝑚𝑖𝑖

𝑀𝑀 ∙ 𝑤𝑤𝑖𝑖,𝑘𝑘
𝑀𝑀 ,                (9) 

𝜕𝜕𝑚𝑚𝑘𝑘
𝑀𝑀+1

𝜕𝜕𝜙𝜙𝑖𝑖
𝑙𝑙=𝑀𝑀−1 = 𝑗𝑗 ∙ 𝑡𝑡𝑖𝑖𝑀𝑀−1 ∙ 𝑚𝑚𝑖𝑖

𝑀𝑀−1 ∙ ∑ 𝑤𝑤𝑘𝑘1,𝑘𝑘
𝑀𝑀 ∙ 𝑡𝑡𝑘𝑘1

𝑀𝑀 ∙ 𝑤𝑤𝑖𝑖,𝑘𝑘1
𝑀𝑀−1

𝑘𝑘1 ,           (10) 

𝜕𝜕𝑚𝑚𝑘𝑘
𝑀𝑀+1

𝜕𝜕𝜙𝜙𝑖𝑖
𝑙𝑙=𝑀𝑀−2 = 𝑗𝑗 ∙ 𝑡𝑡𝑖𝑖𝑀𝑀−2 ∙ 𝑚𝑚𝑖𝑖

𝑀𝑀−2 ∙ ∑ 𝑤𝑤𝑘𝑘1,𝑘𝑘
𝑀𝑀 ∙ 𝑡𝑡𝑘𝑘1

𝑀𝑀 ∙ ∑ 𝑤𝑤𝑘𝑘2,𝑘𝑘1
𝑀𝑀−1 ∙ 𝑡𝑡𝑘𝑘2

𝑀𝑀−1 ∙ 𝑤𝑤𝑖𝑖,𝑘𝑘2
𝑀𝑀−2

𝑘𝑘2𝑘𝑘1 ,        (11) 

…. 

𝜕𝜕𝑚𝑚𝑘𝑘
𝑀𝑀+1

𝜕𝜕𝜙𝜙𝑖𝑖
𝑙𝑙=𝑀𝑀−𝐿𝐿 = 𝑗𝑗 ∙ 𝑡𝑡𝑖𝑖𝑀𝑀−𝐿𝐿 ∙ 𝑚𝑚𝑖𝑖

𝑀𝑀−𝐿𝐿 ∙ ∑ 𝑤𝑤𝑘𝑘1,𝑘𝑘
𝑀𝑀 ∙ 𝑡𝑡𝑘𝑘1

𝑀𝑀 ∙∙∙∙∙ ∑ 𝑤𝑤𝑘𝑘𝐿𝐿,𝑘𝑘𝐿𝐿−1
𝑀𝑀−𝐿𝐿+1 ∙ 𝑡𝑡𝑘𝑘𝐿𝐿

𝑀𝑀−𝐿𝐿+1 ∙ 𝑤𝑤𝑖𝑖,𝑘𝑘𝐿𝐿
𝑀𝑀−𝐿𝐿

𝑘𝑘𝐿𝐿𝑘𝑘1 ,       (12) 

where, 3 ≤ L ≤ M -1. In the derivation of these partial derivatives, an important observation is that, for an 

arbitrary neuron at layer l ≤ M, one can write: 
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𝜕𝜕𝑛𝑛𝑘𝑘2,𝑘𝑘1

𝑙𝑙

𝜕𝜕𝜙𝜙𝑖𝑖
𝑙𝑙 = �𝑗𝑗 ∙ 𝑡𝑡𝑖𝑖

𝑙𝑙 ∙ 𝑚𝑚𝑖𝑖
𝑙𝑙 ∙ 𝑤𝑤𝑖𝑖,𝑘𝑘1

𝑙𝑙 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘2 = 𝑖𝑖
0,           𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘2 ≠ 𝑖𝑖

,         (13) 

where 𝑘𝑘1,2 represent dummy variables. During each iteration of the error backpropagation, a small batch of the 

training data is fed into the diffractive neural network to calculate the above gradients for each layer and 

accordingly update the D2NN. 

Comparison with standard deep neural networks. Compared to standard deep neural networks, a D2NN is not 

only different in that it is a physical and all-optical deep network, but also it possesses some unique architectural 

differences. First, the inputs for neurons are complex-valued, determined by wave interference and a 

multiplicative bias, i.e., the transmission/reflection coefficient. Complex-valued deep neural networks 

(implemented in a computer) with additive bias terms have been recently reported as an alternative to real-valued 

networks, achieving competitive results on e.g., music transcription (36). In contrast, this work considers a 

coherent diffractive network modelled by physical wave propagation to connect various layers through the phase 

and amplitude of interfering waves, controlled with multiplicative bias terms and physical distances. Second, the 

individual function of a neuron is the phase and amplitude modulation of its input to output a secondary wave, 

unlike e.g., a sigmoid, a rectified linear unit (ReLU) or other nonlinear neuron functions used in modern deep 

neural networks. Although not implemented here, optical nonlinearity can also be incorporated into a diffractive 

neural network in various ways; see the sub-section “Optical Nonlinearity in Diffractive Neural Networks” (14). 

Third, each neuron’s output is coupled to the neurons of the next layer through wave propagation and coherent 

(or partially-coherent) interference, providing a unique form of interconnectivity within the network. For example, 

the way that a D2NN adjusts its receptive field, which is a parameter used in convolutional neural networks, is 

quite different than the traditional neural networks, and is based on the axial spacing between different network 

layers, the signal-to-noise ratio (SNR) at the output layer as well as the spatial and temporal coherence properties 

of the illumination source. The secondary wave of each neuron will in theory diffract in all angles, affecting in 

principle all the neurons of the following layer. However, for a given spacing between the successive layers, the 

intensity of the wave from a neuron will decay below the detection noise floor after a certain propagation distance; 
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the radius of this propagation distance at the next layer practically sets the receptive field of a diffractive neural 

network and can be physically adjusted by changing the spacing between the network layers, the intensity of the 

input optical beam, the detection SNR or the coherence length and diameter of the illumination source. 

Imaging D2NN Architecture. Structural similarity index, SSIM (37), values between the D2NN output plane and 

the ground truth (i.e., target images) were calculated to optimize the architecture of the diffractive neural network. 

This way, we optimized the number of network layers and the axial distance between two consecutive layers as 

shown in Fig. S7A. The SSIM plots in Fig. S7A were calculated by averaging the results of 100 test images 

randomly selected from ImageNet dataset.  

Note also that, based on the large area of the 3D-printed imaging network layers (9 × 9 cm) and the short axial 

distance between the input (output) plane and the first (last) layer of the network, i.e., 4 mm (7 mm), one can infer 

that the theoretical numerical aperture of our system approaches 1 in air (see Fig. 2B of main text). During the 

training phase, however, our diffractive network learned to utilize only part of this spatial frequency bandwidth, 

which should be due to the relatively large-scale of the image features that we used in the training image set 

(randomly selected from ImageNet database). If a higher resolution imaging system is desired, images that contain 

much finer spatial features can be utilized as part of the training phase to design a D2NN that can approach the 

theoretical diffraction-limited numerical aperture of the system. One can also change the loss function definition 

used in the training phase to teach the diffractive neural network to enhance the spatial resolution; in fact deep 

learning provides a powerful framework to improve image resolution by engineering the loss function used to 

train a neural network (8, 13). 

Dataset Preprocessing. To train and test the D2NN as a digit classifier, we utilized MNIST handwritten digit 

database (15), which is composed of 55,000 training images, 5,000 validation images and 10,000 testing images. 

Images were up-sampled to match the size of the D2NN model. For the training and testing of the imaging D2NN, 

we used ImageNet (21) where we randomly selected a subset of 2,000 images. We converted each color image 

into grayscale and resized it to match our D2NN design. (We should note that color image data can also be applied 

to D2NN framework using different approaches although we did not consider it in our work since we utilized a 
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single wavelength THz system for testing. For colorful images, as an example, Red, Green and Blue channels of 

an image can be used as separate parallel input planes to a diffractive neural network.) The selected images were 

then randomly divided into 1500 training images, 200 validation images and 300 testing images. We also obtained 

very similar imaging performance by using 10,000 images in the training phase (instead of 2,000 images); this is 

expected since each training image contains various spatial features at different parts of the image, all of which 

provide valuable patches of information for successfully training our diffractive imaging network. 

To test the performance of the D2NN digit classifier experimentally, 50 handwritten digits were extracted from 

MNIST test database. To solely quantify the match between our numerical testing results and experimental testing, 

these 3D-printed handwritten digits were selected among the same 91.75% of the test images that numerical 

testing was successful. The digits were up-sampled and binarized, as implemented during the training process. 

Binarized digits were stored as a vector image, in .svg format, before they were 3D printed. The images were then 

fed into Autodesk Fusion Software (Autodesk Inc.) to generate their corresponding 3D model. To provide 

amplitude only image inputs to our digit classifier D2NN, the 3D-printed digits were coated with aluminum foil 

to block the light transmission in desired regions. 

In addition to MNIST digit classification, to test our D2NN framework with a more challenging classification task, 

we used the Fashion MNIST database which has more complicated targets as exemplified in Fig. S3. Some of 

these target classes, such as pullovers (class 2), coats (class 4) and shirts (class 6), are very similar to each other, 

making it difficult for different classification methods. For example, the state-of-the-art DENSER convolutional 

neural network achieves 95.3% classification accuracy on Fashion MNIST dataset compared with 99.7% for 

MNIST dataset (19). In order to train a D2NN with Fashion MNIST database, we encoded the target fashion 

product images into the phase channel of the input plane instead of the amplitude channel. Grayscale images 

corresponding to fashion products were scaled between 0 and 2π as the phase-only input to the diffractive neural 

network, and other details of the Fashion MNIST experiments were similar as in MNIST classification 

experiments. 
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D2NN Neuron Numbers and Connectivity. D2NN uses optical diffraction to connect the neurons at different 

layers of the network. The maximum half-cone diffraction angle can be formulated as 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚 = sin−1(𝜆𝜆𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚), 

where 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 1 2𝑑𝑑𝑓𝑓⁄  is the maximum spatial frequency and 𝑑𝑑𝑓𝑓 is the layer feature size (35). In this work, we 

demonstrated the proof-of-concept of D2NN architecture at 0.4 THz by using low-cost 3D-printed layers. The 3D 

printer that we used has a spatial resolution of 600 dpi with 0.1 mm accuracy and the wavelength of the 

illumination system is 0.75 mm in air.  

For the digit and fashion product classification D2NNs, we set the pixel size to 400 µm for packing 200×200 

neurons over each layer of the network, covering an area of 8 cm × 8 cm per layer. We used 5 transmissive 

diffraction layers with the axial distance between the successive layers set to be 3cm. These choices mean that 

we have a fully-connected diffractive neural network structure because of the relatively large axial distance 

between the two successive layers of the diffractive network. This corresponds to 200×200×5=0.2 million 

neurons (each containing a trainable phase term) and (200×200)2×5=8.0 billion connections (including the 

connections to the output layer). This large number of neurons and their connections offer a large degree-of-

freedom to train the desired mapping function between the input amplitude (handwritten digit classification) or 

input phase (fashion product classification) and the output intensity measurement for classification of input 

objects. 

For the imaging lens D2NN design, the smallest feature size was ~0.9 mm with a pixel size set of 0.3 mm, which 

corresponds to a half-cone diffraction angle of ~25°. The axial distance between two successive layers is set to 

be 4 mm for 5 layers, and the width of each layer was 9 cm × 9 cm. This means the amplitude imaging D2NN 

design had 300×300×5=0.45 million neurons, each having a trainable phase term. Because of the relatively small 

axial distance (4 mm) between the successive layers and the smaller diffraction angle due to the larger feature 

size, we have <0.1 billion connections in this imaging D2NN design (including the connections to the output layer, 

which is 7 mm away from the 5th layer of the diffractive network). Compared to the classification D2NNs, this 

amplitude imaging one is much more compact in the axial direction as also pictured in Fig. 2(A, B) of the main 

text.  
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Finally, we would like to emphasize that there are some unique features of a D2NN that make it easier to handle 

large scale connections (e.g., 8 billion connections as reported in Fig. 2A of our main text). The connectivity of a 

D2NN is controlled by the size of each neuron of a given layer (defining the diffraction angle) and the axial 

spacing between the layers. For example, consider a 5-layer D2NN design with a certain fixed neuron size; for 

this design, one can have a very low number of neural connections by closely placing the layers, one after another. 

On the other hand, one can also make the same design fully-connected by simply increasing the axial spacing 

between the layers, significantly increasing the number of connections. Interestingly, these two extreme designs 

(that vary considerably in their number of connections) would be identical in terms of training complexity because 

the computation time and complexity of digital wave propagation between layers is a not a function of the axial 

distance. Therefore largely spaced D2NN layers that form a fully connected network would be identical (in terms 

of their computational implementation complexity) to partially-connected D2NN designs that have shorter axial 

distance between the layers (also see Fig. S4, top two rows, for an example of this comparison). 

Performance analysis of D2NN as a function of the number of layers and neurons. A single diffractive layer 

cannot achieve the same level of inference that a multi-layer D2NN structure can perform. Multi-layer architecture 

of D2NN provides a large degree-of-freedom within a physical volume to train the transfer function between its 

input and the output planes, which, in general, cannot be replaced by a single phase-only or complex modulation 

layer (employing phase and amplitude modulation at each neuron).  

To expand on this, we would like to first show that, indeed, a single diffractive layer performance is quite primitive 

compared to a multi-layered D2NN. As shown in Fig. S1, a single phase-only modulation layer or even a complex 

modulation layer (where both phase and amplitude of each neuron are learnable parameters) cannot present 

enough degrees of freedom to establish the desired transfer function for classification of input images (MNIST) 

and achieves a much lower performance compared to a 5-layer D2NN network, the one that we demonstrated in 

the main text. In these results reported in Fig. S1, the same physical neuron size was used in each case, 

representing our 3D-printing resolution. Fig. S1 shows that a single layer diffractive network can only achieve 

55.64% and 64.84% blind testing accuracy for phase-only and complex modulation D2NN designs, respectively, 
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whereas N=5 layers (with everything else being the same) can achieve 91.75% and 93.23% blind testing accuracy, 

respectively. The same conclusion also applies for a single layer D2NN (N=1) that has 0.2 million neurons over 

the same area (assuming a higher resolution 3D-printer was available for defining smaller neurons).  

Figure S2 further demonstrates that by using a patch of 2 layers added to an existing/fixed D2NN (N=5), we 

improved our MNIST classification accuracy to 93.39%; the state of the art convolutional neural net performance 

varies between 99.60%-99.77% depending on the network design (16-18). We have obtained similar results for 

the Fashion MNIST dataset using N=5, 10 layers (see Figs. S4-S5). 

These results, summarized above, highlight that a single diffractive layer stagnates at its inference performance 

to modest accuracy values, and increasing the number of layers, neurons and connections of a D2NN design 

provides significant improvements in its inference capability. 

Error sources and mitigation strategies. There are five main sources of error that contribute to the performance 

of a 3D-printed D2NN: (1) Poisson surface reconstruction is the first error source. After the transmission layers 

are trained, 3D structure of each layer is generated through the Poisson surface reconstruction as detailed in earlier. 

However, for practical purposes, we can only use a limited number of sampling points, which distorts the 3D 

structure of each layer. (2) Alignment errors during the experiments form the second source of error. To minimize 

the alignment errors, the transmission layers and input objects are placed into single 3D printed holder. However, 

considering the fact that 3D printed materials have some elasticity, the thin transmission layers do not perfectly 

stay flat, and they will have some curvature. Alignment of THz source and detector with respect to the 

transmission layers also creates another error source in our experiments. (3) 3D-printing is the third and one of 

the most dominant sources of error. This originates from the lack of precision and accuracy of the 3D-printer used 

to generate network layers. It smoothens the edges and fine details on the transmission layers. (4) Absorption of 

each transmissive layer is another source that can deteriorate the performance of a D2NN design. (5) The 

measurements of the material properties that are extensively used in our simulations such as refractive index and 

extinction coefficient of the 3D printed material might have some additional sources of error, contributing to a 
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reduced experimental accuracy. It is hard to quantitatively evaluate the overall magnitude of these various sources 

of errors; instead we incorporated the Poisson surface reconstruction errors, absorption related losses at different 

layers and 0.1 mm random misalignment error for each network layer during the testing phase of the D2NNs as 

shown in Figs. S7 and S14. These errors showed minor influence on the performance of the diffractive networks.  

To minimize the impact of the 3D printing error, we set a relatively large pixel size, i.e. 0.4 mm and 0.3 mm for 

the classification and imaging D2NNs, respectively. Furthermore, we designed a 3D-printed holder (Figs. 2(A, 

B)) to self-align the multi-layer structure of a 3D-printed D2NN, where each network layer and the input object 

were inserted into their specific slots. Based on the resolution of our 3D-printer, the misalignment error of a 3D-

printed D2NN (including its holder) is estimated to be smaller than 0.1 mm compared to the ideal positions of the 

neurons of a given layer, and this level of error was found to have a minor effect on the network performance as 

illustrated in Figs. S7 and S14.  

For an inexpensive 3D-printer or fabrication method, printing/fabrication errors and imperfections, and the 

resulting alignment problems can be further mitigated by increasing the area of each layer and the footprint of the 

D2NN. This way, the feature size at each layer can be increased, which will partially release the alignment 

requirements. A minor disadvantage of such an approach of printing larger diffractive networks, with an increased 

feature size, would be an increase in the physical size of the system and its input illumination power requirements. 

Furthermore, to avoid bending of the network layers over larger areas, an increase in layer thickness and hence 

its stiffness would be needed, which can potentially also introduce additional optical losses (discussed next), 

depending on the illumination wavelength and the material properties. 

Optical Losses in a D2NN. For a D2NN, after all the parameters are trained and the physical diffractive network 

is fabricated or 3D-printed, the computation of the network function (i.e., inference) is implemented all-optically 

using a light source and optical diffraction through passive components. Therefore, the energy efficiency of a 

D2NN depends on the reflection and/or transmission coefficients of the network layers. Such optical losses can 

be made negligible, especially for phase-only networks that employ e.g., transparent materials that are structured 

using e.g., optical lithography, creating D2NN designs operating at the visible part of the spectrum. In our 
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experiments, we used a standard 3D-printing material (VeroBlackPlus RGD875) to provide phase modulation, 

and each layer of the networks shown in Fig. 2 (main text) had on average ~51% power attenuation at 0.4 THz 

for an average thickness of ~1 mm (see Fig. S15). This attenuation could be further decreased by using thinner 

substrates or by using other materials (e.g., polyethylene, polytetrafluoroethylene) that have much lower losses 

in THz wavelengths. One might also use the absorption properties of the neurons of a given layer as another 

degree of freedom in the network design to control the connectivity of the network, which can be considered as a 

physical analog of the dropout rate in deep network training (38). In principle, a phase-only D2NN can be designed 

by using the correct combination of low-loss materials and appropriately selected illumination wavelengths, such 

that the energy efficiency of the diffractive network is only limited by the Fresnel reflections that happen at the 

surfaces of different layers. Such reflection related losses can also be engineered to be negligible by using anti-

reflection coatings on the substrates. So far, the consideration of multiple-reflections between the layers has been 

neglected since such waves are much weaker compared to the directly transmitted forward-propagating waves. 

The strong match between the experimental results obtained with our 3D-printed D2NNs and their numerical 

testing also supports this (see Figs. 3 and 4 of the main text). 

Although not considered in this manuscript since we are dealing with passive diffractive neural networks, 

diffractive networks can be created that use a physical gain (e.g., through optical or electrical pumping, or 

nonlinear optical phenomena, including but not limited to plasmonics and metamaterials) to explore the domain 

of amplified bias terms, i.e., �𝑡𝑡𝑖𝑖𝑙𝑙� > 1 or �𝑟𝑟𝑖𝑖𝑙𝑙� > 1. At the cost of additional complexity, such amplifying layers can 

be useful for the diffractive neural network to better handle its photon budget and can be used after a certain 

number of passive layers to boost up the diffracted signal, intuitively similar to e.g., optical amplifiers used in 

fiber optic communication links. 

Transmission and reflection modes of operation in D2NNs. The architecture of our D2NN can be implemented 

in transmission or reflection modes by using multiple layers of diffractive surfaces; in transmission (or reflection) 

mode of operation, the information that is transferred from one diffractive layer to the other is carried with the 

transmitted (or reflected) optical wave. The operation principles of D2NN can be easily extended to amplitude-
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only or phase/amplitude-mixed network designs. Whether the network layers perform phase-only or amplitude-

only modulation, or a combination of both, what changes from one design to another is only the nature of the 

multiplicative bias terms, 𝑡𝑡𝑖𝑖𝑙𝑙  or 𝑟𝑟𝑖𝑖𝑙𝑙 for a transmissive or reflective neuron, respectively, and each neuron of a given 

layer will still be connected to the neurons of the former layer through a wave-interference 

process, ∑ 𝑛𝑛𝑘𝑘𝑙𝑙−1(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖)𝑘𝑘 , which provides the complex-valued input to a neuron. Compared to a phase-only 

D2NN design, where �𝑡𝑡𝑖𝑖𝑙𝑙� = �𝑟𝑟𝑖𝑖𝑙𝑙� = 1, a choice of �𝑡𝑡𝑖𝑖𝑙𝑙� < 1 or �𝑟𝑟𝑖𝑖𝑙𝑙� < 1 would introduce additional optical losses, 

and would need to be taken into account for a given illumination power and detection SNR at the network output 

plane. 

Reconfigurable D2NN Designs. One important avenue to consider is the use of spatial light modulators (SLMs) 

as part of a diffractive neural network. This approach of using SLMs in D2NNs has several advantages, at the cost 

of an increased complexity due to deviation from an entirely passive optical network to a reconfigurable electro-

optic one. First, a D2NN that employs one or more SLMs can be used to learn and implement various tasks because 

of its reconfigurable architecture. Second, this reconfigurability of the physical network can be used to mitigate 

alignment errors or other imperfections in the optical system of the network. Furthermore, as the optical network 

statistically fails, e.g., a misclassification or an error in its output is detected, it can mend itself through a transfer 

learning based re-training with appropriate penalties attached to some of the discovered errors of the network as 

it is being used. For building a D2NN that contains SLMs, both reflection and transmission based modulator 

devices can be used to create an optical network that is either entirely composed of SLMs or a hybrid one, i.e., 

employing some SLMs in combination with fabricated (i.e., passive) layers. 

In addition to the possibility of using SLMs as part of a reconfigurable D2NN, another option to consider is to use 

a given 3D-printed or fabricated D2NN design as a fixed input block of a new diffractive network where we train 

only the additional layers that we plan to fabricate. Assume for example that a 5-layer D2NN has been 

printed/fabricated for a certain inference task. As its prediction performance degrades or slightly changes, due to 

e.g., a change in the input data, etc., we can train a few new layers to be physically added/patched to the existing 

printed/fabricated network to improve its inference performance. In some cases, we can even peel off (i.e., discard) 
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some of the existing layers of the printed network and assume the remaining fabricated layers as a fixed (i.e., non-

learnable) input block to a new network where the new layers to be added/patched are trained for an improved 

inference task (coming from the entire diffractive network: old layers and new layers).  

Intuitively, we can think of each D2NN as a “Lego” piece (with several layers following each other); we can either 

add a new layer (or layers) on top of existing (i.e., already fabricated) ones, or peel off some layers and replace 

them with the new trained diffractive blocks. This provides a unique physical implementation (like blocks of 

Lego) for transfer learning or mending the performance of a printed/fabricated D2NN design.  

We implemented this concept of Lego design for our Fashion MNIST diffractive network and our results are 

summarized in Fig. S16, demonstrating that, for example, the addition of a 6th layer (learnable) to an already 

trained and fixed D2NN with N=5 improves its inference performance, performing slightly better than the 

performance of a D2NN with N=6 layers that were simultaneously trained. Also see Fig. S2 for an implementation 

of the same concept for MNIST: using a patch of 2 layers added to an existing/fixed D2NN (N=5), we improved 

our MNIST classification accuracy to 93.39%. The advantage of this Lego-like transfer learning or patching 

approach is that already fabricated and printed D2NN designs can be improved in performance by adding 

additional printed layers to them or replacing some of the existing diffractive layers with newly trained ones. This 

can also help us with the training process of very large network designs (e.g., N ≥ 25) by training them in patches, 

making it more tractable with state of the art computers. 

Discussion of Unique Imaging Functionalities using D2NNs. We believe that the D2NN framework will help 

imaging at the macro and micro/nano scale by enabling all-optical implementation of some unique imaging tasks. 

One possibility for enhancing imaging systems could be to utilize D2NN designs to be integrated with sample 

holders or substrates used in microscopic imaging to enhance certain bands of spatial frequencies and create new 

contrast mechanisms in the acquired images. In other words, as the sample on a substrate (e.g., cells or tissue 

samples, etc.) diffracts light, a D2NN can be used to project magnified images of the cells/objects onto a 

CMOS/CCD chip with certain spatial features highlighted or enhanced, depending on the training of the 
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diffractive network. This could form a very compact chip-scale microscope (just a passive D2NN placed on top 

of an imager chip) that implements, all-optically, task specific contrast imaging and/or object recognition or 

tracking within the sample. Similarly, for macro-scale imaging, face recognition, as an example, could be 

achieved as part of a sensor design, without the need for a high mega-pixel imager. For instance, tens to hundreds 

of different classes can potentially be detected using a modest (e.g., <1 Mega-pixel) imager chip placed at the 

output plane of a D2NN that is built for this inference task. 

For THz part of the spectrum, as another possible use example, various biomedical applications that utilize THz 

imagers for looking into chemical sensing or the composition of drugs to detect e.g., counterfeit medicine, or for 

assessing the healing of wounds etc. could benefit from D2NN designs to automate predictions in such THz-based 

analysis of specimen using a diffractive neural network. 

Optical Nonlinearity in Diffractive Deep Neural Networks. Optical nonlinearity can be incorporated into our 

deep optical network design using various optical non-linear materials (crystals, polymers, semiconductor 

materials, doped glasses, among others as detailed below). A D2NN is based on controlling the diffraction of light 

through complex-valued diffractive elements to perform a desired/trained task. Augmenting nonlinear optical 

components is both practical and synergetic to our D2NN framework. 

Assuming that the input object, together with the D2NN diffractive layers, create a spatially varying complex field 

amplitude E(x,y) at a given network layer, then the use of a nonlinear medium (e.g., optical Kerr effect based on 

third-order optical nonlinearity, χ(3)) will introduce an all-optical refractive index change which is a function of 

the input field’s intensity, Δn ∝ χ(3) E 2. This intensity dependent refractive index modulation and its impact on 

the phase and amplitude of the resulting waves through the diffractive network can be numerically modeled and 

therefore is straightforward to incorporate as part of our network training phase. Any third-order nonlinear 

material with a strong χ(3) could be used to form our nonlinear diffractive layers: glasses (e.g., As2S3, metal 

nanoparticle doped glasses), polymers (e.g., polydiacetylenes), organic films, semiconductors (e.g., GaAs, Si, 
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CdS), graphene, among others. There are different fabrication methods that can be employed to structure each 

nonlinear layer of a diffractive neural network using these materials. 

In addition to third-order all-optical nonlinearity, another method to introduce nonlinearity into a D2NN design is 

to use saturable absorbers that can be based on materials such as semiconductors, quantum-dot films, carbon 

nanotubes or even graphene films. There are also various fabrication methods, including standard photo-

lithography, that one can employ to structure such materials as part of a D2NN design; for example, in THz 

wavelengths, recent research has demonstrated inkjet printing of graphene saturable absorbers (39). Graphene-

based saturable absorbers are further advantageous since they work well even at relatively low modulation 

intensities (40).  

Another promising avenue to bring non-linear optical properties into D2NN designs is to use nonlinear 

metamaterials. These materials have the potential to be integrated with diffractive networks owing to their 

compactness and the fact that they can be manufactured with standard fabrication processes. While a significant 

part of the previous work in the field has focused on second and third harmonic generation, recent studies have 

demonstrated very strong optical Kerr effect for different parts of the electromagnetic spectrum (41-42), which 

can be incorporated into our deep diffractive neural network architecture to bring all-optical nonlinearity into its 

operation.  

Finally, one can also use the DC electro-optic effect to introduce optical nonlinearity into the layers of a D2NN 

although this would deviate from all-optical operation of the device and require a DC electric-field for each layer 

of the diffractive neural network. This electric-field can be externally applied to each layer of a D2NN; 

alternatively one can also use poled materials with very strong built-in electric fields as part of the material (e.g., 

poled crystals or glasses). The latter will still be all-optical in its operation, without the need for an external DC 

field. 

To summarize, there are several practical approaches that can be integrated with diffractive neural networks to 

bring physical all-optical nonlinearity to D2NN designs.  
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Supplementary Figures 

Figure S1: MNIST training convergence plots of a phase-only modulation D2NN (left column) and a complex-

valued (i.e., phase and amplitude) modulation D2NN (right column) as a function of the number of diffractive 

layers (N = 1 and 5) and the number of neurons used in the network. The y-axis values in each plot report the 

MNIST digit classification accuracy and the loss values as a function of the epoch number for the testing datasets. 

For the same number of diffractive layers, using complex-valued modulation and increasing the spacing between 

each layer increase the number of connections of the diffractive network, further helping to improve its inference 

success (also see Fig. S4, top two rows). For N=1, layer distance (3cm) refers to the distance between the 

sample/output plane and the diffractive layer. The same physical neuron size was used in each case, matching the 

MNIST D2NN design reported in our main text. For each class, the detector width was 4.8 mm. We also obtained 

similar conclusions for the Fashion MNIST dataset results reported in Fig. S4. 
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Figure S2: (Top) MNIST training convergence plot of a complex-valued modulation D2NN for N = 5 layers 

and 0.2 million neurons in total. The y-axis values report the MNIST digit classification accuracy and the loss 

values as a function of the epoch number for the testing dataset. (Middle) We illustrate a Lego-like physical 

transfer learning behavior for D2NN framework, i.e., additional layers are patched to an existing D2NN to improve 

its inference performance. In this example shown here, we trained 2 additional layers that were placed right at the 
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exit of an existing (i.e., fixed) 5-layer D2NN. (Bottom) After the training of the additional 2 layers, the inference 

success of the resulting “patched” diffractive neural network has reached 93.39% for MNIST testing dataset. For 

each class, the detector width was 0.8 mm. Also see fig. S16 for a comparison of detector widths. 
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Figure S3:  Some sample images for each class of the Fashion MNIST dataset.  
https://github.com/zalandoresearch/fashion-mnist 
  

https://github.com/zalandoresearch/fashion-mnist


 25 

 

Figure S4: Fashion MNIST results achieved with D2NN framework. Training convergence plots of phase-only 

as well as complex-valued modulation D2NNs (for N=5 and N=10 layers). The y-axis values in each plot report 

the Fashion MNIST classification accuracy and the loss values as a function of the epoch number for the testing 

datasets. The 1st row and 2nd row refer to the same diffractive neural network design (N=5 and 0.2 million neurons 

in total), except with one difference, the physical space between the layers: 1 cm vs. 3cm, respectively, which 

affects the number of connections in the network. As expected, the fully connected networks (with 3cm layer-to-

layer distance) have better inference performance compared to the 1st row that has 1cm layer-to-layer distance. 

For each class, the detector width was 4.8 mm. 

 



 26 

 

Figure S5. Convergence plot of a complex-valued modulation D2NN (for N=10 and 0.4 million neurons in total) 

for Fashion MNIST classification that achieves a blind testing accuracy of 86.60%.  For each class, the detector 

width was 0.8 mm. 
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Figure S6: Wave propagation within an imaging D2NN. (A, C) To provide insights to the operation principles 

of a D2NN, we show the amplitude and phase information of the wave that is propagating within a D2NN, trained 

for amplitude imaging. The object was composed of 3 Dirac-delta functions spread in x direction. (B, D) Same as 

in (A, C), except without the D2NN. ‘L’ refers to each diffractive layer of the network. (C) and (D) show the 

cross-sectional view along the z direction indicated by the dashed lines in (A) and (B), respectively.  
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Figure S7: Design of a transmissive D2NN as an imaging lens. (A) The performance of the imaging lens D2NN 

is optimized by tuning the physical layout of its architecture, including the number of layers (left) and the axial 

distance between the two consecutive layers (right). SSIM (structural similarity index) was used in this analysis, 

and we selected 5 layers with an axial distance of 4mm between two successive layers in order to maximize the 

network performance, while also minimizing its structural complexity. (B) After the selection of the optimal 

neural network layout, the D2NN was trained using ImageNet dataset. After its training, we blindly evaluated the 

performance of the resulting D2NN with test images to demonstrate its success in imaging arbitrary input objects. 

(C) Blind testing results revealed that the trained D2NN can resolve at its output plane a linewidth of 1.2 mm. As 
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shown in the 3rd image on the right (D2NN With Errors), the Poisson surface reconstruction errors, absorption 

related losses at different layers and a random misalignment error of 0.1 mm for each layer of the network design 

have little effect on the imaging performance of the D2NN. For comparison, the last image on the right shows the 

diffracted image at the output plane, without the presence of the D2NN.  
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Figure S8: Experimental results for imaging lens D2NN. (A) Output images of the 3D-printed lens D2NN are 

shown for different input objects: ‘U’, ‘C’, ‘L’ and ‘A’. To be able to 3D-print letter ‘A’, the letter was slightly 

modified as shown in the bottom-left corner of the corresponding image panel. For comparison, free-space 

diffraction results corresponding to the same objects, achieved over the same sample-output plane distance (29.5 

mm) without the 3D-printed network, are also shown. (B) Same as in (A), except the input objects were pinholes 

with diameters of 1 mm, 2 mm and 3 mm. (C) D2NN can resolve a line-width of 1.8 mm at its output plane. (D) 

Using a 3-mm pinhole that is scanned in front of the 3D-printed network, we evaluated the tolerance of the 

physical D2NN as a function of the axial distance. For four different locations on the input plane of the network, 

i.e., P1-P3, in (D) and P0 in (B), we obtained very similar output images for the same 3-mm pinhole. The 3D-

printed network was found to be robust to axis defocusing up to ~12 mm from the input plane. While there are 

various other powerful methods to design lenses (43-45), the main point of these results is the introduction of the 

diffractive neural network as an all-optical machine learning engine that is scalable and power-efficient to 

implement various functions using passive optical components, which present large degrees of freedom that can 

be learned through training data.  
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Figure S9: Sample experimental results for digit classifier D2NN. Summary of some of the experimental 

results achieved with our 3D-printed handwritten digit classification D2NN. The energy distribution percentage 

corresponding to each digit at the output plane shows that D2NN has the maximum energy focused on the target 

detector region of each digit (also see Fig. 3 of the main text). 
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Figure S10: Sample experimental results for fashion product classifier D2NN. Summary of some of the 

experimental results achieved with our 3D-printed fashion product classification D2NN. The energy distribution 
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percentage corresponding to each product at the output plane shows that D2NN has the maximum energy focused 

on the target detector region of each product (also see Fig. 4 of the main text) 
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Figure S11: TensorFlow implementation of a diffractive deep neural network. (A) The resulting complex 

field of free-space propagated field is multiplied with a complex modulator at each layer and is then transferred 

to the next layer. To help with the 3D-printing and fabrication of the D2NN design, a sigmoid function was used 

to constrain the phase value of each neuron. (B) MNIST and ImageNet datasets were used to train the D2NNs for 

handwritten digit classification and imaging lens tasks, respectively. Fashion MNIST dataset was used for training 

the fashion product classifier D2NN. The resulting complex fields and phase patterns of each layer are 

demonstrated at different epochs of the training phase. 
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Figure S12: 3D model reconstruction of a D2NN layer for 3D-printing. We apply Poisson surface 

reconstruction to generate the 3D model of each D2NN layer for 3D printing. The phase mask is first converted 

to a height map with the knowledge of the material refractive index, and the enclosed point cloud is formed by 

adding the substrate points. The 3D model is then generated by calculating the surface normal and performing the 

Poisson reconstruction. The final step is the 3D-printing of the D2NN model. 
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Figure S13: Terahertz Source Characterization. (A) Beam profiles were imaged at three different axial 

locations to quantify the beam parameters, based on which the Terahertz light source can be approximated as a 

Gaussian beam. (B, C) The plots show the radius of the source wavefront and its FWHM as a function of the 

source-object distance. For all the 3D-printed D2NN designs of this work, the illumination at the object/input 

plane can be approximated as a plane wave. 
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Figure S14: Numerical Test Results of the Digit Classifier D2NN Including Error Sources. (A) As an 

example, the output image of the digit classifier D2NN for a handwritten input of “5” is demonstrated, where the 

red squares represent the trained detector regions for each digit. (B, C) are the same as in Fig. 3C of the main text, 

except they now take into account the Poisson surface reconstruction errors, absorption related losses at different 

layers and a random misalignment error of 0.1 mm for each layer of the network design. All these sources of error 

reduced the overall performance of the diffractive network’s digit classification accuracy from 91.75% (Fig. 3C) 

to 89.25%, evaluated over 10,000 different handwritten digits (i.e., approximately 1,000 for each digit). 
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Figure S15: Characterization of the 3D-printing material properties. (A) Our 3D-printing material 

(VeroBlackPlus RGD875) was characterized with a terahertz time-domain spectroscopy setup (46). 1 mm-thick 

plastic layers were placed between the terahertz emitter and detector, and the transmitted field from the plastic 

layers was measured. The Fourier transform of the detected field was taken to calculate the detected power as a 

function of the frequency. The detected power levels for different numbers of 3D-printed layers are shown, 

revealing that the material loss increases at higher frequencies. Reference signal shows the detected power without 

any plastic layers on the beam path. (B) The power transmission ratio as a function of the number of layers is 

shown. The light transmission efficiency of a single 1mm-thick 3D-printed layer is 10−3.11/10 = 48.87%, and it 

drops to 10−11.95/10 = 6.38% for five 1mm-thick 3D-printed layers. (C, D) At 0.4 THz, the refractive index and 

the extinction coefficient of the 3D-printing material can be calculated as 1.7227 and 0.0311, respectively. These 

numbers were used in the design and training of each D2NN so that the final 3D-printed network works as 

designed. 
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Figure S16: Fashion MNIST results achieved with complex-valued D2NN framework (also see Figs. S4 and S5). 

Convergence plots of D2NNs (top and middle plots for N=5 and N=6, respectively) are shown. Bottom plots show 

the case for training only the 6th layer, where the first 5 layers of the network were fixed (i.e., identical to the 

design resulting from the top case, N=5) and the new layer was added between the 5th layer and the detector plane, 
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at equal distance from both. The layers of the N=5 and N=6 designs were separated by 3 cm from each other and 

the detector plane. The y-axis values in each plot report the Fashion MNIST classification accuracy and the loss 

values as a function of the epoch number for the training datasets. Addition of the 6th layer (learnable) to an 

already trained and fixed D2NN with N=5 improves its inference performance, performing slightly better than the 

performance of N=6 (middle plots). Also see Fig. S2.
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