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Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance
relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the
lensless microscope digitally reconstructs microscopic images of specimens without using any lenses,
as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited
space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed
by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-
throughput imaging of specimens using compact, portable and cost-effective devices to potentially
address various point-of-care, global-health and telemedicine related challenges. In this review, we dis-
cuss the operation principles and the methods behind lensless digital holographic on-chip microscopy.
We also go over various applications that are enabled by cost-effective and compact implementations
of lensless microscopy, including some recent work on air quality monitoring, which utilized machine
learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude
with a brief future outlook of this computational imaging technology.

� 2017 Elsevier Inc. All rights reserved.
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1. Introduction

For centuries, biomedical imaging at micron-scale has been
powered by optical compound microscopes, leading to numerous
discoveries at the micro- and nano-scale [1,2]. These conventional
microscopes are operated with relatively expensive and bulky
lenses and other opto-mechanical parts, including alignment
mechanics, which altogether make the imaging system hard to
operate in field settings. Furthermore, there is an inherent trade-
off between the resolution and field-of-view (FOV) in a conven-
tional microscope, where the resolution and field-of-view are cou-
pled to each other. This means if we want to observe finer details
with better resolution, we can only do so in a relatively smaller
region of the sample using a single frame. Moreover, conventional
lens-based optical microscopy also has limited depth-of-field
(DOF), which makes it challenging to screen large volumes of
samples.

Over the last few decades, as the computational resources have
become exponentially faster, cheaper, more powerful and portable
[3], unconventional microscopy methods have emerged that use
very simple and inexpensive hardware while relying on computa-
tion to digitally generate high-resolution images over large sample
areas and volumes [4–7]. Among these emerging computational
microscopy techniques, lensless on-chip microscopy [8,9] has been
extensively explored to by-pass various limitations of a conven-
tional compound microscope, providing much more compact,
cost-effective and wider FOV imagers.

In a lensless on-chip microscope (Fig. 1(a)), the sample is placed
above an image sensor chip with a spacing of <1 mm, without any
imaging lenses in between. A partially coherent light source illumi-
nates the sample from the top. Instead of capturing a microscopic
image of the sample directly, the image sensor records an in-line
hologram [10] of the sample under partially coherent illumination.
From this recorded hologram, the original object, both its ampli-
tude and phase images, can be reconstructed digitally [8,10]. The
absence of imaging lenses and alignment mechanics, and other
bulky optical components, makes lensless on-chip microscopy
extremely compact, cost-effective and light-weight. Moreover,
the FOV and resolution are decoupled from each other: the resolu-
tion generally depends on the pixel size of the image sensor chip
and the detection signal-to-noise ratio (SNR), whereas the sample
FOV is equal to the entire active area of the sensor chip, which is
Fig. 1. Lens-less holographic on-chip microscopy. (a) Schematics of a lens-less on-chip m
coupled LED), (B) the sample to be imaged (sample plane), and (C) image sensor chip (sens
image quality are comparable to conventional microscope images, shown in the inset. T
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e.g., 20–30 mm2 for a state-of-the-art complementary metal oxide
semiconductor (CMOS) imager chip and it can reach �10–20 cm2

for a Charge-Coupled-Device (CCD). These sample FOVs are orders
of magnitude larger than the FOV of a conventional microscope
(see Fig. 1(b) for a comparison). Furthermore, the holographic nat-
ure of lensless on-chip imaging enables three dimensional (3D)
reconstruction of samples at extended DOF by digitally re-
focusing to different reconstruction planes within a sample vol-
ume, assuming that the sample does not create dead spots due
to optical shadowing. Numerous applications of lensless on-chip
microscopy have been demonstrated so far, taking advantage of
its compactness, cost-effectiveness and portability, including can-
cer and disease diagnosis [4,11,12], water-quality monitoring
[13–15], microbial viability testing [16], 3D motion tracking of bio-
logical samples [17–20], analyzing high-energy particle tracks [21],
among others [22,23].

In this manuscript, we review the basic design principles and
the underlying computational algorithms for lensless digital holo-
graphic microscopy on a chip, also covering various applications
that have been demonstrated using this imaging approach. Other
lensless approaches that involve e.g., shadow imaging [24], plas-
monic sensing [25–29] are beyond the scope of this review, which
can be found in other reviews [2,30]. We will conclude by provid-
ing a future outlook of this computational imaging technology.
2. Lensless holographic microscope on a chip

2.1. Theory and design principles

In a lensless on-chip microscope, a semi-transparent sample is
placed on top of an image sensor with a typical spacing of
<1 mm (z2 distance). A partially coherent light source is used as
illumination, usually at >2–3 cm (z1 distance) above the sample;
as a result, the sample casts an in-line hologram, which is directly
recorded by a CMOS or CCD image sensor, without using any imag-
ing lenses. The light source can be either a monochromator [24,31]
or a laser [4,32] in a benchtop system or a light emitting diode
(LED) in a portable device [9,33], with an optional spectral filter
(to fine tune the temporal coherence at the sensor plane) [34].
The benefits of a partially coherent source (both temporally and
spatially), compared to its coherent counterpart (e.g., a laser
icroscope, including (A) a partially coherent light source (e.g., a multi-mode fiber-
or plane). (b) Color reconstruction of a Pap smear. The reconstruction resolution and
he figure is modified from Ref. [93].
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source) include reduced speckle and multiple reflection interfer-
ence noise as well as much easier automated alignment of digital
images for e.g., enhancement of lateral and axial resolution
[8,35]. Unlike other digital holographic microscopes, an on-chip
microscope does not need to use a small (e.g., sub-micron) pinhole
since z1 � z2; in fact it can operate with very large apertures (e.g.,
50–100 mm) without affecting its spatial resolution due to aperture
induced smearing and coherence requirements – a detailed discus-
sion of this can be found in the Appendix of Ref. [9]. Despite the use
of partial spatial coherence, free space diffraction over a distance of
>2–3 cm (i.e., z1 distance) creates sufficient coherence on the sam-
ple/sensor plane so that each individual point scatterer can be
effectively considered coherent with respect to its local neighbors.

The hologram generated in a lensless digital holographic micro-
scope is an in-line (Gabor) hologram [10]. In in-line holography,
the object is semi-transparent and it can be approximated as:

tðx0; y0Þ ¼ 1þ Dtðx0; y0Þ ð1Þ
where Dt � 1. When this object is locally illuminated by a plane
wave A, it will propagate coherently over a distance of z2, where z2
is the spacing between the sample and sensor planes:

R½z2�fA � tðx0; y0Þg ¼ R½z2�fAg þ R½z2�fA � Dtðx0; y0Þg
¼ A0 þ aðx; yÞ ð2Þ

where R½z2�f�g is the free-space propagation operator over a depth
of z2. Then at the sensor plane, a hologram is formed by the inter-
ference of the scattered sample beam aðx; yÞ with the un-scattered
reference beam A0, and the intensity of this interference is recorded
by the sensor chip:

Iðx; yÞ ¼ jA0 þ aðx; yÞj2

¼ jA0j2 þ A0� � aðx; yÞ þ A0 � a�ðx; yÞ þ jaðx; yÞj2 ð3Þ
Because z1 � z2, the magnification of lensless microscopy is

unit, meaning that the FOV is equal to the entire active area of
the image sensor chip. In Eq. (3), the object related holographic
information is encoded within the second and third terms, which
are complex conjugates of each other. The first term can be sub-
tracted out using a background image (without the object present),

and the fourth term (i.e., jaðx; yÞj2) can be ignored since Dt � 1. In
fact, this last term represents the self-interference of the scattered
waves from the specimen, and does not contain any useful infor-
mation as far as holography is concerned. This self-interference
noise is suppressed by partial spatial and temporal coherence of
the illumination, which can be considered as an ‘‘engineered
coherence gate”. Simple back-propagation of Eq. (3), after the back-
ground subtraction, will result in both a focused image and a defo-
cused image of the specimen that spatially overlap, and the latter
forms what is commonly known as the twin-image artifact in in-
line holography. Since z2 is rather small for an on-chip microscope,
this twin-image can strongly obscure the real object image, espe-
cially for connected and dense specimens, and in the next sub-
sections we will discuss different strategies to suppress and elim-
inate twin image artifact in the reconstruction process.

There are several factors that can limit the resolution of a holo-
graphic on-chip microscope, which include e.g., diffraction, pixel
size, image chip area and coherence of the system. Theoretically,
if the pixel size can be arbitrarily small and the coherence is perfect
over a large sensor area, then an image that is ideally reconstructed
using a lensless on-chip microscope is diffraction limited, with a
maximum detectable spatial frequency of �n/k, where n is the
refractive index of the medium between the sample and the sensor
plane, and k is the illumination wavelength.

In practice, an important limitation of the lensless on-chip
microscope resolution is created by the pixel size of the sensor,
Please cite this article in press as: Y. Wu, A. Ozcan, Methods (2017), http://dx.
which is especially important due to its unit magnification. Practi-
cally, the half-pitch resolution of a reconstructed image using a
state-of-art CMOS image sensor chip (such as the ones that are
used in smart phone cameras) will be about one micron. With
additional image processing, such as using pixel super-resolution
algorithms, detailed in the next sub-section, an effective pixel size
that is much smaller than the wavelength of light can be digitally
synthesized from a series of low resolution measurements that are
shifted with respect to each other.

The coherence of the illumination can be another source of res-
olution limitation due to partial spatial coherence and/or temporal
coherence. In a lensless on-chip holographic microscope, the spa-
tial coherence diameter at the sample plane is proportional to
k � z1=D, where D is the aperture size at the illumination plane,
which can be a simple pinhole or a multi-mode fiber. For a given
k and z1, the choice of D affects not only the diameter of the spatial
coherence at the sensor plane (which determines the effective
numerical aperture in an object’s in-line hologram) but also the
spatial smearing that is induced at the hologram plane. To expand
on the latter point, a given illumination aperture, Tðx; yÞ, effectively
smears the hologram intensity that is measured [9,36], i.e.,

Imeas ¼ IcohHT � z1
z2

x;� z1
z2

y
� �

ð4Þ

where Icoh is the hologram assuming perfect spatial coherence over
a large image sensor area (e.g., using an infinitesimally small pin-
hole), and Imeas is the measured hologram, and H stands for the spa-
tial convolution operation. Eq. (4) states that the aperture function
is de-magnified by a factor of M ¼ z1=z2 and projected onto the
hologram plane. Intuitively, this convolution relation of Eq. (4)
can be thought as an incoherent super-position of an infinite num-
ber of holograms, each of which is generated by an infinitesimal
point source inside the aperture region, and assuming a perfectly
incoherent illumination source across Tðx; yÞ, each one of these
point sources is incoherent with respect to others. To avoid this res-
olution limit due to pinhole or illumination aperture size, the
projected/de-magnified aperture needs to be smaller than the pixel
size so that the projected aperture equivalently merges into the
pixel function. For an on-chip holographic microscope, this is easy
to satisfy since M ¼ z1

z2
� 1; for example, for an aperture diameter

of 100 mm, and a z2 distance of 400 mm, a z1 distance of >3–4 cm
should be sufficient for a typical CMOS imager chip that has a pixel
size of �1–2 mm.

The temporal coherence of the illumination is another factor
that is crucial for the spatial resolution of an on-chip holographic
microscope and is determined by the coherence length DLc of (a
single point) illumination source, which is a function of the spec-
tral bandwidth Dk of the source [37]:

DLc 	 2 ln2
p

� �
� k2

n � Dk ð5Þ

where n is refractive index, and k is illumination wavelength. In
order for a spatial frequency component of the object to be recorded
at the sensor plane, the difference of the optical path-length of this
high frequency scattered wave and the vertical reference wave
should not exceed the temporal coherence length. Accordingly,
the maximum angle ðhmaxÞ for any scattered plane wave component
that can contribute to an object’s hologram can be determined as:

cos hmax ¼ z2
z2 þ DLc

ð6Þ

Based on this temporal coherence length consideration, for a z2
distance of �400 mm, as an example, the bandwidth of the partially
coherent light source needs to be smaller than 20 nm in order to
achieve a resolution of �1 mm (which is close to the pixel size).
doi.org/10.1016/j.ymeth.2017.08.013
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For a narrower illumination bandwidth, and assuming that the
spatial coherence does not pose a limitation, then the resolution
of an on-chip holographic microscope is limited by the under-
sampling that is created by the pixel pitch of the sensor chip, which
can be overcome using e.g., pixel super-resolution techniques that
will be discussed next.

2.2. Pixel super-resolution for on-chip holographic imaging

As discussed in the previous section, one limiting factor for res-
olution in an on-chip holographic microscope is pixelation and the
related under-sampling of spatial frequency information at the
hologram plane. To achieve resolution beyond the pixel-pitch limit,
we can employ a technique called pixel super-resolution (PSR)
[38–40]. In PSR, the object’s hologram is shifted laterally in sub-
pixel increments, and at each location on the shifting grid, a low
resolution (LR) hologram is captured. This relative lateral shift of
the hologram with respect to the sensor array plane can be
achieved by e.g., shifting the image sensor chip [4], the sample
[41], or the illumination source [40,42]. In a portable on-chip imag-
ing device, the mechanical shifts required for PSR can be replaced
by an array of LEDs that are sequentially turned on/off to cast sub-
pixel shifted holograms of a static sample [42]. Using multiple LR
holograms, a higher-resolution hologram can be digitally synthe-
sized. One algorithm that can be used for this purpose is called
‘‘shift-and-add”, in which the low-resolution holograms are up-
sampled, shifted, and digitally added [43].

The shift-and-add algorithm, although simple in concept and
computation, is based on the assumption that the LR holograms
are sub-pixel shifted on a uniform grid, and that pixel function is
ideally a delta function, dðx; yÞ. This assumption puts part of the
burden on hardware alignment and partially limits the choice of
image sensors that can be used. When these assumptions for
shift-and-add are harder to satisfy, more versatile techniques,
which are based on e.g., iterative optimization, can also be used
[39,40]. These iterative methods generally solve an optimization
problem to minimize a cost function such as:
Fig. 2. Pixel super-resolution (PSR) for digital holographic on-chip imaging. Subpixels sh
static light sources, e.g., fiber-coupled LEDs that are individually controllable, sensor shi
before PSR. (e) Pixel super-resolved version of the same object’s hologram. (f) Reconstru
same region of interest. Images reprinted from Refs. [8] and [40–42].
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x� ¼ arg min
X
i

jjWi � x� yijjqp þ a � cðxÞ ð7Þ

This cost function typically contains two parts: the first partP
ikWi � x� yikqp uses some norm (e.g., p = 1 or 2 with q = 1 or 2,

respectively) to minimize the distance between the optimal solu-
tion (x�) and i different measurements, where Wi represents the
digital process of shifting and down-sampling of an image and yi
is a lower resolution measurement. The second part cðxÞ is a regu-
larization parameter to maintain/regulate some desired quality in
the reconstructed image, for instance, smoothness (derivative)
[39], sparsity (l1-norm) [44], or sparsity in its derivative (total vari-
ation) [38,45], where a serves as a coefficient that balances the
strength of this regularization term. Since the transformations rep-
resented by Wi are linear, this cost function is typically convex [46],
and can be optimized via convex optimization algorithms, for
instance, gradient-based and conjugate-gradient based descent
algorithms [39,43]. Through iterations, some of the spatial artifacts
that are typically present in ‘‘shift-and-add” based solutions due to
the non-uniform shift grid or finite pixel function, can be mini-
mized. When applied to digital holographic on-chip imaging [40],
the high frequency fringes of an object’s hologram become quite
visible after PSR (see Fig. 2(d-e)), which is used to reconstruct
higher resolution images of the samples. By using PSR with a verti-
cal only illumination angle, we were able to resolve periodic struc-
tures with a line-width as small as �300 nm at 530 nm illumination
wavelength, equivalent to an effective numerical aperture (NA) of
�0.9 (Fig. 2(f)) [8,47]. The next sub-section will discuss how this
resolution can further be improved by using the diversity of illumi-
nation angles.

In addition to sampling sub-pixel shifted holograms through
e.g., source, sample or sensor shifting, coherent imaging also offers
other methods to achieve super-resolved pixels, for instance, by
varying the illumination wavelengths with small increments
(e.g., �2–3 nm) [48], or by varying the propagation distances (i.e.,
z2) [49,50]. Some recent work has also used deep-learning to
achieve PSR [51–55], also covering microscopy applications [55].
ifts in a digital hologram can be achieved through (a) source shifting, (b) an array of
fting, or (c) sample shifting using e.g., a micro-fluidic flow. (d) An in-line hologram
cted gratings with 338 nm line-width using PSR. (g) Microscope comparison of the

doi.org/10.1016/j.ymeth.2017.08.013
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Fig. 3. Synthetic aperture based lens-less on-chip microscopy. (a,b) Spatial frequency pass-band of vertical-only (i.e., normal) illumination and after synthetic aperture
method. (c,d) Lens-less holographic reconstruction of 250 nm grating lines without and with the synthetic aperture approach. Reprinted from Ref. [32].

Y. Wu, A. Ozcan /Methods xxx (2017) xxx–xxx 5
2.3. Illumination angle diversity for enhanced resolution: synthetic
aperture microscopy

The idea of synthetic aperture imaging dates back to 1950s
where it was used for synthetic aperture radar [56]. Later in
1990s, it was adopted to synthetic aperture microscopy (SAM)
[57,58]. In SAM, a sequence of images of the sample is captured
as a function of the illumination angle with respect to the sample.
Each one of these tilted illuminations provides a modulation of the
frequency components of the sample that shifts the center fre-
quencies away from the zero frequency, and at the same time,
some of the high frequency components are shifted to lower fre-
quencies. As a result, for a two dimensional (2D) object that is
approximately confined to a plane, the reconstructed image can
have a higher effective NA than the refractive index (n) of the med-
ium that fills the space between the sample and sensor planes.
Theoretically, an effective NA of 1 + n can be achieved using this
synthetic aperture approach, assuming that the medium between
the source and the sample planes is air. Similar ideas of shifting
the high frequency components of a sample into the low-
frequencies can also be achieved using structured illumination
[59]. Despite computationally achieving effective NAs that are lar-
ger than n, none of these techniques can be considered to beat the
diffraction limit of light as they are entirely based on propagating
waves that are resulting from coherent light-matter interaction.

In a lensless on-chip microscope, SAM can be easily achieved by
rotating a fiber-coupled partially coherent light source in two
orthogonal directions using e.g., a rotation stage [32]. At each tilted
illumination angle, source-shifting based PSR is performed to
Please cite this article in press as: Y. Wu, A. Ozcan, Methods (2017), http://dx.
ensure sufficient spatial sampling. This synthetic aperture
approach has achieved the highest resolution reported in lensless
on-chip imaging so far, which is demonstrated by resolving a grat-
ing of 250 nm line-width at an illumination wavelength of 700 nm
(Fig. 3(d)), resulting in an equivalent NA of 1.4 [32].

2.4. Digital hologram reconstruction

In digital holography, the image of a sample, both amplitude
and phase, can be reconstructed through a digital back-
propagation step. One method of digital back-propagation is the
angular spectrum method [10]. In this angular spectrum method, a
complex wave is first transformed into spatial frequency (Fourier)
domain, multiplied by a propagation kernel which is a function of
the propagation distance (z2) and is finally transformed back into
the spatial domain, using e.g., Fast Fourier Transforms (FFTs). This
back-propagation step converts the object’s hologram into four dif-
ferent terms:

R½�z2�fA� � Iðx; yÞg ¼ jAj2 � ½1þ Dtðx; yÞ þ R½�2z2�fDt�ðx; yÞg�
þ R½�z2�fjaðx; yÞj2g ð8Þ

where the first term on the right-side is a DC-background, the sec-
ond term is the reconstructed object function, the third term is the
twin image artifact and the fourth term is the back-propagated self-
interference term. In some imaging applications [17,18], where the
objects of interest are small and relatively isolated/sparse, the twin
image does not pose a significant challenge for the quality of the
reconstructed image, and a simple back-propagation can then be
doi.org/10.1016/j.ymeth.2017.08.013
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sufficient for these applications. In others, the image quality would
be compromised by the twin image and self-interference related
noise terms, thus needs to be improved using e.g., phase retrieval
techniques. This is related to the fact that the recorded hologram
has only amplitude information and its phase is initially missing
[60].

One of the basic phase retrieval methods uses an object mask
constraint [9,60], where a threshold defines a 2D mask on the
object plane, and parts of the back-propagated hologram on the
object plane that lie outside of the mask regions are considered
noise and are iteratively removed. In addition to thresholding, this
2D object mask/support can also be defined through a microscope
image of the same region, using e.g., a hybrid design that includes a
traditional lens-based microscope as well as a lensless on-chip
microscope [61]. This object-mask constraint works very well for
imaging objects that are relatively small and isolated with a clear
boundary. However, for samples that are confluent and connected,
e.g., tissue slides or blood smears, it is more challenging to depict
an object mask. More advanced algorithms using additional mea-
surement constraints are needed for phase retrieval in these types
of spatially dense and connected samples, which will be detailed in
the next sub-sections. Furthermore, as will be briefly discussed in
Section 2.7, there are also emerging deep-learning and convolu-
tional neural network based holographic image reconstruction
and phase recovery methods that achieve excellent elimination
of twin image noise and self-interference related spatial artifacts
even for a dense and connected sample and using a single mea-
surement constraint [62].

2.5. Phase-retrieval using multi-height measurements

For imaging dense and connected samples, phase retrieval
methods that use additional measurements at different sample-
to-sensor distances (heights) can be used. These lensless holo-
Fig. 4. Lens-free imaging of invasive ductal carcinoma of the human breast. (a) Full fie
typical digital FOV of conventional 20
 and 40
 microscope objectives are shown by soli
disordered epithelium. (c) Microscope comparison image of (b) taken with a 40
 objecti
the images shown in (b). Reprinted from Ref. [4]. (For interpretation of the references to
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graphic measurements at different heights impose physical mea-
surement constraints that the twin image and other sources of
noise terms do not satisfy. From these multiple lensless measure-
ments at different heights, a complex-valued object function can
be retrieved numerically, by digitally propagating among different
measurement planes and replacing the amplitude of the calculated
field at each plane by the square root of the measured intensity,
while keeping the phase information unchanged. This process
can be repeated for e.g., 10–30 iterations until a converged phase
solution is achieved. The general framework of this type of an algo-
rithm is called the Gerchberg-Saxton iterative error-reduction
method [60,63]. In different publications, it is also referred to as
the iterative projection method [64,65], or the multi-height phase
retrieval algorithm [4,12,66].

In lensless on-chip imaging, the multi-height phase recovery
process typically requires 6–8 heights to efficiently suppress the
twin image noise and other spatial artifacts. Because the phase
retrieval problem is in general not convex, the solution may stag-
nate at a local optimum, which is also known as the phase stagna-
tion problem [4,67]. One way to tackle this is to have an initial
phase guess that is closer to the global optimum. The transport
of intensity equation (TIE) [68,69] has been demonstrated to be
effective in providing an initial phase guess for the iterative
multi-height phase retrieval to enable rapid convergence [4]. Using
this framework, lensless on-chip imaging of pathology slides with
a resolution and image quality/contrast comparable to a high-end
conventional compound microscope has been demonstrated
(Fig. 4) [4,70]. In another study, a field-portable and cost-
effective lensless on-chip microscope based on the same multi-
height phase retrieval method was also demonstrated [34,71].

A recent work, inspired by the fact that almost all natural
images, including those of biological samples, are sparse in the
wavelet domain, has demonstrated that e.g., CDF9/7 encoding
can be used to simplify the phase retrieval process in lensless
ld-of-view (FOV) lens-free amplitude image of the specimen. For comparison, the
d rectangles. (b) Zoomed-in regions outlined by the yellow squares in (a), showing a
ve lens (0.75 NA). (d) Super-resolved lens-free holograms that are used to generate
colour in this figure legend, the reader is referred to the web version of this article.)
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on-chip microscopy [72]. This new method, called sparsity-based
multi-height phase retrieval, has demonstrated that high quality
phase retrieval and image reconstruction can be achieved using
only 2 heights of hologrammeasurements for dense and connected
biological samples, instead of the 6–8 heights employed in the reg-
ular multi-height phase retrieval method, giving a significant
reduction in the number of measurements required. We will dis-
cuss other applications of sparse signal recovery and compressive
sensing/sampling related approaches in lensless on-chip micro-
scopy in the next sub-section.

As another degree of freedom, multiple angles of illumination
can also be used for phase retrieval, while at the same time
increasing the effective NA of a reconstructed image through the
synthetic aperture approach described earlier [32,49]. In addition
to iterative algorithms as described above, there are also recursive
phase retrieval methods that use Kalman filtering and multiple
out-of-focus measurements [73,74]. Kalman filtering based recur-
sive phase retrieval method offers good noise-reduction perfor-
mance and can robustly reconstruct objects even under noise. A
later work has also simplified the computational cost of this Kal-
man filtering based approach using a diagonal approximation of
the correlation matrix [75]. However, these methods require more
number of measurements (e.g., 50–100 heights) compared to iter-
ative multi-height phase retrieval techniques (e.g., 2 heights) and
their performance for high resolution imaging of dense and con-
nected biological samples is relatively inferior in lensless on-chip
imaging.

2.6. Compressive sensing/sampling and sparsity based phase retrieval

Compressive sensing or sampling framework aims to recon-
structs a signal ðxÞ using measurements ðyÞ of much smaller
dimension (dimðxÞ >> dimðyÞ), i.e., the measurement system
(matrix A) is under-determined. The basic assumption is that the
signal to be reconstructed can be represented as a sparse function
in some encoding domain. The compressive sensing/sampling
inherently solves an optimization problem to recover a signal, x:

x� ¼ argminkAx� ykqp þ a � cardðCxÞ ð9Þ

where a is a regularization parameter, C is the encoding matrix,
cardð�Þ is the cardinality function, which minimizes the number of
non-zero elements in Cx. Under some assumptions [46], the above
non-convex problem can be equivalent to the following convex
optimization problem:

x� ¼ argminkAx� ykqp þ a � kCxk1 ð10Þ
The compressive sensing/sampling framework requires that the

sought signal is sparse in some encoding domain rangeðCÞ, and that
the basis of the measurement matrix A is uncorrelated with that of
the encoding matrix C. The form of the encoding matrix C depends
on the prior information on the sample or its image. For instance, if
the image/sample itself is sparse (e.g., a fluorescently tagged
object), then C ¼ I would be sufficient, where I is the identity
matrix. As another example, if the image’s derivative is sparse
(i.e., only a few jumps in the image), then C can simply be selected
as a 2D gradient operator D, and TVðxÞ ¼ kDxk1 is usually called the
total variation or TV-norm [76]. In statistics and machine learning
literature, this is also known as the least absolute shrinkage and
selection operator (LASSO) method [28,77].

Using compressive sensing/sampling, digital holographic phase
retrieval performance can be significantly improved [78]. Some of
the early work shows that the wave propagation itself is an effi-
cient encoding scheme in compressive sensing, which enables
e.g., single-height digital holographic phase retrieval without the
need for an object mask [79], and 3D sectioning of samples from
Please cite this article in press as: Y. Wu, A. Ozcan, Methods (2017), http://dx.
2D holographic measurements, among other achievements
[80,81]. However, these schemes that use wave propagation as a
sparse encoder mostly work for objects that are relatively isolated
and sparse, and cannot work with dense and connected biological
samples, which is an important application of lensless microscopy.
As discussed in the earlier sub-section, sparse signal recovery can
also be used to image dense objects using a lensless on-chip micro-
scope by merging it with multi-height based iterative phase recov-
ery to reduce the number of heights that is required to 2 heights.
Compressive sensing has also been used in lensless multi-
spectral imaging, to demultiplex images obtained with a
wavelength-multiplexed illumination [82]. Although outside the
scope of this manuscript, compressive sampling/sensing based
approaches have also been used to significantly increase the reso-
lution of lensless fluorescence on-chip microscopy and undo the
effects of diffraction [44,83–85].
2.7. Phase retrieval using deep-learning

Deep-learning is a branch of machine learning that uses neural
networks to perform automated analysis and processing of data.
Recently we have been observing a renaissance in this technology
and its use in various fields of science and engineering, powered by
the significant improvements in e.g., parallel computing, as well as
the open-source building blocks and deep-learning design frame-
works shared by some research groups and leading tech compa-
nies. One very popular type of a deep network is a convolutional
neural network (CNN), which might be considered to be partially
inspired by the structure of the neural visual cortex, although this
biological inspiration for ‘modern’ deep networks is also disputed
by some researchers in the field. CNN typically combines convolu-
tion layers, pooling layers, and non-linear functions, each con-
nected to others with coefficients/weights that are randomly
initialized and trained using data. In general, CNNs and deep-
learning currently form one of the fastest growing areas of com-
puter science, and have been widely applied to various tasks such
as image labeling [86], style-transfer [87] and even playing games
against professional human players [88].

Recently it has also been demonstrated that neural networks
can be used in holographic image reconstruction and phase retrie-
val to compute artifact-free high-resolution images of biological
samples [62]. As discussed in the previous sub-sections, phase
retrieval of dense and connected samples using an on-chip holo-
graphic microscope is in general a challenging task that requires
measurement diversity to converge to a robust solution. In this
recent work, Rivenson et al. demonstrated that a CNN, after appro-
priate training, can eliminate the twin image and self-interference
related noise terms and achieve phase recovery and holographic
reconstruction of connected biological samples using a single holo-
gram measurement with an image reconstruction quality that is
comparable to multi-height phase retrieval results using e.g., 5
measurement heights [62]. We believe that this deep-learning
enabled phase retrieval method is especially promising for com-
pact and field-portable lens-less imaging devices, eliminating the
hardware complexity needed to capture multiple holograms of
the object at different sample-to-sensor distances. This will further
simplify the lens-less imaging hardware and reduce its image
reconstruction related computational load, and would be the key
for real-time imaging of various specimens even in field settings.
In this sense, the general framework of machine learning, and in
specific deep learning, is not only crucial for image annotation
and automated detection of specific features within a microscopic
image, but is also transformative for the design and implementa-
tion of mobile computational imagers, especially for telemedicine
and biomedical sensing applications, among others.
doi.org/10.1016/j.ymeth.2017.08.013
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2.8. Color imaging in lensless digital holographic microscopy

In many applications, including e.g., biomedical related ones, a
color image is preferred, as it provides additional information
and contrast of the sample. However, holography demands a
quasi-monochromatic illumination for temporal coherence consid-
erations. To get a color image of a sample, multiple holograms
under different illumination wavelengths can be acquired and dig-
itally combined to synthesize a color image of the sample. For
instance, holograms using illumination wavelengths at the red
(R), green (G) and blue (B) parts of the spectrum can be sequen-
tially recorded, reconstructed separately and then digitally merged
into a color image [13,32]. This requires 3-fold increase in data
acquisition compared to that of a monochrome reconstruction.

One method to have less number of measurements for color
imaging is called YUV averaging [34,89]. In this approach, high res-
olution and high quality images (through PSR and phase retrieval,
i.e., without pixelation and twin image artifacts) are only acquired
at a single illumination wavelength to create the Y channel (bright-
ness) of a color image. Two additional low resolution holograms
are captured, back-propagated, and merged to get the U and V
channels (color) of the image. Unfortunately, since this YUV aver-
aging method smears the color information carried out in the U
and V channels, color leakage is observed at the borders of an
object (e.g., a stained cell).

Another method to improve the color imaging efficiency of an
on-chip holographic microscope is to simultaneously use three illu-
mination wavelengths, which effectively generates a multiplexed
hologram that is formed by the summation of each hologram
intensity at different color channels. This multiplexed hologram,
captured through a Bayer color filter array (CFA) on a color image
sensor chip, can be de-multiplexed through a matrix inverse oper-
ation using the pre-calibrated spectrum of the sensor response
[90–93]. However, because the pixels of different color channels
on a Bayer CFA are not at the same location, conventional demo-
saicing methods that rely on interpolation of different channels
generate color artifacts at rapidly oscillating holographic fringes.
This color artifact is muchmore pronounced in holography because
a hologram contains high frequency fringes and through digital
wave propagation, these localized color artifacts can permeate to
the entire object image. This fringe-related color artifact can be
digitally mitigated by using PSR to generate virtual pixels that
super-impose upon each other. This approach is known as demo-
saiced pixel super-resolution (D-PSR) method, and has been shown
to generate high-fidelity color images of stained biological samples
using multi-wavelength illumination with sources that are simulta-
neously on [43,93]. An alternative technique for color imaging in a
holographic on-chip microscope combines a lensless microscope
with a mobile-phone based microscope, through wavelet fusion
of mobile-phone microscope’s low-resolution color images with a
pixel super-resolved lensless reconstruction at a single wavelength
[94].

2.9. Lensless 3D imaging and tomography on a chip

Although a digital holographic reconstruction can retrieve both
the amplitude and phase information of a sample, holography with
a single perspective is subject to shadowing related artifacts and
sample-induced aberrations, and is not generally considered as a
3D tomographic imaging technique since the problem of inferring
3D information from coherent scattering data is ill-posed [81,95].
In addition to holography, the same limitations also exist in e.g.,
optical coherence tomography (OCT), where the sample induced
aberrations to the forward propagating optical wave within the
sample volume is ignored, which is also referred to as the first Born
approximation. This approximation implies that each volumetric
Please cite this article in press as: Y. Wu, A. Ozcan, Methods (2017), http://dx.
scattering element/point in a 3D sample is assumed to be illumi-
nated with a known phase front (e.g., planar or spherical), which
is hard to satisfy especially for thick and dense samples. In general,
to improve the 3D sectioning capability of a coherent imaging
modality, including holographic on-chip microscopy, additional
measurements and degrees of freedom are needed.

One such method involves using different angles of illumination
to capture a sequence of holograms. Before a tomographic image of
the specimen is reconstructed through these multi-angle holo-
grams, using a simple triangulation approach, isolated particles
can be localized and their heights can be measured with �300–
400 nm axial localization accuracy [96]. This multi-angle-
illumination method can also be used to monitor the motion of
micro-objects in 3D. For instance, using two different illumination
angles (simultaneously on) at two different wavelengths of light,
together with a monochrome CMOS imager, TW Su et al. demon-
strated 3D tracking of sperm locomotion across very large sample
volumes of e.g., >9–10 mL [18,19]. Although a monochrome imager
was employed in these experiments, different illumination wave-
lengths at different angles were used to digitally separate the ver-
tical and oblique perspectives of the sperm locomotion from each
other and calculate the 3D position of the sperm head at each
frame. This holographic monitoring platform enabled researchers
to discover new locomotion patterns observed in human and ani-
mal sperms [18–20].

Different angles of illumination in digital holographic on-chip
imaging can also be used to generate tomographic reconstructions.
Using a filtered back-projection algorithm, also used in conven-
tional limited angle tomography, a 3D lensless image of a specimen
can be reconstructed with <3 mm axial resolution and <1 mm lateral
resolution [35], which was also merged with micro-fluidics to
enable tomographic imaging of 3D objects during their flow [14].
A portable, 3D-printed tomographic microscope based on this con-
cept was also demonstrated to image biological specimens [97].

2.10. Nano-particle detection and sizing using lensless on-chip
microscopy

In addition to resolution, another figure-of-merit for a micro-
scope in general is its detection limit, which is especially important
for detecting nano-particles that act as very weak antennas due to
their sub-wavelength dimensions. In fact, for nano-particles, the
scattering intensity is inversely proportional to the fourth power
of the illumination wavelength, and therefore, a smaller wave-
length is often favorable to detect nano-particles. However, the
on-chip imaging configuration of a lensless holographic micro-
scope has an inherent disadvantage when it comes to detection
of nano-particles: the pixels of an imager will by and large detect
the directly transmitted light, and the weak scattering from an iso-
lated nano-particle can easily be buried under pixel noise. This is
intuitively the same challenge as ‘‘trying to see the moon in a
sunny day”.

One clever method to detect nano-particles using an on-chip
microscope is to use each nano-particle as a nucleus for self-
assembled deposition of refractive materials around each particle,
thus increasing its size and scattering cross-section, effectively
helping its lensless detection on a chip. In one of these methods,
the substrate that has the nano-particles of interest is rinsed with
a Polyethylene Glycol (PEG)-based solution, and self-assembled
nano-lenses are formed around each particle on the substrate after
tilting it for the removal of additional material [98,99]. In another
implementation of the same basic idea, the PEG solution is placed
on a simple heater reservoir, which then evaporates and condenses
on the substrate, forming nano-particle–nano-lens complexes that
are imaged using on-chip holography [100,101]. By monitoring the
formation process of these nano-lenses using time-lapse on-chip
doi.org/10.1016/j.ymeth.2017.08.013
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imaging, sizing of nano-particles as small as 40 nm with a sizing
accuracy of �11 nm was demonstrated using illumination at
�510 nm [101]. In another recent work, using ultra-violet illumi-
nation at 266 nm, in combination with self-assembled nano-
lenses, nano-particles as small as 24 nm have been detected
[102]. Using surface chemistry and functionalization protocols, this
method can also be used to detect bio-molecules and viruses, e.g.,
for viral load measurements in field settings [100–103]. Although
outside the scope of this review article, a similar method has also
been used for fluorescent imaging of particles using low-NA ima-
gers, demonstrating 2–3-fold enhancement of the fluorescent sig-
nal that is detected using self-assembled micro-reflectors [104].

Apart from self-assembled nano-lenses, there are other compu-
tational methods that can be used to increase the contrast and SNR
of a lensless image. Specifically, for digital holographic lensless
microscopy, one method is to de-convolve the measured hologram
with the pixel function of the image sensor chip. The pixel function
can be either measured using a near field probe or using a blind-
deconvolution algorithm [47]. In another paper, a Bayesian-based
estimation method has been used to correct for the hardware aber-
rations and numerical errors, which increased the SNR by �8 dB
[105].
3. Air quality monitoring using digital holography on a chip

One of the major sources of air pollution is formed by particu-
late matter (PM), which refers to the suspended particles in air.
PM in general can penetrate human respiration system and even
blood and cause allergies, various diseases and even cancer.
According to the World Health Organization, PM 2.5 (2.5 mm and
smaller particles in air) is a carcinogen [106]. PM also includes
bio-related aerosols such as pollen, bacterial and mold spores that
may cause various diseases.

Currently available devices on the market for monitoring PM
can be classified into two categories: personal and institutional.
The personal ones are usually based on an optical particle counter
technology, where the particles in air are driven through a channel,
while a laser-source shines onto these particles and a photo diode
measures the scattering intensity. The size of the particles flowing
through the channel is then inferred one-by-one from this scatter-
ing measurement. These devices are relatively cheaper (�$1K)
[107]. However, due to its serial read-out scheme, both its through-
put (<3 L/min) and concentration measurement range are limited.
Moreover, this method is inaccurate because the scattering cross
section it measures also depends on the particle shape and mate-
rial (i.e., its refractive index), not just the size of the particle. The
institutional devices for monitoring PM, on the other hand, have
much higher throughput (�15 L/min) and are more accurate. These
institutional platforms use e.g., beta-attenuation-monitoring
(BAM) or tapered element oscillating microbalance (TEOM) based
instruments [108]. For example, BAM accumulates PM of specific
cut-off size on a rotating filter, and measures the attenuation
induced by these captured particles using a beta-particle source
and detector. The TEOM instrument, on the other hand, captures
PM in a filter cartridge, and correlates the PM mass concentration
to the vibrating frequency of a glass tube tip inside the cartridge.
Unfortunately, these devices are usually rather bulky, heavy
(�30 kg), expensive (�$50K), and require specialized personnel
for regular system maintenance, even daily in some cases.

None of the above-discussed PM monitoring devices gives a
direct measure, i.e., a microscopic image of the captured/detected
particles. Imaging-based microscopic analysis of PM can be consid-
ered as a gold-standard method. Moreover, through microscopic
images, a group of aerosols and bio-aerosols can be distinguished
from each other and classified through their spatial and/or spectral
Please cite this article in press as: Y. Wu, A. Ozcan, Methods (2017), http://dx.
characteristics. Currently, for such microscopic analyses of PM, the
sample is taken in the field and the analysis is performed in a lab.
For example, the aerosol sampling process in the field can use var-
ious sampling methods, including impaction, cyclone [109,110],
electrostatic capturing [111], thermophoresis [112], and filtering
[113]. Then the collected and fixed aerosol samples are sent to a
remote laboratory, where a micro-biologist or microscopist exam-
ines the sample and prepares a report on it. As an example, a
widely used method to study pollen is to collect them using a
device called ‘‘Hirst Trap” [114], and after accumulation, the sam-
ple is sent to a lab, where an expert examines it under a micro-
scope to determine the count and type of pollens detected. A
similar process is also used for mold detection in e.g., buildings.
Obviously, these manual lab inspection-based approaches are very
slow, time-consuming and expensive, and there is an urgent need
for mobile and cost-effective technologies that can rapidly and
accurately measure the concentration of such bio-aerosols in the
field, away from a lab. For this ambitious goal lensless holographic
on-chip imaging offers numerous advantages as will be discussed
next.

3.1. c-Air: a hand-held, accurate, cost-effective and high-throughput
PM monitor based on machine learning

Recently, a new platform termed c-Air was introduced for the
measurement of PM that combines a lensless on-chip microscope
with an impaction-based air sampler, offering accurate and high-
throughput air quality monitoring in a field-portable and cost-
effective device (Fig. 5(b)) [23]. The letter ‘‘c” in c-Air stands for
‘‘computational imaging”, while at the same time c-Air is homo-
phonic to ‘‘see-Air”, referring to the fact that it is a computational
imaging-based air quality monitor. c-Air has a throughput of
�13 L/min and weighs �590 g and is wirelessly controlled by a
custom-designed smartphone application. A current prototype of
c-Air costs <$150 in parts, even using extremely low volume of
manufacturing. c-Air is based on an ‘‘impactor-on-chip” geometry
(Fig. 5(a)), where the air is sucked in through the impactor nozzle
by a small pump and the particles inside air are captured on a
sticky transparent coverslip directly facing the air stream. These
captured particles, illuminated by fiber-coupled LEDs, then cast
in-line holograms on the image sensor chip, which are sent wire-
lessly to a remote server for image reconstruction, processing
and particle size/density analysis.

On the server side, a differential analysis of the captured holo-
grams is applied, where the differences between two successive
holograms (one before the air sample is introduced and one right
after it) represent the newly captured aerosols on the cartridge.
Then an iterative algorithm detects the particles, starting from
the larger sizes toward the smaller ones, with the help of a
machine learning based approach (i.e., using support vector
machine, SVM) that is used to exclude potential reconstruction
artifacts and eliminate false positives. The smallest particle that
can be reliably captured by the impactor in c-Air is around 1 mm,
although smaller particles can also be detected with some changes
to our device design. Following this particle detection step, another
machine learning algorithm based on a statistically learned linear
mapping using a second-order polynomial model is utilized to size
the particles, achieving a sizing accuracy of �93% (Fig. 5(c)). This is
then used to generate a size/density histogram of the particles and
other statistics of the PM. The measurement results are also
spatially-stamped using the GPS coordinates of the smartphone
that controls the device.

This portable c-Air device shows high accuracy in monitoring
PM, which is confirmed through a side-by-side comparison against
an Environmental Protection Agency (EPA)-approved BAM PM2.5
device (Fig. 5(d)). The c-Air device is subsequently taken to various
doi.org/10.1016/j.ymeth.2017.08.013
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Fig. 5. c-Air device and air quality measurement results. (a) Schematics of c-Air. (b) CAD drawing of the device, including (A) a rechargeable battery, (B) a vacuum pump (with
a throughput of 13 L/min), (C) LED illumination, (D) an impaction-based air sampler with (E) a sticky coverslip on top of (F) a CMOS image sensor chip. The entire device
weighs �590 g and is wirelessly controlled by a custom-designed smartphone application. (c) Machine learning achieves a particle sizing accuracy of �93%. (d) The c-Air PM
measurement results (right y-axis) against the results of an EPA-approved BAM PM2.5 device (left y-axis), showing a close agreement with each other. The figure is re-
arranged from Ref. [23].
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locations to measure the air quality in indoor and outdoor environ-
ments. One of our measurements showed a significantly increased
PM in Westwood, Los Angeles area during a wild forest fire that
was >40 km away from the measurement site (Sand Fire [115]).
c-Air prototypes were also used to perform a 24-h spatio-
temporal mapping of the PM around the Los Angeles International
Airport (LAX), which showed that the PM concentrations are
strongly modulated by the total number of flights at LAX. This
modulation is even prominent for >7 km away from LAX along
the direction of landing flights [23]. The same trend was also inde-
pendently confirmed by another spatio-temporal air quality map-
ping experiment around LAX using a lower throughput, bulky
and significantly more expensive commercial air quality monitor
[116].

By further employing machine learning based particle identifi-
cation and classification algorithms, this lensless imaging-based
air quality measurement device, c-Air, can be used to automatically
monitor bio-aerosols, such as pollen, bacteria or mold spores, elim-
inating the need to send the specimen to microbiology labs, and
creating a valuable opportunity to rapidly and cost-effectively con-
duct these bio-aerosol measurements in field settings.

4. Outlook

There are several areas where lensless on-chip microscopy can
be further improved. In terms of the basic imaging framework, we
anticipate that the hardware of the system will continuously
improve benefiting from consumer grade image sensor technolo-
gies (especially built for mobile devices, including smartphones)
and computational power of modern computers. Smarter measure-
ment strategies and reconstruction methods will continue to
improve the efficiency of performing PSR, phase-retrieval [49,72],
and color imaging [93] methods, potentially enabling real-time
reconstructions over large sample volumes. Algorithm efficiency
and image reconstruction times are posed to significantly improve
using novel signal processing methods including semi-definite pro-
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gramming (SDP) [117,118], proximal projection optimization
[119], and deep-learning [62]. Migrating the entire computation
that is needed for a lensless on-chip microscope to parallel com-
puting using GPUs can also further decrease the reconstruction
times by e.g., >10–100-fold [13].

In terms of field-portable lensless microscopy, further improve-
ments in the capabilities of the system and its cost-effectiveness
will help its wide scale deployment and use. For the specific case
of air quality monitoring, a more compact and even lighter device
based on the c-Air platform can be widely deployed along high-
ways and residential areas, among others, and carried effortlessly
by bikers, hikers and even toy drones. Working together, these
devices on the ground and in air will constitute a dense and smart
air quality monitoring network, helping us better understand var-
ious sources of contamination as a function of both space and time.
Similar smart networks for monitoring water pollution can also be
constructed by integrating lensless on-chip microscopy and
cytometry tools with cost-effective toy sub-marines.
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