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Abstract 

Phase recovery from intensity-only measurements forms the heart of coherent imaging techniques and 
holography. In this study, we demonstrate that a neural network can learn to perform phase recovery and 
holographic image reconstruction after appropriate training. This deep learning-based approach provides 
an entirely new framework to conduct holographic imaging by rapidly eliminating twin-image and self-
interference-related spatial artifacts. This neural network-based method is fast to compute and 
reconstructs phase and amplitude images of the objects using only one hologram, requiring fewer 
measurements in addition to being computationally faster. We validated this method by reconstructing the 
phase and amplitude images of various samples, including blood and Pap smears and tissue sections. 
These results highlight that challenging problems in imaging science can be overcome through machine 
learning, providing new avenues to design powerful computational imaging systems.  
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Introduction 

Opto-electronic sensor arrays, such as charge-coupled devices (CCDs) or complementary metal-oxide-
semiconductor (CMOS)-based imagers, are only sensitive to the intensity of light; therefore, phase 
information of the objects or the diffracted light waves cannot be directly recorded using such imagers. 
Phase recovery from intensity-only measurements has emerged as an important field to recover this lost 
phase information in the detection process, enabling the reconstruction of the phase and amplitude images 
of specimen using various approaches1–13. In fact, Gabor’s original in-line holography system14, where the 
diffracted light from the object interferes with the background light that is directly transmitted, is an 
important example where phase recovery is required to separate the twin-image and self-interference-
related spatial artifacts from the real image of the sample. In various implementations, to improve the 
performance of the phase recovery and image reconstruction processes, additional intensity information is 
recorded, e.g., by scanning the illumination source aperture15–18, sample-to-sensor distance19–23 (in some 
cases referred to as out-of-focus imaging24), wavelength of illumination25,26, or phase front of the 
reference beam27–30, among other methods31–36. All these methods utilize additional physical constraints 
and intensity measurements to robustly retrieve the missing phase information based on an analytical 
and/or iterative solution that satisfies the wave equation. Some of these phase retrieval techniques have 
enabled discoveries in different fields37–40. 

In this paper, we report a convolutional neural network-based method, trained through deep learning41,42, 
that can perform phase recovery and holographic image reconstruction using a single hologram intensity. 
Deep learning is a machine learning technique that uses a multi-layered artificial neural network for data 
modeling, analysis and decision making and has shown considerable success in areas where large 
amounts of data are available. Deep learning has recently been applied to solving inverse problems in 
imaging science such as in super-resolution43,44, acceleration of the image acquisition speed of computed 
tomography (CT)45, magnetic resonance imaging (MRI)46, photoacoustic tomography47, and 
holography.48,49 

In this work, we used deep learning to rapidly perform phase recovery and reconstruct complex-valued 
images of specimen using a single intensity-only hologram. This process is very fast, requiring 
approximately 3.11 sec on a graphics processing unit (GPU)-based laptop computer to recover the phase 
and amplitude images of a specimen over a field of view of 1 mm2 with approximately 7.3 megapixels in 
each image channel (amplitude and phase). We validated this approach by reconstructing the complex-
valued images of various samples, such as blood and Papanicolaou (Pap) smears as well as thin sections 
of human tissue samples, all of which demonstrated successful elimination of the twin-image and self-
interference-related spatial artifacts that arise due to lost phase information during the hologram detection 
process. In other words, the convolutional neural network, after its training, learned to extract and 
separate the spatial features of the real image from the features of the twin-image and other undesired 
interference terms for both the phase and amplitude channels of the object. Remarkably, this deep 
learning-based phase recovery and holographic image reconstruction approach has been achieved without 
any modeling of light-matter interaction or wave interference. However, this does not imply that the 
presented approach entirely ignores the physics of light-matter interaction and holographic imaging, 
which is in fact statistically inferred through deep learning in the convolutional neural network by using a 
large number of microscopic images as the gold standard in the training phase. This training and 
statistical optimization of the neural network is performed once and can be considered as part of a blind 
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reconstruction framework that performs phase recovery and holographic image reconstruction using a 
single input such as an intensity-only hologram of the object. This framework introduces a myriad of 
opportunities to design fundamentally new coherent imaging systems and can be broadly applicable to 
any phase recovery problem, spanning different parts of the electromagnetic spectrum, including visible 
wavelengths as well as X-rays28,30,50,51. 

 

Results and Discussion 

Our deep neural network approach for phase retrieval and holographic image reconstruction is 
schematically described in Fig. 1 (see also Supplementary Figs. 1-4). In this work, we chose to 
demonstrate the proposed framework using lens-free digital in-line holography of transmissive samples, 
including human tissue sections and blood and Pap smears (see Methods). Due to the dense and 
connected nature of these samples that we imaged, their holographic in-line imaging requires the 
acquisition of multiple holograms for accurate and artifact-free object recovery52. A schematic of our 
experimental setup is shown in Supplementary Fig. 5, where the sample is positioned very close to a 
CMOS sensor chip with a < 1 mm sample-to-sensor distance, which provides an important advantage in 
terms of the sample field of view that can be imaged. However, due to this relatively short sample-to-
sensor distance, the twin-image artifact of the in-line holography, which is a result of the lost phase 
information, is strong and severely obstructs the spatial features of the sample in both the amplitude and 
phase channels, as illustrated in Figs. 1-2.  

The first step in our deep learning-based phase retrieval and holographic image reconstruction framework 
consists of “training” the neural network. This training involves learning the statistical transformation 
between a complex-valued image that results from the back-propagation of a single intensity-only 
hologram of the object and the same object’s image that is reconstructed using a multi-height phase 
retrieval algorithm (treated as the gold standard for the training phase). This algorithm uses 8 hologram 
intensities acquired at different sample-to-sensor distances (see Methods as well as Supplementary 
Information). As illustrated in Figs. 1-3, a simple back-propagation of the object’s hologram, without 
phase retrieval, contains severe twin-image and self-interference-related artifacts, hiding the phase and 
amplitude information of the object. This training/learning process (which is performed only once) results 
in a fixed deep neural network that is used to blindly reconstruct the phase and amplitude images of any 
object, free from twin-image and other undesired interference-related artifacts, using a single hologram 
intensity.  

In our holographic imaging experiments, we used three different types of samples: blood smears, Pap 
smears and breast tissue sections, and separately trained three convolutional neural networks for each 
sample type, although the network architecture was identical in each case, as shown in Fig. 1. To avoid 
over-fitting the neural network, we stopped the training when the deep neural network performance on the 
validation image set (which is different from the training image set and the blind testing image set) began 
to decline. We also accordingly made the network compact and applied pooling approaches53. Following 
this training process, each deep neural network was blindly tested with different objects that were not 
used in the training or validation image sets. Figs. 1, 2 and 3 show the neural network-based blind 
reconstruction results for the Pap smears, breast tissue sections and blood smears. These reconstructed 
phase and amplitude images clearly demonstrate the success of our deep neural network-based 
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holographic image reconstruction approach to blindly infer artifact-free phase and amplitude images of 
the objects, matching the performance of the multi-height phase recovery. Table 1 further compares the 
structural similarity54 (SSIM) of our neural network output images (using a single input hologram, i.e., 
Nholo = 1) against the results obtained with a traditional multi-height phase retrieval algorithm using 
multiple holograms (i.e., Nholo = 2, 3,…,8) acquired at different sample-to-sensor distances. A comparison 
of the SSIM index values reported in Table 1 suggests that the imaging performance of the deep neural 
network using a single hologram is comparable to that of multi-height phase retrieval, closely matching 
the SSIM performance of Nholo = 2 for both Pap smear and breast tissue samples and the SSIM 
performance of Nholo = 3 for blood smear samples. The deep neural network-based reconstruction 
approach reduces the number of holograms required by 2-3 times. In addition to this reduction in the 
number of holograms, the computation time for holographic reconstruction using a neural network is also 
improved by more than 3- and 4-fold compared with those of the multi-height phase retrieval using Nholo = 
2 and Nholo = 3, respectively (see Table 2).  

The phase retrieval performance of our neural network is further demonstrated by imaging red blood cells 
(RBCs) in a whole blood smear. Using the reconstructed phase images of RBCs, the relative phase delay 
with respect to the background (where no cells are present) is calculated to reveal the phase integral per 
RBC (given in units of rad·µm2 - see Supplementary Information for details), which is directly 
proportional to the volume of each cell, V. In Fig. 3(a), we compare the phase integral values of 127 
RBCs in a given region of interest, which were calculated using the phase images of the network input, 
the network output, and the multi-height phase recovery image obtained with Nholo = 8. Due to the twin-
image and other self-interference-related spatial artifacts, the effective cell volume and the phase integral 
values calculated using the network input image demonstrated a highly random behavior. This behavior is 
shown as the scattered blue dots in Fig. 3(a) and is significantly improved by the network output, shown 
as the red dots in the same figure.  

Next, to evaluate the tolerance of the deep neural network and its holographic reconstruction framework 
to axial defocusing, we digitally back-propagated the hologram intensity of a breast tissue section to 
different depths, i.e., defocusing distances within a range of z = [-20 µm, +20 µm] with Δz = 1 µm 
increments. After this defocusing, we then fed each resulting complex-valued image as input into the 
same fixed neural network, which was trained by using in-focus images at z = 0 µm. The amplitude SSIM 
index of each network output was evaluated with respect to the multi-height phase recovery image with 
Nholo = 8 used as the reference (see Fig. 4). Although the deep neural network was trained with in-focus 
images, Fig. 4 demonstrates the ability of the network to blindly reconstruct defocused holographic 
images with a negligible drop in image quality across the imaging system’s depth of field, which is ~4 
µm. 

In a digital in-line hologram, the intensity of the light incident on the sensor array can be written as 

 ( ) ( ) ( ) ( ) ( )2 22
, , , , ,I x y A a x y A a x y A a x y Aa x y∗ ∗= + = + + +                      (1)  

where A is the uniform reference wave that is directly transmitted and a(x,y) is the complex-valued light 
wave that is scattered by the sample. Under plane wave illumination, we can assume that A has zero phase 
at the detection plane, without loss of generality, i.e., A = |A|. For a weakly scattering object, the self-
interference term |a(x,y)|2 can be ignored compared with the other terms in equation (1) because
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( ),a x y A<< . As detailed in our Supplementary Information, none of the samples that we imaged in 

this work satisfies this weakly scattering assumption. More specifically, the root-mean-squared (RMS) 
modulus of the scattered wave was measured to be approximately 28%, 34% and 37% of the reference 
wave RMS modulus for breast tissue, Pap smear and blood smear samples, respectively. This is why, for 
in-line holographic imaging of such strongly scattering and structurally dense samples, self-interference-
related terms, in addition to twin-image terms, form strong image artifacts in both the phase and 
amplitude channels of the sample, making it difficult to apply object support-based constraints for phase 
retrieval. This necessitates additional holographic measurements for traditional phase recovery and 
holographic image reconstruction methods such as the multi-height phase recovery approach that we used 
for comparison in this work. Without increasing the number of holographic measurements, our deep 
neural network-based phase retrieval technique can learn to separate/clean the phase and amplitude 
images of the objects from twin-image and self-interference-related spatial artifacts, as illustrated in Figs. 
1-3. In principle, one could also use off-axis interferometry55–57 to image strongly scattering samples. 
However, this would create a penalty in the resolution or field of view of the reconstructed images due to 
the reduction in the space-bandwidth product of an off-axis imaging system.  

Another important property of this deep neural network-based holographic reconstruction framework is 
that it significantly suppresses out-of-focus interference artifacts, which frequently appear in holographic 
images due to dust particles or other imperfections in various surfaces or optical components of the 
imaging setup. These naturally occurring artifacts are also highlighted in Fig. 2(f,g,n,o) with yellow 
arrows and cleaned in the corresponding network output images of Fig. 2(d,e,l,m). From the perspective 
of our trained neural network, this property to suppress out-of-focus interference artifacts stems from the 
fact that these holographic artifacts fall into the same category as twin-image artifacts due to the spatial 
defocusing operation, helping the trained network reject such artifacts in the reconstruction process. This 
is especially important for coherent imaging systems because various unwanted particles and features 
form holographic fringes on the sensor plane and superimpose on the object’s hologram, degrading the 
perceived image quality after image reconstruction.  

In this study, we used the same neural network architecture depicted in Fig. 1 and Supplementary Figs. 1-
2 for all object types, and based on this design, we separately trained the convolutional neural network for 
different types of objects (e.g., breast tissue vs. Pap smear). The neural network was then fixed after the 
training process to blindly reconstruct the phase and amplitude images of any object of the same type. If a 
different type of sample (e.g., a blood smear image) was used as an input for a specific network trained on 
a different sample type (e.g., Pap smear images), reconstruction artifacts would appear, as exemplified in 
Supplementary Fig. 6. However, this does not pose a limitation because in most imaging experiments, the 
type of the sample is known, although its microscopic features are unknown and must be revealed with a 
microscope. This is the case for biomedical imaging and pathology since the samples are prepared (e.g., 
stained and fixed) with the correct procedures, tailored for the type of the sample. Therefore, the use of an 
appropriately trained neural network for a given type of sample can be considered well aligned with 
traditional uses of digital microscopy tools.    

We also created and tested a universal neural network that can reconstruct different types of objects after 
its training, based on the same architecture used in our earlier networks. To handle different object types 
using a single neural network, we increased the number of feature maps in each convolutional layer from 
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16 to 32 (see Supplementary Information), which also increased the complexity of the network, leading to 
increased training times. However, the reconstruction runtime (after the network was fixed) increased 
marginally from approximately 6.45 sec to 7.85 sec for a field of view of 1 mm2 (see Table 2). Table 1 
also compares the SSIM index values achieved using this universal network, which performed similarly 
to the individual object-type-specific networks. A further comparison between the holographic image 
reconstructions achieved by this universal network and the object-type-specific networks is also provided 
in Figure 5, confirming the same conclusion as in Table 1.  

 

Conclusions 

In this paper, we demonstrated that a convolutional neural network can perform phase recovery and 
holographic image reconstruction after training. This deep learning-based technique provides a new 
framework in holographic image reconstruction by rapidly eliminating twin-image and self-interference 
related artifacts using only one hologram intensity. Compared to existing holographic phase recovery 
approaches, this neural network framework is significantly faster to compute and reconstructs improved 
phase and amplitude images of the objects with less number of measurements.  

 

Materials and Methods 

Multi-height phase recovery  

To generate the ground truth amplitude and phase images used to train the neural network, phase retrieval 
was achieved by using a multi-height phase recovery method19,21,22. For this purpose, the image sensor is 
shifted in the z direction away from the sample by ~15 μm increments 6 times and ~90 μm increment 
once, resulting in 8 different relative z positions of approximately 0 μm, 15 μm, 30 μm, 45 μm, 60 μm, 75 
μm, 90 μm and 180 μm. We refer to these positions as the 1st, 2nd, …, 8th heights, respectively. The 
holograms at the 1st, 7th and 8th heights are used to initially calculate the optical phase at the 7th height, 
using the transport of intensity equation (TIE) through an elliptic equation solver52 implemented in 
MATLAB (Release R2016b, The MathWorks, Inc., Natick, Massachusetts). Combined with the square 
root of the hologram intensity acquired at the 7th height, the resulting complex field is used as an initial 
guess for the subsequent iterations of the multi-height phase recovery. This initial guess is digitally 
refocused to the 8th height, where the amplitude of the guess is averaged with the square root of the 
hologram intensity acquired at the 8th height, and the phase information is kept unchanged. This updating 
procedure is repeated at the 7th, 6th, …, 1st heights, which defines one iteration of the algorithm. Usually, 
10-20 iterations give satisfactory reconstruction results. However, to ensure the optimality of the phase 
retrieval for the training of the network, the algorithm is iterated 50 times, after which the complex field is 
back-propagated to the sample plane, yielding the amplitude and phase or real and imaginary images of 
the sample. These resulting complex-valued images are used to train the network and provide comparison 
images for the blind testing of the network output. 

Generation of training data 

To generate the training data for the deep neural network, each resulting complex-valued object image 
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from the multi-height phase recovery algorithm, as well as the corresponding single hologram back-
propagation image (which includes the twin-image and self-interference-related spatial artifacts), is 
divided into 5×5 sub-tiles with an overlap of 400 pixels in each dimension. For each sample type, this 
results in a dataset of 150 image pairs (i.e., complex-valued input images for the network and the 
corresponding multi-height reconstruction images), which are divided into 100 image pairs for training, 
25 image pairs for validation, and 25 image pairs for blind testing. The average computation time for the 
training of each sample-type-specific deep neural network (which is done only once) was approximately 
14.5 hours, whereas it increased to approximately 22 hours for the universal deep neural network (refer to 
Supplementary Information for additional details). As an example, the progression of the universal 
network training as a function of the number of epochs is shown in Supplementary Fig. 4.  
 

Speeding up holographic image reconstruction using GPU programming 

As further detailed in the Supplementary Information, the pixel super-resolution and multi-height phase 
retrieval algorithms are implemented in C/C++ and accelerated using the CUDA Application Program 
Interface (API). These algorithms are run on a laptop computer using a single NVIDIA (Santa Clara, 
California) GTX 1080 graphics card. The basic image operations are implemented using customized 
kernel functions and are tuned to optimize the GPU memory access based on the access patterns of 
individual operations. GPU-accelerated libraries, such as cuFFT58 and Thrust59, are utilized for 
development productivity and optimized performance. The TIE initial guess is generated using a 
MATLAB-based implementation, which is interfaced using the MATLAB C++ engine API, allowing the 
overall algorithm to be maintained within a single executable after compilation.  

Sample preparation 

Breast tissue slide: Formalin-fixed paraffin-embedded (FFPE) breast tissue is sectioned into 2 μm slices 
and stained using hematoxylin and eosin (H&E). The de-identified and existing slides are obtained from 
the Translational Pathology Core Laboratory at UCLA.  

Pap smear:  De-identified and existing Papanicolaou smear slides were obtained from the UCLA 
Department of Pathology. 

Blood smear:  De-identified blood smear slides are purchased from Carolina Biological (Item # 313158). 
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Figures and Tables  

 

Fig. 1.  Following its training phase, the deep neural network blindly outputs artifact-free phase and 
amplitude images of the object using only one hologram intensity. This deep neural network is composed 
of convolutional layers, residual blocks and upsampling blocks (see Supplementary Information for 
additional details) and rapidly processes a complex-valued input image in a parallel, multi-scale manner.  
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Fig. 2. Comparison of the holographic reconstruction results for different types of samples: (a-h) Pap 
smear, (i-p) breast tissue section. a, i, zoomed-in regions of interest from the acquired holograms. b, c, j, 
k amplitude and phase images resulting from free-space back-propagation of a single hologram intensity, 
shown in a and i, respectively. These images are contaminated with twin-image and self-interference-
related spatial artifacts due to the missing phase information in the hologram detection process. d, e, l, m, 
corresponding amplitude and phase images of the same samples obtained by the deep neural network, 
demonstrating the blind recovery of the complex object image without twin-image and self-interference 
artifacts using a single hologram. f, g, n, o, amplitude and phase images of the same samples 
reconstructed using multi-height phase retrieval with 8 holograms acquired at different sample-to-sensor 
distances. h, p, corresponding bright-field microscopy images of the same samples, shown for 
comparison. The yellow arrows point to artifacts in f, g, n, o (due to out-of-focus dust particles or other 
unwanted objects) that are significantly suppressed by the network reconstruction, as shown in d, e, l, m.         
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Fig. 3. Red blood cell volume estimation using our deep neural network-based phase retrieval. The deep 
neural network output (e, f), given the input (c, d) obtained from a single hologram intensity (b), shows a 
good match with the multi-height phase recovery-based cell volume estimation results (a), calculated 
using Nholo = 8 (g, h). Similar to the yellow arrows shown in Fig. 2(f, g, n, o), the multi-height phase 
recovery results exhibit an out-of-focus fringe artifact at the center of the field-of-view in (g, h). Refer to 
Supplementary Information for the calculation of the effective refractive volume of cells. 
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Fig. 4. Estimation of the depth defocusing tolerance of the deep neural network. a, SSIM index for the 
neural network output images when the input image is defocused (i.e., deviates from the optimal focus 
used in the training of the network). The SSIM index compares the network output images in d, f, h, with 
the image obtained by using the multi-height phase recovery algorithm with Nholo = 8, shown in b.  
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Fig. 5. Comparison of the holographic image reconstruction results for the sample-type-specific and 
universal deep networks for different types of samples. The deep neural network used a single hologram 
intensity as input, whereas Nholo = 8 was used in the column on the right. (a-f) Blood smear. (g-l) 
Papanicolaou smear. (m-r) Breast tissue section.  
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Reconstruction  
method 
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network 
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Multi-
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(Nholo=2) 

Multi-
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phase-

recovery  
 
 

(Nholo=3) 

Multi-
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phase-

recovery  
 
 

(Nholo=4) 

Multi-
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phase-

recovery  
 
 

(Nholo=5) 

Multi-
height 
phase-

recovery  
 
 

(Nholo=6) 

Multi-
height 
phase-

recovery 
 
 

(Nholo=7) 

Multi-
height 
phase-

recovery 
 
 

(Nholo=8) 

Pap smear          
real part 

0.726 0.895 0.893 0.875 0.922 0.954 0.979 0.985 0.986 1 

Pap smear          
imaginary part 

0.431 0.870 0.870 0.840 0.900 0.948 0.979 0.986 0.987 1 

Blood smear        
real part 

0.701 0.942 0.951 0.890 0.942 0.962 0.970 0.975 0.977 1 

Blood smear 
imaginary part 

0.048 0.930 0.925 0.46 0.849 0.907 0.935 0.938 0.955 1 

Breast tissue        
real part 

0.826 0.916 0.921 0.931 0.955 0.975 0.981 0.983 0.984 1 

Breast tissue 
imaginary part 

0.428 0.912 0.916 0.911 0.943 0.970 0.979 0.981 0.982 1 

 

Table 1. Comparison of the SSIM index values between the deep neural network output images obtained 
with a single hologram intensity (for both the sample-type-specific and universal networks) and the multi-
height phase retrieval results for different numbers of input holograms (Nholo) corresponding to Pap smear 
samples, breast tissue histopathology slides and blood smear samples. In each case, the SSIM index is 
separately calculated for the real and imaginary parts of the resulting complex-valued image with respect 
to the multi-height phase recovery result for Nholo=8, and thus, by definition, the last column on the right 
has an SSIM index of 1. Due to the presence of twin-image and self-interference artifacts, the first column 
formed by the input images has the worst performance. 
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(N
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Multi-
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phase-

recovery   
 

(N
holo

=8) 
Runtime 

(sec) 6.45 7.85 23.20 28.32 32.11 35.89 38.28 43.13 47.43

 

Table 2. Comparison of the holographic image reconstruction runtime for a field of view of ~1 mm2 for 
different phase recovery approaches. All the reconstructions were performed on a laptop using a single 
GPU (see Supplementary Information for details). Of the 6.45 sec and 7.85 sec required for image 
reconstruction from a single hologram intensity using sample-type-specific and universal neural networks, 
respectively, the deep neural network processing time is 3.11 sec for the sample-type-specific network 
and 4.51 sec for the universal network, while the rest of the time (i.e., 3.34 sec for the preprocessing 
stages) is used for other operations such as pixel super-resolution, auto-focusing and free space back-
propagation. 
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Network architecture 

Our deep neural network architecture is detailed in Fig. 1 and Supplementary Figs. 1-2. The real 

and imaginary parts of the back-propagated hologram intensity are used as two input image 

channels to the network, each with a size of M×N pixels (e.g., M = 1392, N = 1392). Although 

not considered here, in an alternative implementation a different network design could possibly 

use the raw hologram intensity as input, without a wave back-propagation step. These two 

channels (real and imaginary parts) of the network are then used simultaneously as input to 4 

convolutional layers. The output of each convolutional layer is 16 channels (feature maps), each 

with a size of M×N pixels, which was empirically determined to balance the deep network 

size/compactness and performance. The value of x,y-th pixel in the j-th feature map in the i-th 

convolutional layer is given by 
,

,

x y

i jv :
1
 

      
11

, , ,

, , , 1, ,

0 0

QP
x y p q x p y q

i j i j r i r i j

r p q

v w v b
−−

+ +
−

= =

= +∑∑∑                                               (s1) 

where ,i jb  is a common bias term for the j-th feature map, r indicates the set of the feature maps 

in the i-1 layer (which is 2, for the first convolutional layer), 
,

, ,

p q

i j rw  is the value of the convolution 

kernel at the p,q-th position, P and Q define the size of the convolutional kernels, which is 3×3 

throughout the network in our implementation.  

 For object type-based deep networks, the output of these 4 convolutional layers is then 

downsampled by ×1, ×2, ×4, ×8, creating 4 different data flow paths, with 16 channels and 

spatial dimensions of M×N, M/2×N/2, M/4×N/4 and M/8×N/8, respectively. This multi-scale data 

processing scheme was created to allow the network to learn how to suppress the twin-image and 

self-interference artifacts, created by objects with different feature sizes. The output of these 

downsampling operators is followed by 4 residual blocks
2
, each composed of 2 convolutional 

layers and 2 activation functions, which we chose to implement as rectified linear units (ReLU), 

i.e., ReLU( ) max(0, )x x= . Residual blocks create a shortcut between the block’s input and 

output, which allows a clear path for information flow between layers
3
. This has been 

demonstrated to speed up the convergence of the training phase of the deep neural network. 

While some of the previously reported residual block architectures contain batch normalization 

layers, we observed that the addition of such layers into our network reduces the inference 

performance and the quality of the phase retrieval results, and therefore we did not use batch 

normalization in our architecture. Following the 4 residual blocks, data at each scale are 

upsampled to match the original data dimensions. Each upsampling block
4
 (i.e., U/S block in 

Supplementary Fig. 1) contains a convolutional layer that takes 16 channels, each with M/L×N/L 

pixels as input, and outputs 64 channels each with M/L×N/L pixels (L=2, 4, 8). This is followed 

by a ReLU operation and an upsampling layer, which is schematically detailed in Supplementary 

Fig. 2. This layer learns to upsample a 64 channel input (each with M/L×N/L pixels) to a 16 

channel output (each with 2M/L×2N/L pixels). This upsampling process is being performed once, 

twice, or three times, for the ×2, ×4, ×8 spatially downsampled network inputs, respectively (see 

Supplementary Fig. 1). The output of each one of these 4 different dataflow paths (with 16 

channels, M×N pixels, following the upsampling stage) is concatenated to a 64 channels input, 

which results in 2 channels: one for the real part and one for the imaginary part of the object 

image, each having M×N pixels. For the universal deep network, we kept the same architecture; 
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however, we increased the number of channels in the output of each convolutional layer by two-

fold, i.e., from 16 to 32 in the residual blocks.  

 To train the network, we minimized the average of the mean-squared-errors of the real 

and imaginary parts of the network output with respect to the real and imaginary parts of the 

object’s ground truth images, obtained using multi-height phase retrieval with 8 holograms 

recorded at different sample-to-sensor distances (also see the Methods section of the main text). 

This loss function over a mini-batch of K input patches (images) is calculated as: 

2 2

Re, , , Re, , , Im, , , Im, , ,

1 1 1 1 1

1 1 1
( )

2

K M N M N
GT GT

m n k m n k m n k m n k

k m n m n

Loss Y Y Y Y
K M N M N

Θ Θ

= = = = =

 
Θ = − + − 

× × 
∑ ∑∑ ∑∑     (s2) 

where k is the k-th image patch, Re, , ,m n kYΘ
, Im, , ,m n kYΘ

 denote the m,n-th pixel of real and imaginary 

network outputs, respectively, and Re, , ,

GT

m n kY , Im, , ,

GT

m n kY denote the m,n-th pixel of real and imaginary 

parts of the training (i.e., ground truth) labels, respectively. The network’s parameter space (e.g., 

kernels, biases, weights) is defined by Θ  and its output is given by 

Re Im Re, Im,[ , ] ( , ; )input inputY Y F X XΘ Θ = Θ  , where F defines the deep neural network’s operator on the 

back propagated complex field generated from a single hologram intensity, divided into real and 

imaginary channels, Re, Im,,input inputX X , respectively. Following the estimation of the loss function, 

the resulting error in the network output is back-propagated through the network and the 

Adaptive Moment Estimation
5
 (ADAM) based optimization is used to tune the network’s 

parameter space, Θ , with a learning rate of 10
-4

. For the sample type specific network training, 

we used a batch size of K=2 and an image size of 1392×1392 pixels. For the universal deep 

network, we divided the image dataset to 256×256-pixel patches (with an overlap of 20% 

between the patches) and a mini-batch size of K=30 (see Supplementary Fig. 3). For both the 

sample type specific and universal networks, the images that we used to test the network had a 

size of 1392×1392 pixels.  All the convolutional kernel entries are initialized using a truncated 

normal distribution. All the network bias terms, ,i jb , are initialized to 0. In case the size of the 

input image is not divisible by 8, zero padding is performed on it such that it becomes divisible 

by 8.  

As an example, the progression of the universal deep network training is shown 

Supplementary Fig. 4 by plotting the training and validation dataset errors as a function of the 

number of training epochs (i.e., the number of passes on the entire dataset with backpropagation 

through the network).  

 

Network implementation details 
For our programming, we used Python version 3.5.2, and the deep neural network was 

implemented using TensorFlow framework version 1.1.0 (Google). We used a laptop computer 

with Core i7-6700K CPU @ 4GHz (Intel) and 64GB of RAM, running a Windows 10 operating 

system (Microsoft). The network training was performed using GeForce GTX 1080 (Nvidia) 

Dual Graphical Processing Units (GPUs). The testing of the network was performed on a single 

GPU to provide a fair comparison against multi-height phase retrieval CUDA implementation, as 

summarized in Table 2 (main text). 

 

 



4 

 

Optical set-up 

Our experimental set-up (Supplementary Fig. 5) includes a laser source (SC400, Fianium Ltd., 

Southampton, UK) filtered by an acousto-optic tunable filter and coupled to a single mode 

optical fiber to provide partially coherent illumination with a spectral bandwidth of ~2.5 nm. A 

CMOS image sensor with 1.12 µm pixel size and 16.4 Megapixel (IMX081, Sony Corp., Japan) 

is used to capture the holographic images. The distance from the optical fiber tip to the sample is 

between 7 and 15 cm, such that the light that is incident on the sample can be considered a quasi-

plane wave. The distance from the sample to the image sensor plane is approximately 300-700 

µm. This unit magnification geometry results in a large field of view that is equal to the image 

sensor’s active area. The image sensor was mounted on a 3D positioning stage (NanoMax 606, 

Thorlabs Inc., New Jersey, US), which moved it in x and y directions in sub-pixel-size steps to 

implement pixel super-resolution (PSR). The image sensor was also shifted in the z direction 

with step sizes of a few tens of microns to perform multi-height phase recovery to generate 

training data for the neural network. A custom-written LabVIEW program implemented on a 

desktop computer was used to control and automate all of these components as part of the 

imaging set-up. 

 

Pixel super resolution (PSR)                                                  

In order to mitigate the spatial undersampling caused by the relatively large pixel pitch of the 

image sensor chip (~1.12 µm), multiple subpixel-shifted holograms were used to synthesize a 

higher resolution (i.e., pixel super-resolved) hologram. For this, the image sensor was 

mechanically shifted by a 6-by-6 rectangular grid pattern in the x-y plane, with increments of 

0.37 µm, corresponding to approximately 1/3 of the image sensor’s pixel size. A 6-by-6 grid 

ensured that one color channel of the Bayer pattern could cover its entire period. In an alternative 

design with a monochrome image sensor (instead of an RGB sensor), only a 3-by-3 grid would 

be needed to achieve the same PSR factor. For this PSR computation, an efficient non-iterative 

fusion algorithm was applied to combine these sub-pixel shifted images into one higher-

resolution hologram, which preserves the optimality of the solution in the maximum likelihood 

sense
6
. The selection of which color channel (R, G or B) of the Bayer pattern to use for 

holographic imaging is based on pixel sensitivity to the illumination wavelength that is used. For 

example, at ~530 nm illumination, the two green channels of the Bayer pattern were used, and at 

~630 nm, the red channel was used. 

 

Calculation of red blood cell (RBC) phase integral and effective refractive volume                        

The relative optical phase delay due to a cell, with respect to the background, can be 

approximated as: 

 ( ) ( ) ( )2 , ,
,

d x y n x y
x y

π
ϕ

λ
⋅∆

=                                                 (s3) 

where d(x,y) is the thickness of the sample (e.g., an RBC) as a function of the lateral position, 

∆n(x,y) = n(x,y) – n0 is the refractive index difference between the sample (n(x,y)) and the 

background medium (n0), λ is the illumination wavelength in air. Based on these, we define the 

phase integral for a given RBC image as:  
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which calculates the relative phase with respect to the background that is integrated over the area 

of each RBC (defined by Si), which results in a unit of rad·µm
2
. Let ∆n represent the average 

refractive index difference within each cell (with respect to n0), we can then write: 

 ( )
2 2

, d

i

i i

S

n n
p d x y s V

π π
λ λ
⋅ ∆ ⋅ ∆

= ⋅ = ⋅∫                                    (s5) 

where Vi represents the volume of the i-th cell. Because the average refractive index of a fixed 

and stained RBC (as one would have in a blood smear sample) is hard to determine or estimate, 

we instead define effective refractive volume of an RBC as:  

 
2

i
i i

p
V n V

λ
π

= ∆ ⋅ =ɶ                                                     (s6) 

which also has the unit of volume (e.g., femtoliter, fL).  

Structural similarity (SSIM) index calculation 

The structural similarity index between two images I1 and I2 can be calculated as
7
: 

( )( )
( )( )

1 2 1 1,2 2

1 2 2 2 2 2

1 2 1 1 2 2

2 2
SSIM( , )

c c
I I

c c

µ µ σ

µ µ σ σ

+ +
=

+ + + +
                                         (s7)   

where µ1 is the average of I1, µ2 is the average of I2, 
2

1σ  is the variance of I1, 
2

2σ  is the variance 

of I2, 1,2σ  is the cross-covariance of I1, and I2. The stabilization constants (c1, c2) prevent 

division by a small denominator and can be selected as 2

1 1( )c K L= and 2

2 2( )c K L= , where L is 

the dynamic range of the image and 1 2,K K  are both much smaller than 1. SSIM index between 

two images ranges between 0 and 1 (the latter for identical images).  

Evaluation of scattering strength of the samples 

To evaluate the validity of the weakly scattering condition, i.e., ( ),a x y A≪  for the samples that 

we imaged (see the Discussion section of the main text), we took a region of interest for each of 

the samples that is reconstructed using the multi-height phase recovery, based on 8 hologram 

heights. After the phase recovery step, we have: 

                                                                ( , )u A a x y= +                                                           (s8)      
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where A can be estimated by calculating the average value of a background region where no 

sample is present. After A is estimated, we calculate a normalized complex image uɶ ,  

( , )
1

u a x y
u

A A
= = +ɶ                                                        (s9)  

Next, we define R as the ratio between the root-mean-squared (RMS, or quadratic mean) 

modulus of the scattered wave |a(x,y)| divided by the reference wave modulus |A|, to obtain: 

1/2
2

1/2
2

( , )
1

a x y
R u

A
= = −ɶ                                          (s10) 

where i  denotes 2D spatial averaging operation. This ratio, R, is used to evaluate the validity 

of the weakly scattering condition for our samples, and is found to be 0.28, 0.34, and 0.37 for the 

breast tissue, Pap smear and blood smear samples that we imaged, respectively (see the 

Discussion section).  

Calculation of the sample-to-sensor distance 

The relative separation between successive image sensor heights (or hologram planes) needs to 

be estimated to successfully apply the TIE and multi-height phase recovery algorithms, and the 

absolute z2 distance (i.e., the sample-to-sensor distance, see Supplementary Fig. 5) is needed for 

the final back-propagation of the recovered complex wave onto the sample plane. Estimating the 

relative z-separation is done by using an autofocusing algorithm based on an axial magnitude 

differential metric, i.e.,  

 ( )ROI

,

arg min , ;focus
z x y

z U x y z
z

 ∂
=  ∂ 

∑                                                 (s11)   

where ( )ROI , ;U x y z  is the propagated complex optical wavefront at a distance of z, and cropped 

to a certain region of interest (ROI).  

For computational efficiency, first a coarse scan is done between 100 µm and 800 µm with a step 

size of 10 µm. Then, around the minimum that is found by this coarse scan, a golden section 

search algorithm
8
 is applied to locate the minimum with a final precision of 0.01 µm. The 

absolute z2 is refined after the convergence of the multi-height phase recovery algorithm by 

refocusing the phase-recovered hologram near the previously found focus point.   
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Supplementary Figures 

 

Supplementary Fig. 1. Architecture of our deep neural network and its training. The neural network is 

composed of convolutional layers (i.e., conv layers), upsampling blocks (U/S blocks) and nonlinear 

activation functions (ReLU). Also see Supplementary Fig. 2. 
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Supplementary Fig. 2. Detailed schematics of the upsampling layer of our deep neural network. 
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Supplementary Fig. 3. Training of the universal deep neural network that can reconstruct different types 

of objects. 
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Supplementary Fig. 4. Training and validation dataset errors as a function of the number of epochs.  
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Supplementary Fig. 5. Holographic imaging setup. a, schematics of the optical set-up. b, a photograph 

of the same setup. 
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Supplementary Fig. 6. The result of feeding a blood smear hologram into a sample type specific 

network, which was trained with only Pap smear image data. (a) Amplitude of the input blood smear 

image after free space back-propagation. (b) Pap smear trained network output image (amplitude) in 

response to (a). (c) Image of the same sample obtained by using the multi-height phase recovery 

algorithm with Nholo = 8.  
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