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A deep learning-enabled portable imaging
flow cytometer for cost-effective, high-
throughput, and label-free analysis of
natural water samples
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Kyrollos Yanny2, Yichen Wu1,2,3, Hatice Ceylan Koydemir1,2,3, Yair Rivenson1,2,3 and Aydogan Ozcan 1,2,3

Abstract
We report a deep learning-enabled field-portable and cost-effective imaging flow cytometer that automatically
captures phase-contrast color images of the contents of a continuously flowing water sample at a throughput of 100
mL/h. The device is based on partially coherent lens-free holographic microscopy and acquires the diffraction patterns
of flowing micro-objects inside a microfluidic channel. These holographic diffraction patterns are reconstructed in real
time using a deep learning-based phase-recovery and image-reconstruction method to produce a color image of each
micro-object without the use of external labeling. Motion blur is eliminated by simultaneously illuminating the sample
with red, green, and blue light-emitting diodes that are pulsed. Operated by a laptop computer, this portable device
measures 15.5 cm × 15 cm × 12.5 cm, weighs 1 kg, and compared to standard imaging flow cytometers, it provides
extreme reductions of cost, size and weight while also providing a high volumetric throughput over a large object size
range. We demonstrated the capabilities of this device by measuring ocean samples at the Los Angeles coastline and
obtaining images of its micro- and nanoplankton composition. Furthermore, we measured the concentration of a
potentially toxic alga (Pseudo-nitzschia) in six public beaches in Los Angeles and achieved good agreement with
measurements conducted by the California Department of Public Health. The cost-effectiveness, compactness, and
simplicity of this computational platform might lead to the creation of a network of imaging flow cytometers for large-
scale and continuous monitoring of the ocean microbiome, including its plankton composition.

Introduction
Plankton form the base of the oceanic food chain, and

thus they are important components of the whole marine
ecosystem. Phytoplankton are responsible for approxi-
mately half of the global photoautotrophic primary pro-
duction1,2. High-resolution mapping of the composition
of phytoplankton over extended periods is very important

and but rather challenging because the concentration and
composition of species rapidly change as a function of
space and time3. Furthermore, the factors governing these
changes are not fully understood4, and phytoplankton
population dynamics are chaotic5. The changes in the
seasonal bloom cycle can also have major environmental6

and economic effects7. The vast majority of phyto-
plankton species are not harmful, but some species pro-
duce neurotoxins that can enter the food chain,
accumulate, and poison fish, mammals, and ultimately
humans. Notable examples include Karenia brevis, which
produces brevetoxin and causes neurotoxic shellfish
poisoning8; Alexandrium fundyense, which generates
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saxitoxin and causes paralytic shellfish poisoning; Dino-
physis acuminata, which produces okadaic acid and
results in diarrhetic shellfish poisoning9; and Pseudo-
nitzschia, which produces domoic acid and is responsible
for amnesiac shellfish poisoning, potentially even leading
to death10,11. Currently, monitoring of the concentrations
of these species in coastal regions, including in California
(USA), is usually performed by manual sample collection
from coastal waters using plankton nets, followed by
transportation of the sample to a central laboratory for
light microscopy-based analysis12, which is very tedious,
slow, and expensive and requires several manual steps
performed by professionals.
As an alternative to light microscopy-based analysis,

flow cytometry has been used to analyze phytoplankton
samples for more than 35 years13. The technique relies on
using a sheath flow to confine the plankton sample to the
focal point of an illuminating laser beam and measuring
the forward and side scattering intensities of each indi-
vidual object/particle inside the sample volume. To aid
classification, flow cytometry is usually coupled with a
fluorescence readout to detect the autofluorescence of
chlorophyll, phycocyanin, and phycoerythrin found in
algae and cyanobacteria. Several field-portable devices
based on flow cytometry have been successfully used for
analyzing nano- and pico-phytoplankton distributions in
natural water samples14–16. However, taxonomic identi-
fication based solely on scattering and fluorescence data is
usually not feasible in flow cytometry, and thus these
devices are coupled with additional microscopic image
analysis17 or need to be enhanced with some form of
imaging18,19. Consequently, imaging flow cytometry has
become a widely used technique20 in which a microscope
objective is used to image the sample (e.g., algae) within a
fluidic flow. The image capture is triggered by a fluores-
cence detector, and thus objects with detectable auto-
fluorescence are imaged. Some of the widely utilized and
commercially available imaging flow cytometers include
the Flowcam21 (Fluid Imaging Technologies), Imaging
Flowcytobot22 (McLane Research Laboratories), and
CytoSense23 (Cytobouy b.v.). Although these systems are
able to perform imaging of the plankton in a flow, they
still have some important limitations. The use of a
microscope objective lens provides a strong trade-off
between the image resolution and volumetric throughput
of these systems; therefore, to obtain high-quality images,
the measured sample volume is limited to a few milliliters
per hour (e.g., 3–15mL/h). Using lower-magnification
objective lenses can scale up this low throughput by
approximately tenfold at the expense of image quality. In
addition, the shallow depth-of-field of the microscope
objective necessitates hydrodynamic focusing of the liquid
sample into a few-µm-thick layer using a stable sheath
flow. This also restricts the size of the objects that can be

imaged (e.g., to <150 µm) as well as the flow velocity and
throughput of the system, thus requiring the use of
additional expensive techniques such as acoustic focus-
ing22. As a result of these factors, currently existing
imaging flow cytometers used in environmental micro-
biology are fairly bulky (weighing, e.g., 9–30 kg) and costly
(>$40,000–$100,000), limiting their widespread use.
Holographic imaging of plankton samples provides a

label-free alternative to these existing fluorescence-based
approaches; in fact, its use in environmental microbiology
started more than 40 years ago using photographic films24

and subsequently continued via digital cameras and
reconstruction techniques25. Holography provides a
volumetric imaging technique that uses coherent or par-
tially coherent light to record the interference intensity
pattern of an object26. This hologram can subsequently be
reconstructed to digitally bring the object into focus. The
hologram contains information on the complex refractive
index distribution of the object, and consequently, not
only the absorption but also the phase distribution of the
sample can be retrieved. There are several implementa-
tions of digital holography for imaging a fluidic flow. We
can classify these digital holographic microscopy systems
in terms of the presence of an external reference wave (in-
line27 or off-axis28), magnification of the imaged volume,
and utilization of a lens29 or spherical wavefront30 for
illumination. Off-axis systems can directly retrieve the
phase information from the captured hologram; however,
their space-bandwidth product and image quality are
generally worse than those of in-line systems26. Com-
mercially available holographic imaging flow cytometer
systems also exist, such as the LISST-Holo2. This plat-
form is a monochrome system (i.e., does not provide color
information) and offers relatively poor image quality
compared to traditional imaging flow cytometers. The
throughput and spatial resolution are coupled in this
device, and therefore it can achieve high-throughput
volumetric imaging at the cost of limited resolution
(~25 µm), which makes it useful for detecting and iden-
tifying only larger organisms. Higher-resolution and bet-
ter image quality systems using microscope objectives in
the optical path have also been described in the litera-
ture28,29. However, the use of microscope objective lenses
not only makes these systems more expensive but
also limits the achievable field-of-view (FOV) and depth-
of-field, thereby drastically reducing the throughput of the
system to, e.g., ~0.8 mL/h31.
To provide a powerful and yet mobile and inexpensive

tool for environmental microbiology-related research,
here we introduce an in-line holographic imaging flow
cytometer that is able to automatically detect and provide
in real time color images of label-free objects inside a
continuously flowing water sample at a throughput
of ~100mL/h. This high-throughput imaging flow

Gӧrӧcs et al. Light: Science & Applications  (2018) 7:66 Page 2 of 12



cytometer weighs 1 kg with a size of 15.5 cm × 15 cm ×
12.5 cm (see Fig. 1) and is based on a deep learning-
enabled phase-recovery and holographic-reconstruction
framework running on a laptop that also controls the
device. Compared with other imaging flow cytometers,
the presented device is significantly more compact, lighter
weight, and extremely cost-effective, with parts costing
less than $2500, only a fraction of the cost of existing
imaging flow cytometers. This device continuously
examines the liquid pumped through a 0.8-mm-thick
microfluidic chip without any fluorescence triggering or
hydrodynamic focusing of the sample, which also makes it
robust and very simple to operate, with a very large
dynamic range in terms of the object size from microns to
several hundreds of microns. We demonstrated the cap-
abilities of our field-portable holographic imaging flow
cytometer by imaging the micro- and nanoplankton
composition of ocean samples along the Los Angeles
coastline. We also measured the concentration of the
potentially harmful algae Pseudo-nitzschia, achieving
good agreement with independent measurements con-
ducted by the California Department of Public Health
(CDPH). These field results provide a proof-of-principle
debut of our compact, inexpensive and high-throughput
imaging flow cytometer system, which might form the
basis of a network of imaging cytometers that can be

deployed for large-scale, continuous monitoring and
quantification of the microscopic composition of natural
water samples.

Results
We tested our imaging flow cytometer with samples

obtained from the ocean along the Los Angeles coastline.
The samples were imaged at a flow rate of 100mL/h, and
the raw full FOV image information was saved on the
controlling laptop. Plankton holograms were segmented
automatically and reconstructed by the device using a
deep convolutional network, and phase-contrast color
images of plankton were calculated and saved to the local
laptop controlling the imaging flow cytometer through a
custom-designed graphical user interface (GUI). Figure 2
highlights the performance of this automated deep
learning-enabled reconstruction process and the image
quality achieved by the device, showcasing several
plankton species with both their initial segmented raw
images (holograms) and the final-phase contrast color
images. We were able to identify most of the plankton
types detected by our device based on the reconstructed
images, as detailed in the captions of Fig. 2. An additional
selection of unidentified plankton imaged in the same
ocean samples is also shown in Fig. 3. Some part of the
water sample for each measurement was also sent to
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Convex mirror
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30 mm

20 mm Blue

RedGreen

1 mmColor image sensor

Microfluidic
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LED chip
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Pump Mirror
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Fig. 1 Photos and schematic of the imaging flow cytometer device. The water sample is constantly pumped through the microfluidic channel at
a rate of 100 mL/h during imaging. The illumination is emitted simultaneously from red, green, and blue LEDs in 120-µs pulses and triggered by the
camera. Two triple-bandpass filters are positioned above the LEDs, and the angle of incidence of the light on the filters is adjusted to create a <12 nm
bandpass in each wavelength to achieve adequate temporal coherence. The light is reflected from a convex mirror before reaching the sample to
increase its spatial coherence while allowing a compact and lightweight optical setup
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Fig. 2 The image quality of the flow cytometer allows the identification of plankton. Examples of various ocean planktons detected by our
imaging flow cytometer at the Los Angeles coastline, represented by their a raw holograms and b phase-contrast reconstructions following phase
recovery. The organisms were identified as (1) Chaetoceros lorenzianus, (2) Chaetoceros debilis, (3) Ditylum brightwellii, (4) Lauderia, (5) Leptocylindrus, (6)
Pseudo-nitzschia, (7) Ceratium fusus, (8) Ceratium furca, (9) Eucampia cornuta, (10) Bacteriastrum, (11) Hemiaulus, (12) Skeletonema, (13) Ciliate, (14)
Cerataulina, (15) Guinardia striata, (16) Lithodesmium, (17) Pleurosigma, (18) Protoperidinium claudicans, (19) Protoperidinium steinii, (20) Prorocentrum
micans, (21) Lingulodinium polyedra, (22) Dinophysis, (23) Dictyocha fibula (silica skeleton), and (24) Thalassionema. The yellow rectangle in
a-1 represents the segmented and 45° rotated area corresponding to the reconstructed images
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CDPH for comparative microscopic analysis by their
experts, and the qualitative composition of different spe-
cies found in each water sample was in good agreement
with our measurements. Furthermore, to perform a
quantitative comparison against the routine analysis per-
formed by CDPH, we selected the potentially toxic
Pseudo-nitzschia alga and evaluated its relative abundance
at six different measurement locations (i.e., public bea-
ches) along the Los Angeles coastline. Our imaging flow
cytometer results, summarized in Fig. 4, also showed good
agreement with the analysis performed by CDPH. CDPH
analyzes the relative abundance of species based on
microscopic scanning of a slide containing the settled
objects from the water sample of interest, whereas our
analysis is based on imaging of the liquid sample itself
during its flow. Differences in sample preparation, ima-
ging, and data-processing techniques might cause some
systematic differences between the two Pseudo-nitzschia
composition metrics reported in Fig. 4. However, both
methods are self-consistent, and therefore the relative
differences that are observed in Pseudo-nitzschia com-
position among different beaches are comparable, illus-
trating good agreement between our results and the
analysis performed by CDPH.
We also demonstrated the field portability and on-site

operation of our imaging flow cytometer by performing
experiments at the Redondo Beach pier over a duration of
8 h. The flow cytometer itself was powered by a 5-V
battery pack and could run for several hours. We utilized
a 500-Wh 19-V external battery pack to power the laptop
for the duration of our field experiments (from 6:30 am
until 2:30 pm). In these field experiments, we measured
the time evolution of the total plankton concentration in

the ocean during the morning hours and found that the
amount of microplankton in the top 1.5 m of the water
increased during the day, possibly due to vertical migra-
tion32,33 (see Fig. 5). We also manually counted the
number of Pseudo-nitzschia found in these samples and
observed a peak in the morning (at ~8:30 am) and a steady
decline thereafter (Fig. 5); in general, these trends are
rather complicated to predict since they are influenced by
various factors, such as the composition of the local
microbiome, tides and upwelling/downwelling pat-
terns34,35. These results demonstrate the capability of our
portable imaging flow cytometer to periodically measure
and track the plankton composition and concentration of
water samples on site for several hours without the need
for connection to a power grid.

Discussion
The throughput of an imaging flow cytometer is

determined by several factors, but most importantly it is
governed by the required image quality. We designed our
portable imaging flow cytometer to achieve the highest
resolution allowed by the pixel size of the image sensor,
which resulted in a tight photon budget owing to the loss
of illumination intensity for achieving sufficient spatial
and temporal coherence over the sample volume and the
requirement for pulsed illumination to eliminate motion
blur. Because of the fast flow speed of the objects within
the sample channel, pixel super-resolution36,37 approa-
ches could not be used to improve the resolution of the
reconstructed images to the subpixel level. We conducted
our experiments at 100mL/h; however, at the cost of
some motion blur, this throughput could be quadrupled
without any modification to the device. It could be

100 µm 100 µm 50 µm 50 µm

50 µm 50 µm 50 µm 50 µm 50 µm 25 µm

25 µm 25 µm 25 µm 25 µm 25 µm25 µm

50 µm 50 µm

Fig. 3 Reconstructed images of various phytoplankton and zooplankton. Phase-contrast color images depicting the plankton found near the
Los Angeles coastline and imaged by our flow cytometer at a flowrate of 100 mL/h
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increased even more by using a thicker (e.g., >1 mm)
microfluidic channel. To demonstrate this, we imaged an
ocean sample with increased throughputs of up to
480mL/h (see Fig. 6). The obtained reconstructions show
that the imaged alga (Ceratium furca) still remains easily
recognizable despite the increased flow speed.
In addition to the physical volumetric throughput, the

processing speed of the controlling laptop can also be a
limiting factor, mainly affecting the maximum density of
the sample that can be processed in real time. Our device
design achieves real-time operation; i.e., the computer
processes the information faster than the image sensor
provides it to avoid overflowing the memory. Currently,
the device can be run in three modes depending on the
sample density. First, we can acquire and save the full
FOV holograms and perform all reconstruction and phase
recovery steps after the measurement, which is a neces-
sary approach for high-concentration samples (e.g.,
>2000–3000 objects/mL). Even denser samples can also
be analyzed by our device by, e.g., diluting them accord-
ingly or by lowering the throughput. Second, we can
reconstruct but do not perform phase recovery of the
detected objects during measurement. At present, the
image-segmentation and reconstruction procedure takes
~320ms for each full FOV frame, in which seven objects
can be reconstructed per image with parallel computing
on a GTX 1080 GPU. The major computational opera-
tions are (1) segmentation of the full FOV hologram for
object detection (~70 ms), (2) holographic autofocusing

and reconstruction (~12ms/object), and (3) transfer of
the final amplitude and phase images (8 bit, 1024 × 1024
pixels × 3 color channels) from the device (i.e., GPU) to
the host (i.e., central processing unit) and saving of the
images on an internal solid-state drive (~10–20ms per
object). Consequently, for reconstruction but not phase
recovery of objects, the device can image, in real-time,
samples with ~700 objects/mL at a flowrate of 100mL/h.
The third mode of operation of our device involves

performing both the image-reconstruction and phase-
recovery steps for all flowing objects during the mea-
surement. The deep learning-based phase-recovery step is
currently the most intensive part of our algorithm, with a
runtime of ~250ms/object. Thus, if real-time phase
recovery is necessary in this third mode of operation, it
restricts the sample density to ~100 objects/mL at a
flowrate of 100mL/h. Since the performance of GPUs
increases by, on average, 1.5 × per year, these computa-
tional performance restrictions will be partially overcome
over time.
Furthermore, we have recently shown that is possible to

simultaneously focus all objects in a hologram using a
convolutional neural network38 that extends the depth-of-
field of holographic reconstruction by >25-fold compared
to conventional approaches. This would allow the phase-
recovery, autofocusing and image-reconstruction steps to
be combined into a single neural network, which would
make the computation time for the full FOV independent
of the density of the particles, thus enabling real-time
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concentration of Ceratium furca, which was therefore used as the model organism for this test. The sample was tested at various flow speeds above
100mL/h with a constant 120-µs illumination pulse length. We selected the objects located inside the channel near the maximum-flow velocity
regions, and their locations are depicted as red dots. a–e Reconstructed intensities corresponding to different flow rates are shown. The flow rate
(black) and the theoretically calculated displacement during the illumination pulse (red) are also shown

Gӧrӧcs et al. Light: Science & Applications  (2018) 7:66 Page 7 of 12



imaging of highly dense fluidic samples. We tested this
approach to reconstruct micro-objects in our 800-µm-
thick channel volume and found that it gives good results
regardless of the object’s height inside the channel (see
Supplementary Figure S1).
Since static objects are removed from our FOV using

the digital background-subtraction step, we can tolerate
some loss of light transmission due to potential fouling.
Since our instrument is based on holography, the ampli-
tude and phase information of a flowing object are dis-
persed over a larger diffraction pattern at the detector
plane, making it robust to potential alterations caused by
other small objects in the light path. Furthermore, since
the flow chamber of our imaging flow cytometer is dis-
posable, it can be easily replaced if needed; for this pur-
pose, an evaluation of the background image can be used
to automatically alert users to the need for replacement.
Although our current prototype is a field-portable

imaging flow cytometer, it is not fully waterproof and
operates above the water surface. This prototype can
operate up to 100m from the controlling laptop by simply
changing the USB3 camera connection to GigE and
constructing a long-range microcontroller communica-
tion setup similar to an OpenROV39 submersible plat-
form. Owing to its low hardware complexity in
comparison with other imaging flow cytometer technol-
ogies, the component cost of the system is very low (<
$2500), and with large volume manufacturing, it could be
built for less than $760 (see Supplementary Table S1).
This remarkable cost-effectiveness opens up various
exciting opportunities for environmental microbiology
research and could allow the creation of a network of
computational imaging cytometers at an affordable price
point for large-scale and continuous monitoring of ocean
plankton composition and the ocean microbiome in
general.

Materials and methods
Optical system
Our imaging flow cytometer uses a color image sensor

with a pixel size of 1.4 µm (Basler aca4600-10uc). The
housing of the camera is removed, and the circuit is
rearranged to allow the sample holder to be placed in
direct contact with the protective cover glass of the image
sensor (see Fig. 1). Illumination of the holographic
microscope is provided by using the red, green, and blue
emitters from a light-emitting diode (LED) (Ledengin
LZ4-04MDPB). The spatial and temporal coherence of
the emitted light from the LEDs is increased to achieve
the maximum resolution allowed by the sensor pixel size.
The spatial coherence is adjusted by using a convex
mirror (Edmund Optics #64-061) to increase the light
path. The LED light is also spectrally filtered by two
triple-bandpass optical filters (Edmund Optics #87–246,

Chroma Inc. 69015m) to increase the temporal coherence
of the illumination. The placement of the optical com-
ponents is designed to tune the bandpass of the spectral
filter angle to better match the emission maximum of the
LEDs. Increasing the spatial and temporal coherence of
the LEDs also decreases the intensity reaching the image
sensor. In addition, the short exposure time required to
avoid the motion blur when imaging objects in a fast flow
makes it necessary for our configuration to utilize a linear
sensor gain of 2. The additional noise generated from the
gain is sufficiently low as to not interfere with the image-
reconstruction process.

Microfluidic channel and flow design
A microfluidic channel (Ibidi µ-Slide I) with an internal

height of 0.8 mm is placed on the top of the image sensor,
secured using a three-dimensional (3D)-printed holder,
and connected to a peristaltic pump (Instech p625). The
size of the active area of the image sensor is slightly
smaller than the width of the channel (4.6 mm vs. 5 mm),
and the channel is positioned so that the sensor measures
the center of the liquid flow. We calculated the flow
profile inside the channel (see Fig. 6) by solving the
Navier–Stokes equation for noncompressible liquids
assuming a nonslip boundary condition. The results show
that the image sensor measures ~98% of the total volume
passing through the microfluidic channel. The flow profile
is a two-dimensional paraboloid, with the maximum flow
speed located at the center of the microfluidic channel
and measuring approximately 1.66 times higher than the
mean velocity of the liquid (see Fig. 6). To acquire sharp,
in-focus images of the objects in the continuously flowing
liquid, we operate the image sensor in the global reset
release mode and illuminated the sample by flash pulses,
where the length of an illuminating pulse is adjusted to
not allow an object traveling at the maximum speed inside
the channel to shift by more than the width of a single
sensor pixel. For a flowrate of 100 mL/h, this corresponds
to a pulse length of 120 µs.

Pulsed illumination, power, and control circuit
Because shortening the illumination time also con-

strains the available photon budget, we maximize the
brightness of our LEDs by operating them at currents
ranging from 2.2 to 5 A depending on their color. The
currents are set for each LED emitter to create similar
brightness levels at our image sensor, ensuring that we
adequately light the sample at each color, a requirement
for obtaining color images. The green LED spectrum is
inherently wider than the red and blue counterparts, and
thus the spectral filters will reduce its intensity the
most. Therefore, we operate the green LED at the
experimentally determined maximum possible current of
5 A. The red and blue LEDs require a current of ~2.2 A to
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match the intensity of the green LED on the image sensor
to correct the white balance. We designed a circuit to
control the necessary components of the device. The
circuit is powered by either a 5-V wall-mounted power
supply or a cellphone charger battery pack. The circuit
fulfills four major roles: providing power to the peristaltic
pump, charging the capacitors for providing power to the
LEDs, synchronizing the LEDs to the camera and creating
stable, short, high current pulses, and, finally, providing an
interface for remote control by a laptop using an Inter-
Integrated-Circuit (i2c) interface for setting various
parameters. The peristaltic pump is powered by a high-
efficiency step-up DC-DC converter at 16 V (TPS61086,
Texas instruments), and its speed is controlled by a
potentiometer via i2c components (TPL0401B, Texas
Instruments). The charge for the high-current pulses is
stored in three 0.1-F capacitors, which are charged using a
capacitor charger controller (LT3750, Linear Technolo-
gies) to 12 V. The capacitor charge is initiated by the
image sensor flash window trigger signal, which is active
during the frame capture, and its length can be controlled
by the camera software driver. The charger controller

acquires an “on” state and keeps charging the capacitors
until the preset voltage level of 12 V is reached. During
the short illumination pulses, the voltage on the capaci-
tors decreases only slightly, and they are immediately
recharged as each frame capture resets the charge cycle,
thereby allowing continuous operation. The LEDs are
synchronized and their constant-current operation is
ensured by a triple-output LED driver controller (LT3797,
Linear Technologies). The controller uses the same flash
window signal from the image sensor to turn on the LEDs
for the exposure duration set by the software. The current
of each LED is controlled between 0 and 12.5 A using
digital i2c potentiometers (TPL0401A, Texas Instru-
ments) and is kept constant for the subsequent pulses by
the circuit, thus maintaining the same illumination
intensity for each holographic frame. During startup, it
takes ~3–4 frames for the circuit to stabilize at a constant
light level. To avoid having multiple devices with the same
address on the i2c line, we included an address translator
(LTC4317, Linear Technologies) to interface with the
potentiometers controlling the red and blue LEDs. To
control the circuit, the laptop communicates with an

Object
Segmentation

AutofocusAutofocusAutofocusAutofocusAutofocusAutofocusAutofocus

3D spatial localization

Background
subtracted
hologram

Red channel

ResamplingGreen channel

Blue channel Resampling

Resampling

Image pre-processing

Raw camera
image

Background subtracted hologram
(Flowrate:100 mL/h)

1 mm

Raw camera image
(Flowrate:100 mL/h)

1 mm

UpsamplingUpsamplingUpsamplingUpsamplingUpsamplingUpsampling

UpsamplingUpsamplingUpsamplingUpsamplingUpsamplingUpsampling

UpsamplingUpsamplingUpsamplingUpsamplingUpsamplingUpsampling
Reconstruction

Reconstruction

Reconstruction
Reconstructed
intensity and

phase

Tigriopus
(Nauplius)

50 µm

Hologram intensity Reconstructed intensity Reconstructed phase

50 µm

High-resolution color reconstruction

Deep neural
network
phase

recovery

Phase
recovered

phase contrast
image

Phase recovered
phase-contrast image

50 µm

Recovered intensity (DNN) Recovered phase (DNN)

50µm

Reconstructed
phase-contrast image

Deep neural network (DNN)-based phase recovery

Upsampling

Upsampling

Upsampling
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Arduino microcontroller (TinyDuino from Tinycircuits),
which is used as an interface for i2c communications only.
During the initial startup, the circuit consumes ~1 A for
the first ~8 s until the capacitors are fully charged. During
its operation, the circuit consumes, on average, ~370mA
with a pump speed setting of 100mL/h and a frame rate
of 3 frames per second. This yields an average power
consumption of less than 2W. In addition, the image
sensor’s typical power consumption is ~2.8W according
to the manufacturer’s data.

Object detection and deep learning-based hologram
reconstruction
For automatic detection and holographic reconstruction

of the target objects found in the continuously flowing
water sample (see Fig. 7), the static objects found in the
raw full FOV image (e.g., dust particles in the flow
channel) need to be eliminated first. This is achieved by
calculating a time-averaged image of the preceding ~20
images containing only the static objects and subtracting
it from the present raw hologram. To ensure appropriate
reconstruction quality, the mean of this subtracted image
is added back uniformly to the current frame. This yields a
background-subtracted full FOV image in which only the
holograms of the objects newly introduced by the flow are
present. These objects are automatically detected and
segmented from the full FOV for individual processing
(see Supplementary Figure S2). The full FOV background-
subtracted hologram is first Gaussian-filtered and con-
verted into a binary image by hard-thresholding with its
statistical values (mean+ 1.5 × standard deviation), which
isolates the peaks of the holographic signatures created by
the objects included in the FOV. The binary contours
with an area of a few pixels are removed to reduce mis-
detection events due to sensor noise. A closing operation
is performed in the generated binary image to create a
continuous patch for each object. The resulting binary
contours represent the shapes and locations of the objects
appearing in the FOV, and their morphological informa-
tion is used to filter each contour by certain desired cri-
teria (e.g., major axis). The center coordinate of the
filtered contour is used to segment its corresponding
hologram. We should emphasize that not only is it fea-
sible to extract all objects in the FOV but it is also possible
to prioritize the segmentation of the objects of interest for
a specific goal by our approach. Thus, we can better utilize
the computational resources of the laptop and maintain
real-time processing for denser samples. After segmen-
tation, the Bayer-patterned holograms are separated into
three mono-color (i.e., red, green, and blue) holograms
corresponding to the illumination wavelengths. To fully
utilize the spatial resolution of the optical system, the
orientation of the Bayer-patterned green pixels is rotated
by 45° to regularize their sampling grid40. Concurrently,

the red and blue mono-color holograms are upsampled by
a factor of two, and a 45° rotation is applied to these
upsampled holograms. These processes are jointly called
“Resampling” in Fig. 7. Holographic autofocusing using
the Tamura coefficient of the complex gradient41,42 is
performed for each segmented object using only a single
mono-color hologram to accurately estimate the distance
of the respective object from the image sensor plane. At
this point, we have 3D localized each object within the
flow (per FOV). The coordinates of each detected object
are then used in conjunction with the estimated flow
profile from our calculations, and the location of each
object is predicted at the next frame. If an object is found
at the predicted coordinates, it is flagged to be removed
from the total count and processing workflow to avoid
reconstructing and counting the same object multiple
times. At this point, the image preprocessing step (shown
in cyan in Fig. 7) is complete.
The next step is the high-resolution color reconstruc-

tion (shown in pink in Fig. 7). We maximize the resolu-
tion of the reconstruction by further upsampling the
holograms by a factor of four. Each color channel is then
propagated to the obtained reconstruction distance by an
angular spectrum-based wave-propagation algorithm26

and thus brought into focus. The slight incidence angle
difference between the red, green, and blue emitters is
corrected by modifying the propagation kernel accord-
ingly43. To evaluate the resolution of the imaging flow
cytometer system for the objects located inside our
microfluidic channel, we replaced the flow channel with a
1951 Air Force test chart (see Supplementary Figure S3).
Due to the partially coherent nature of our illumination,
the resolution depends on the object–sensor distance;
thus, we measured it by placing the test chart at various
heights above the sensor. The width of the smallest
resolved line varied between 1.55 µm and 1.95 µm
depending on the height of the object, with 1.55 µm
corresponding to the smallest resolvable feature for most
flowing objects imaged by the imaging flow cytometer
during its regular operation.
These raw reconstructions, however, are con-

taminated by self-interference and twin-image noise,
which are characteristic of in-line digital holographic
imaging systems due to the loss of the phase information
of the hologram at the sensor plane. To achieve accurate
image reconstruction without these artifacts, a deep
learning-based digital holographic phase recovery
method38,44 was employed using a convolutional neural
network (see Fig. 7 and Supplementary Figure S4) pre-
trained with various phase-recovered reconstructions of
water-borne micro-objects captured with our imaging
flow cytometer. This method enables automated and
accurate acquisition of the spectral morphology of an
object without sacrificing the high-throughput
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operation of the holographic imaging cytometer, which
otherwise would be very challenging as other existing
phase-recovery methods require static repetitive mea-
surements43,45–48 and/or time-consuming iterative cal-
culations43,45–50, which would not work for flowing
objects. For the visualization of transparent objects,
such as plankton, we computed the color phase-contrast
image based on the complex-valued reconstructions of
the red, green, and blue channels, which assist in
accurately resolving the fine features and internal
structures of various water-borne microorganisms with
high color contrast (see, e.g., Figs. 2, 3, and 7). The
phase-contrast image was synthesized by (1) estimating
the background field from the mean amplitude and
phase of the refocused complex field, (2) calculating the
object field by subtracting the background field from the
refocused field, (3) shifting the phase of the background
field by π/2, (4) adding the phase-shifted background
field to the object field, and (5) taking the magnitude of
the recalculated total field.

Graphical user interface
We developed a GUI to operate the device. Through

this GUI, all relevant measurement parameters can be
specified, such as the liquid flow speed, the driving cur-
rents, the incidence angles for the red, green, and blue
LEDs, the flash pulse duration, and the camera sensor
gain. The GUI gives a real-time, full FOV reconstructed
image at the center of the channel, thus allowing visual
inspection during flow with and without background
subtraction, and displays the total number of detected
objects in the current frame. The GUI is also capable of
visualizing up to 12 segmented, autofocused, and recon-
structed objects in real time. The user can specify whether
to digitally save any combination of the raw, background-
subtracted holograms or reconstructed images. The GUI
can also be run in demo mode to analyze previously
captured image datasets without the presence of the
imaging flow cytometer.

Sample preparation and analysis
We followed the sampling protocol recommended by

CDPH (USA) to obtain our ocean samples. We used a
plankton net with a diameter of 25 cm and a mesh size of
20 µm and performed vertical tows with a total length of
15 m (5 × 3m) from the end of the pier at each sampling
location where a pier was present (Malibu, Santa Monica,
Venice, Manhattan, and Redondo; California, USA).
There was no pier at Point Dume; thus, we performed a
horizontal tow from the shoreline. The plankton net
condensed the micro- and nanoplankton found in the
ocean into a sample volume of ~250mL; i.e., in our case, a
condensation ratio of ~3000×. We extracted 1mL of the
condensed sample, rediluted it with 50mL of filtered

ocean water, and imaged its contents using our imaging
flow cytometer. The remaining samples were sent to
CDPH for subsequent analysis (used for comparison
purposes). During our field tests, we used the same
plankton net but only performed one vertical tow from a
depth of 1.5 m at each measurement. A 1-mL aliquot of
the obtained sample was rediluted with 20mL of filtered
ocean water. To conserve the battery power of the con-
trolling laptop, ~12mL of this sample was imaged on-site.
The imaging flow cytometer automatically detected and
saved the reconstructed images of all detected plankton
and provided the user real-time feedback on the total
plankton count detected. Specific counting of Pseudo-
nitzschia was performed manually by scanning through
the dataset of the saved images and visually identifying
Pseudo-nitzschia.
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Supplementary Figures 

 

 

Figure S1: Deep learning-based extended depth-of-field (DOF) reconstruction of flowing Giardia cysts. 

(Top) The raw hologram captured by the image sensor is separated into individual color channels and 

reconstructed at the height, approximately corresponding to the center of the channel. This initial 

reconstruction is used as an input for a deep neural network trained to reconstruct holograms 

irrespective of their object heights in a single step, automatically implementing the function of both 

auto-focusing and phase recovery; thereby generating an extended depth-of-field image of the scene by 

simultaneously reconstructing and bringing into focus all the particles. (Bottom) Individual 

reconstructions of the same raw hologram using autofocusing on each particle. Particles reconstruct at 

different heights spanning the height of the flow channel (0–800 µm); this comparison between the top 

and bottom rows clearly shows that the whole volume can be coalesced into a single plane using a deep 

neural network based extended DOF reconstruction (top right image), enabling the reconstruction of 

dense water samples without being bottlenecked with the local computational power that is available.  

 



 

Figure S2: Segmentation algorithm utilized by our imaging flow cytometer for automated plankton 

detection. The spatial gradient of the full field-of-view background-subtracted hologram is calculated to 

detect the rapidly oscillating holographic diffraction pattern of the plankton present in the image. The 

gradient is thresholded to create a binary image, and morphological closing is performed to obtain a 

single mask signature from each object. The center coordinates of the masks are calculated and used to 

segment the full field-of-view hologram into sub-holograms containing a single organism/object. 

  



 

 

Figure S3: Imaging performance of our color holographic imaging flow cytometer. A 1951 Air Force test 

chart was placed at seven different distances (z) from the CMOS sensor plane corresponding to the 

height range of the microfluidic channel (i.e., z=0 corresponds to the bottom of the water sample in the 

channel). The smallest resolved element on the chart up to ~550 µm height is group 8 element 3, 

corresponding to a linewidth of 1.55 µm. Above this height, the coherence of the light reduces the 

achievable resolution steadily with z distance, with the top of the channel resolving a linewidth of 1.95 

µm corresponding to group 8 element 1.  

  



 

Figure S4: Architecture of the convolutional neural network (CNN) used for holographic image 

reconstruction. The input matrix is 1024 × 1024 pixels each, for RGB intensity (×3) and RGB phase 

channels (×3), i.e., altogether forming 6 channels. The network output is the phase-recovered and twin-

image eliminated RGB intensity and RGB phase of the flowing object.  

 



Component Single Unit (USD) High Volume (USD) 

Pump 700 ~420 

Image Sensor 676 ~115 

Illumination Circuit ~300 ~110 

Optical Filters 400+375 <100 

Flow Channel ~15 <10 

Total ~2466 <755 

 

Table S1: Cost estimate (in USD) for the components of our imaging flow cytometer prototype.   
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