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The microbiome presents great opportunities for understanding and improving the world around us and
elucidating the interactions that compose it. The microbiome also poses tremendous challenges for mapping and manipulating
the entangled networks of interactions among myriad diverse organisms. Here, we describe the opportunities, technical needs,
and potential approaches to address these challenges, based on recent and upcoming advances in measurement and control
at the nanoscale and beyond. These technical needs will provide the basis for advancing the largely descriptive studies of the
microbiome to the theoretical and mechanistic understandings that will underpin the discipline of microbiome engineering.
We anticipate that the new tools and methods developed will also be more broadly useful in environmental monitoring,
medicine, forensics, and other areas.
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The proposed Unified Microbiome Initiative seeks to develop
and to apply new tools that enable understanding the
microbiomes (and nanobiomes) of humans and other animals,
plants, the earth, the ocean, and the atmosphere.l_3 These
coexisting populations are key components and sustainers of life
as we know it and of our planet. Sometimes these populations are
symbiotic and supportive; at other times, they are dangerous and
destructive. Incredibly, we know little of their compositions,
roles, interactions, and dynamics. Here, we motivate this project
with the major issues and a number of tantalizing sketches of
what we know, what we do not know, and what we would like
to know.

Many different approaches will be required to read out the
microbiome and its functions at different levels, as well as to
synthesize these data into models that can improve our predictive
understanding. In particular, we must determine the correct
scales to read out microbial systems in order to understand
processes from the intracellular to the planetary. This challenge
is formidable because of the sheer diversity and number of
microbes and their functions.

For example, microbial cells have been estimated to outnumber
human cells in each of us by as much as ten to one and to con-
stitute ca. 1 kg in typical adults.” The microbiome varies greatly
among different body sites (for example, our stool and our skin
harbor almost entirely distinct microbial communities),” and
variation is also high within each body site from person to
person.’ Indeed, the differences between a person’s gut and oral
microbes are comparable to the differences between microbes in
a soil and an ocean community.” In addition to the frequently
studied bacteria and archaea, fungi, other microbial eukaryotes,
and viruses play large and underappreciated roles. Most of the
genes in the species that are known are unannotated, and the vast
majority of species have not yet been cultured. Consequently,
we lack even the parts list, let alone systems-level understand-
ing of how the parts interact with one another to support
physiological function. Similar considerations apply to the com-
plex microbial communities that underpin function in the oceans,
freshwater systems, the soil (including the rhizosphere of symbiotic
root microbes that supports plant life), sediments, and perhaps
even the air, where microbial transport is well-documented but
microbial function less so.

Earth Microbiomes. Microbial communities play critical
roles in many distinct processes across our planet. For example,
microbes are essential in all nutrient cycles, including global
carbon® and nitrogen” cycles, and provide key ecosystem services
in both marine'’ and terrestrial'' environments. Diversity in
some ecosystems is tremendously high, with estimates of the soil
microbial census exceeding 40,000 species per gram.'” In the soil,
in particular, microbes are essential for supporting plant life
and play key roles in mediating nutrient uptake and entry into
the food chain.'">'* Therefore, substantial opportunities exist
for biotechnological applications that alter microbes in order
to improve crop productivity and environmental tolerance,
especially to drought and salt. In addition to their role in plant
growth, soil microbes, notably Streptomyces, provide a major
source of antibiotics, and new antibiotics continue to be isolated
from this source.'” However, despite all this complexity, some
relatively simple drivers, notably pH,'*'” explain much of the
variation. Spatial variation in the soil microbiome is immense,
and even small areas such as the Hoosfield experimental strip
at Rothamstead'® or within a single biome such as the Arctic,” or

even New York’s Central Park,”® can harbor a large fraction of
the microbial community diversity. However, other factors such
as plant cover tend to have small, although with sufficient sample
size, detectable effects.”’ There is a substantial need to
understand soil microbes on their own scale, for example,
individual grains of soil, which are often dominated by single
species,”” and understanding how this heterogeneity scales to
overall soil properties remains an important challenge.

The differences between a person’s
gut and oral microbes are comparable
to the differences between microbes
in a soil and an ocean community.

Earth is a microbial planet, with micro-organisms dominating
virtually every ecosystem, ranging from soil to oceans, from the
deep subsurface to the atmosphere, including extreme environ-
ments, such as hydrothermal vents. Although microbes are abun-
dant and ubiquitous, we currently lack fundamental under-
standing of many of the key roles played by microbes in Nature,
including cycling of carbon and other nutrients. It has been
estimated that only a small fraction («1%) of Earth’s microbes
have ever been isolated and studied in pure culture. This
limitation has resulted in expansive growth of non-culture-
dependent molecular approaches to determine not only the
identities of members of microbial communities in a variety of
habitats but also their functional roles. Recent achievements
include development of a range of molecular “omics” approaches.
These include high-throughput sequencing of 16S rRNA genes
as a conserved phylogenetic marker that is the current standard
used to assign identities to largely unknown members
of microbial communities.”> In addition, sequencing of a
microbiome’s total DNA, or metagenomics, has been developed
to determine both the phylogenetic and functional gene
repertoire of microbial communities in environmental samples.”*
Metagenomics has already been successfully demonstrated for
environments with relatively low species diversity and, as
sequencing technologies continue to improve the depth of
sequencing, is now becoming sufficient to apply metagenomics
to highly complex microbial communities, such as soil. >
Recently, it has been possible to achieve binning of complete
to near-complete composite genomes from a range of environ-
mental samples, including soil, from metagenome sequence data,
many of which represent previously undescribed species.”®*’
One limitation with metagenomics is that the DNA sequence
data do not provide information about what genes are expressed,
and we understand that only a portion of genes are expressed at
any given time, depending on the environmental conditions.
Other omics technologies can compensate for this limitation,
such as sequencing of RNA (metatranscriptomics) or identi-
fication of proteins (metaproteomics). Finally, characterization
of metabolites (metabolomics) represents the ultimate signature
of processes occurring in any particular environment.

Understanding the direction of some of these inputs is of
critical importance. For example, the permafrost is one of Earth’s
largest carbon reservoirs, estimated at roughly 1600 Pg, about
the same as the amount in the atmosphere and in vegetation.”®
Climate change is resulting in higher temperatures in the Arctic
and increased fire frequency that is causing permafrost thaw,
increasing the availability of carbon stored in permafrost to
microbes that can degrade it, resulting in the release of green-
house gases (CO, and methane).””?° Understanding the relative
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sizes of these inputs, and therefore whether lightning (which
leads to fires) is a positive or negative factor in the dynamics of
greenhouse gas emissions, requires a detailed knowledge of the
activities of the microbes in permafrost.”'

Ocean Microbiomes and Nanobiomes. Life in the oceans
is supported by a community of extremely small organisms that
can be called a “nanobiome.” These nanoplankton particles,
many of which measure less than 0.001X the volume of a white
blood cell, harvest solar and chemical energy and channel
essential elements into the food chain. A deep network of larger
life forms (humans included) depends on these tiny microbes for
its energy and chemical building blocks.

The importance of the oceanic nanobiome has only recently
begun to be fully appreciated. Two dominant forms,
Synechococcus and Prochlorococcus, were not discovered until
the 1980s and 1990s.>~* Prochloroccus has now been dem-
onstrated to be so abundant that it may account for as much as
10% of the world’s living organic carbon. The organism divides
on a diel cycle while maintaining constant numbers, suggesting
that about 5% of the world’s biomass flows through this species
on a daily basis.*>~*” Metagenomic studies show that many other
less abundant life forms must exist but elude direct observation
because they can neither be isolated nor grown in culture.

The small sizes of these organisms (and their genomes)
indicate that they are highly specialized and optimized.
Metagenome data indicate a large metabolic heterogeneity
within the nanobiome. Rather than combining all life functions
into a single organism, the nanobiome works as a network of
specialists that can only exist as a community, therein explaining
their resistance to being cultured. The detailed composition of
the network is the result of interactions between the organisms
themselves and the local physical and chemical environment.
There is thus far little insight into how these networks are formed
and how they maintain steady-state conditions in the turbulent
natural ocean environment.

Rather than combining all life functions
into a single organism, the nanobiome
works as a network of specialists that
can only exist as a community

The serendipitous discovery of Prochlorococcus happened by
applying flow cytometry (developed as a medical technique
for counting blood cells) to seawater.”* With these medical
instruments, the faint signals from nanoplankton can only be
seen with great difficulty against noisy backgrounds. Currently,
a small team is adapting flow cytometric technology to improve
the capabilities for analyzing individual nanoplankton particles.
The latest generation of flow cytometers enables researchers to
count and to make quantitative observations of most of the small
life forms (including some viruses) that comprise the nano-
biome. To our knowledge, there are only two well-equipped
mobile flow cytometry laboratories that are regularly taken to sea
for real-time observations of the nanobiome. The laboratories
include equipment for (meta)genome analysis and equipment to
correlate the observations with the local physical parameters and
(nutrient) chemistry in the ocean. Ultimately, integration of
these measurements will be essential for understanding the
complexity of the oceanic microbiome.

The ocean is tremendously undersampled. Ship time is costly
and limited. Ultimately, inexpensive, automated, mobile biome

observatories will require methods that integrate microbiome
and nanobiome measurements, with (meta-) genomics analyses,
with local geophysical and geochemical parameters.”® " To
appreciate how the individual components of the ocean biome
are related and work together, a more complete picture must be
established.

The marine environment consists of stratified zones, each
with a unique, characteristic biome.** The sunlit waters near the
surface are mixed by wind action. Deeper waters may be mixed
only occasionally by passing storms. The dark deepest layers are
stabilized by temperature/salinity density gradients. Organic
material from the photosynthetically active surface descends
into the deep zone, where it decomposes into nutrients that are
mixed with compounds that are released by volcanic and seismic
action. These nutrients diffuse upward to replenish the depleted
surface waters. The biome is stratified accordingly, sometimes
with sudden transitions on small scales. Photo-autotrophs dom-
inate near the surface. Chemo-heterotrophs populate the deep.
The makeup of the microbial assemblages is dictated by the local
nutrient and oxygen concentrations. The spatiotemporal inter-
play of these systems is highly relevant to such issues as the
carbon budget of the planet but remains little understood.

Atmospheric Microbiome. Microbes make up a sizable
fraction of atmospheric aerosols, as they are suspended from soil,
water, and plant surfaces."* > The number of studies detailing
microbial communities in terrestrial and ocean sources vastly
exceeds those describing airborne microbes.”” Understanding
the sources contributing to the atmospheric nanobiome is an area
of major recent growth, with recent studies demonstrating that
atmospheric microbes can be ubiquitous, vary spatially, and
remain suspended for days to weeks.’® Average measured
atmospheric concentrations of microbes have been reported to
be 10>—~10* cells m ™ over land with lower levels over the ocean
(~10? cells m™®).>>~>” However, large uncertainties exist in the
atmospheric concentrations due to the limited number of
measurements, low abundance, contamination issues, and the
fact that most airborne bacteria cannot be cultured.**

The atmosphere serves as an effective conduit, transporting
both free and particle-associated microbial life attached to dust
and free microbes around the globe on time scales on the order of
2 weeks.”® The global dissemination of microbes has important
ramifications for agriculture, infectious disease, human health,
clouds, precipitation, and our water supply. The extreme envi-
ronmental conditions of the upper atmosphere in essence select
which microbes will become dispersed as only certain microbes
can remain viable under harsh irradiation and temperature con-
ditions. However, viable microbes attached to soil dust can remain
viable, even after transport across thousands of miles.””*”*

At high altitudes, microbes can serve as cloud seeds and can
profoundly impact climate and precipitation processes.”'~*
Viable microbes occur in cloud droplets and play signiﬁcant roles
in controlling aqueous-phase chemical processes.”~*” Microbes
can nucleate ice in clouds at warmer temperatures than any other
particle type; thus, the atmospheric microbiome can enhance
precipitation processes.’”’" While most studies have focused on
the ice-nucleating ability of mineral dust,”"”* microbes such as
Pseudomonas syringae are far more effective agents in this climate-
driving activity.””~"> Measurements of airborne ice crystals
have shown that dust and biological particles from as far away as
Africa can form ice in mixed-phase clouds and determine the
amount of snowfall over California’s Sierra Nevada mountains in
California.*”
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Many studies have focused primarily on terrestrial sources of
atmospheric microbes, and thus, far less is known about oceanic
sources.”® Estimates of global microbial emissions assume negli-
gible oceanic contributions and range from 40 to 1800 Gg dry
weight year™'.”” However, oceans cover 71% of the Earth’s sur-
face and contain marine bacteria at concentrations of 10°—
10% per m™>. When waves break and bubbles burst at the surface
of the ocean, microbes become highly enriched in the ejected sea
spray droplets.”® Thus, sea spray aerosol represents a significant
but highly undetermined source comprising a complex mixture
of microbial species. Given the large role in cloud formation,
studies over many decades have investigated the ocean as a
potential source of ice nuclei.””® The paucity of knowledge
regarding oceanic contributions to the atmosphere can be
attributed to the difficulty associated with isolating solely oceanic
sources given the complexity of the atmosphere and terrestrial
impacts even in remote marine environments. Many studies have
been conducted over the oceans, showing broad diversity, even at
high altitudes (8—15 km).*' = It remains unclear whether sea
spray production processes selectively introduce only certain
types of microbes into the atmosphere. A recent study impinged
a water jet on the surface of Arctic seawater and showed
significant differences in the microbes that became aerosolized,
suggesting selectivity can indeed occur.”* The transfer of dif-
ferent species from seawater to the atmosphere strongly depends
on the bubble size distribution and, hence, the physical
mechanisms of bubble production.”® Thus, in order to replicate
sea spray aerosol composition more accurately, breaking waves
were used to produce sea spray aerosol using realistic bubble sizes
and hence physical production mechanisms.*® Studies are now
underway using more realistic ocean-in-the-lab breaking-wave
approaches to isolate and to develop a library of ocean-derived
microbes that will ultimately be used to determine the relative
contributions of the ocean to the atmospheric nanobiome.
Future studies will examine how phytoplankton blooms, as well
as the chemistry and morphological properties of the microbes,
impact their transfer into the aerosol phase, as well as the ability
of the ejected microbes to remain viable under typical atmo-
spheric conditions.””

Microbes of Humans and Other Animals. Microbiomes
play important roles in the health of many animals, including
humans, and disruption of these microbe—host interactions
by exposure to certain diets or chemicals can lead to dysbiosis in
the host (see Box 1). Host-associated microbial communities
range from those involving a single bacterial species, such as
the symbionts of certain insects, squids, and other invertebrates,
up to the hundreds to thousands of species present in the
mammalian gut. Different mammals contain microbiomes
that range from relatively simple, for carnivores, to the complex,
notably in herbivores that ferment cellulose in their hindguts
(omnivores and foregut fermenters being intermediate in
complexity). In addition to digestion, mammalian gut microbiomes
perform many other functions, including producing essential
amino acids and vitamins, regulating the immune system, providing
resistance to disease (including diseases not localized in the gut, e.g.,
liver disease and asthma), and even modifying appetite, circadian
rhythm, and behavior.

Links between the human gut microbiome and disease have
been of intense interest, with strong associations and high-quality
predictive models being reported between the gut micro-
biome and conditions ranging from obesity to type-2 diabetes
to cirrhosis to rheumatoid arthritis. Mouse models provide the
opportunity to unravel possible mechanisms for some of these

Box 1. Antibiotics: Dysbiosis, Resistance, and the Need for Precision.

Perhaps the most frequent and profound examples of the consequences of
microbiome perturbation involve the use of antibiotics. Worldwide, an estimated 1% to 3%
of people living in developed countries are being treated with antibiotics at any given
time.% In the United States, a large-scale study recently showed that outpatient antibiotics
were prescribed at a rate of 842 courses per 1,000 individuals.?? Antibiotic exposure early
in life is a particular concern,° especially considering that the average US child receives
three courses of antibiotics by age two, and 10 courses by age 10.8 Understanding exactly
what happens when human microbiomes are exposed to antibiotics is of critical
importance.

It has long been known that antibiotics disrupt gastrointestinal microbiomes, and
recent studies are beginning to provide population-level insights regarding the effects of
perturbation. For example, treatment of adults for 5 days with ciprofloxacin, a widely used
broad-spectrum fluoroquinolone, significantly decreased taxonomic diversity and altered
the abundance of one third of the bacterial taxa in the gut.°! Diversity returned to a level
that resembled the pretreatment state within 4 weeks, but several taxa were still missing 6
months after treatment. Although this study used a small cohort of volunteers, and
numerous variables are known or expected to determine the effects of antibiotic exposure,
a growing literature shows that antibiotics induce the decline and expansion of specific
bacterial taxa, leading to an overall decrease in diversity with the potential for short-term
and lasting effects on both the microbial community and the host, %293

A life-threatening consequence of the community disruption, or dysbiosis, that can
follow antibiotic use is the expansion of opportunistic pathogens that are normally kept in
check by a healthy, diverse microbiome. Such infections are particularly problematic in
the hospital setting, and the growing list of pathogens includes Enterococcus faecium,
carbapenem-resistant Enterobacteriaceae, and Clostridium difficile. C. difficile, which causes
antibiotic-induced diarrhea and a potentially fatal condition, toxic megacolon, is
responsible for an estimated 250,000 hospitalizations and 14,000 deaths per year in the
US.95 A combination of drug resistance and the ability to form spores allows C. difficile to
persist in the host and/or local environment during periods of antibiotic treatment. When
treatment stops, the lack of a protective microbiome promotes C. difficile colonization and
disease. % Since antibiotics were the cause of infection in the first place, the use of
antibiotics to treat it are predictably associated with recurrent bouts of re-infection. In light
of the ecological principles at play, it is not surprising that fecal microbiome
transplantation, in which a patient is provided with a healthy gastrointestinal microbiome
by ingestion or gavage, is significantly more effective than antibiotics in treating recurrent
C. difficile infections. %798

The gut microbiome is a reservoir of antibiotic resistance genes, and antibiotic
therapy provides a powerful selective advantage for their expansion and dissemination. %2
In a study of patients with Helicobacter pylori-associated peptic ulcers, treatment with a
standard combination of antibiotics that included clarithromycin, a macrolide,
corresponded to a 1,000-fold increase in the fecal copy number of the ermB gene, which
confers macrolide resistance. 9 Antibiotic resistance can be acquired by mutation or, as in
the case of ermB, by horizontal transmission. Broad host range conjugative plasmids that
can transfer between and replicate within a broad spectrum of bacteria are prototypical
transmissible elements, and they are especially problematic for two reasons. First, they
tend to encode arrays of genes that encode resistance to different antibiotics, so the use of
one antibiotic co-selects for resistance to others. 1% Second, broad spectrum antibiotics
select for transmission of resistance genes to a correspondingly broad spectrum of
bacteria.

The problems of how to eliminate or to prevent C. difficile and similar infections
without harming beneficial microbes, and how to avoid selecting for the dissemination of
antibiotic resistance to diverse bacteria, have a common potential solution - precision
antimicrobials. The ability to design and to deploy precision antimicrobials that target
specific bacterial species, strains, or even isolates with high specificity and efficiency has
been recently demonstrated in human oral biofilms!®? and murine models of C. difficile
infection.192 As highlighted below, similar types of precision tools will provide approaches
for precisely manipulating microbiota to test hypotheses and to develop approaches for
engineering microbiomes to generate or to restore beneficial effects.

associations and, additionally, have linked the gut microbiome
to models of anxiety, depression, and even autism.'** The latter
case is especially interesting because maternal immune activation
via a double-stranded RNA virus induces autism-like behaviors
including repetitive behavior, cognitive and social deficits, as well
as gut barrier dysfunction often seen in humans with autism.
These phenotypes can be reproduced in part using 4-ethyl-
phenylsulfate (4EPS), which is produced by an aberrant
microbial community in the autism model, and can be rescued
with a Bacteroides fragilis probiotic strain.

Of particular interest is fecal transplantation, a procedure in
which stool is transferred from a healthy donor to an unhealthy
recipient (perhaps the same person, in the case of autologous
stool transplant). This procedure has been 90—95% effective for
treating Clostridium difficile-associated disease versus only 20—
30% efficacy for antibiotics. Understanding which other diseases
associated with dysbiosis of the microbiome could be corrected
remains a major goal of microbiome research. The current
regulatory framework in the United States, regulating stool as a
drug and requiring an investigational new drug (IND) appli-
cation for any application other than C. difficile, however, is a
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substantial barrier to research. Understanding more generally
how various therapies including antibiotics, probiotics, prebiotics
(essentially, fertilizer for the microbiome), phage therapy, etc.
can reshape the microbiome remains a major technological and
theoretical challenge.

As noted above, other mammals also have species-specific
microbiomes, and many veterinary applications exist, from curing
diseases such as inflammatory bowel disease and irritable bowel
syndrome, and perhaps obesity, that plague domestic pets (obese
owners tend to have obese pets, and sharing of microbes among
family members including nonhuman family members has been
demonstrated).'** Additionally, manipulation of the microbiome
to promote growth, to feed conversion efficiency, to manipulate
body composition, and to improve disease resistance in livestock
is a major area of interest. One could also imagine manipulating
the microbiome for performance enhancement, for example, in
horses and greyhounds, although little information on this topic
is available in the literature to date.

Microbiomes outside the gut also play important roles,
although most investigations have focused on either defining
a healthy baseline community (without specific regard to
function)'® or on looking for differences associated with specific
diseases.'” The oral microbiome has received intense scrutiny in
the context of tooth decay and gum disease,'”” """ the vaginal
community is associated with bacterial vaginosis,'' """ as well
as susceptibility or resistance to yeast and viral infections.'"”
The skin community has been linked to acne,'"? ps.oriasis,114 and
atopic dermatitis''* and may play a role in resisting infections,''®
stimulating the immune system,"'” and potentially even risk of
melanoma.'"®

The dynamics of the human microbiome remain relatively
poorly understood, as few high-resolution time-series studies
have been conducted.''” The microbiome is initially seeded with
different microbes depending on delivery mode, either vaginal
microbes from passing through the birth canal or skin microbes
acquired from the environment or from people touching the
baby after C-section.'*° After that, the approach to the adult state
takes about 3 years in the gut,'*"'** but the time scale is
unknown in other body habitats. Development often appears
chaotic early on, although whether this is an intrinsic property of
the system or due to extrinsic forcing is not known at present.
Similarly, whether early life events have relatively little impact
because of the profound changes during this period or have
a large impact in shaping the microbiome for life-long health is
also unknown. However, exposure to allergens such as pets
seems to have highly time-dependent effects (prenatal to first
3 years of life exposure reduces asthma and pet allergies later;
exposure as a teenager increases risk' **), and early life antibiotics
increase the likelihood of obesity in a range of species.'”*
Understanding how the microbiome can change and how we can
develop predictive models that allow responses to everything
from artificial sweeteners to diets to drugs affect the individual is a
major goal of the field. Antibiotic resistance is a major threat;
diagnostics and surveillance at the clinical and public health levels
are required.'>*'>° The tools developed here will be applicable to
these efforts, and as noted above, the origins of resistance are also
of intense interest in understanding microbiomes.

Microbial Ecology. Microbial communities are a pervasive
and central part of every ecosystem on the planet, including our
own bodies, as discussed above. Since their discovery, developing
methods to detect and to characterize the bacteria, archaea,
viruses, and protists that constitute the microbial world has
driven technological research for microbiologists and microbial

ecologists.'”” What started as a need to “see” the microbial world
led to the development of microscopes and has now escalated
into an explosion of technologies aimed at classifying the species
that exist, their cellular metabolism, their impact on the chemical
world around them, and the biosphere at large.'**'*” While
many techniques exist to understand the microbial world, these
can be divided into two themes: culture-dependent and culture-
independent, the difference being whether the microbe is grown
in vitro or characterized in its environmental state. The use of
DNA as a marker of microbial diversity or function in an environ-
ment was realized in the 1970s."*° This led to the development of
technologies aimed at characterizing the microbial world using
DNA or RNA. Culture-dependent analyses leveraged polymer-
ase chain reaction (PCR) and genomic sequencing to determine
the phylogeny and evolutionary history of the bacteria growing
on plates, while PCR and metagenomics were being applied to
characterize the microbes from DNA extracted from their native
environment.

Currently, microbial community characterization is predom-
inantly performed using specific growth media and sequencing
for genomics, metagenomics, metatranscriptomics, as well as an
array of molecular detection technologies."”" Using 1 ng of DNA
extracted from a cotton swab sample, we can now sequence the
metagenome of the bacteria found there and assemble their
genomes in a routine manner.'”>"** This detection threshold
and data resolution are unparalleled in the history of our field.
However, the methods used to acquire and to process samples
and to sequence this genetic material have considerable limita-
tions. Chief among these is the ability to sample and to char-
acterize microbial communities remotely in a cost-effective manner,
at spatial and temporal densities of observations that enable
researchers to assess the natural gradients of diversity, the
longitudinal fluctuations in community structure, and the routine
detection of particular organisms in a quantifiable manner.

Microbial ecology research has generated many hypotheses
that require dense spatial and temporal sampling to test and to
refine. For example, determining the connectivity of microbial
communities in river systems requires genotype-level resolu-
tion observation of bacteria at regular temporal and spatial
frequencies. Only with a dense grid of simultaneous observations
are we able to capture the dynamic dispersal and interaction of
assemblages of bacterial taxa. In the absence of technology that
enables this set of measurements, studies use two approaches:
deep observation of few samples or shallow observation of many
samples. For example, ultradeep sequencing of taxonomic or
functional marker genes provides insights into the composition
of specific microbial ecosystems, but without analyzing larger
numbers of samples, limitations arise: the statistical significance
of observed patterns cannot be determined, the patterns of co-
occurrence between genes and taxa are difficult to assess, and the
dominant biotic or abiotic factors structuring communities
across time and space remain undetermined. Thus, for microbial
ecology, many samples from related or contrasting communities
must be studied in parallel."*”"**

Currently, collecting these samples is nearly always a manual
activity, requiring many hours of human effort. Additionally,
processing of these samples occurs in a laboratory, often long
after the sampling has occurred, so that all data generated are
retrospective. While the data streams generated from these
studies are rich and vast, to elucidate ecological processes at
the scale of an ecosystem relevant to landscape-scale processes or
specific applied utility requires continuous, remote, and spatio-
temporally dense measurements. An example of this challenge is
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monitoring river systems. The state of the art requires manual
sampling, DNA preparation, and analysis, which limits the depth
and breadth of observations and hence the ecological significance
of the findings. A recent study focusing on the water catch-
ment scale biogeography of microbial distribution examined 23
samples across a river basin (Figure 1A) from a single time point

Figure 1. (A) Map of regional study design for a state-of-the-art
exploration of microbial diversity across a river catchment.
Reproduced with permission from ref 134. Copyright 2015 Nature
Publishing Group. (B) Example of coverage provided by dense grid
of sensors for automated water-borne microbiome sampling.

and used the data to describe the ecological dynamics across
this system.'** This study provided an observational density of
one sample per 432 km” of the river basin. To get two orders
of magnitude improvement in the observational density of this
river basin would require analysis of ~2000 water sampling loca-
tions every 6 h for a month. This requirement would enable an
observational density of S km* per sample (Figure 1B) but would
also add a temporal element with 120 time points. This change
multiplies the observational density to create 242,000 obser-
vations within a single month. With this data set, we would be
able to determine the diurnal fluxes in microbial community
density and composition, explore pulses in river community
structure in response to river flow, allochthonous input
(including waste discharge events), and weather patterns, and
understand the true stability and biogeography of the river
system. This study would provide us with the opportunity to
use the microbial assemblages as an early warning system of

shifts in ecological function and stability, to create a dynamic
distribution model of river activity and its impact on biogeo-
chemistry and response to pollution, and to devise novel
ecological principles about the connectivity of microbial assem-
blages in these fluid systems.

A more applied example would be to develop the ability to
monitor combined sewage overflow outlets or human stool or
oral samples to determine the temporal flux in microbial
community structure. Developing sensor platforms that could be
used to monitor microbial communities routinely would be
useful for detecting pathogen release into river systems or shifts
in microbial community in stool or saliva that could be used
as biomarkers for disease and health. One space in which
monitoring could have enormous impact on human activities and
health would be in urban built environments. The melting pot of
humans, animals, plants, and water in cities creates a complex
microbial meta-ecosystem that critically influences human
health. In the urban environment, diverse microbes can migrate
rapidly by water or air, colonize new niches, transfer between
animal and human hosts, develop new functional capabilities, and
transform urban metabolites. Environmental infectious disease
transmission is a central problem for high-density urban environ-
ments. One hundred years ago, concerns about disease triggered
the International Joint Commission study of trans-boundary
microbial contamination in the Great Lakes, one of the largest
urban efforts ever conceived. Today, key questions remain
unanswered. How do urban sources and ecosystem dynamics
affect microbial pathogen distributions? Is microbial water
quality improving or deteriorating? What actions are needed to
make soil, air, and water quality sustainable? Under increasing
pressure from growing urban populations, renewed interest in
addressing these questions is creating an impetus to develop
novel technology to create data sets capable of tracking and
monitoring the microbial health of our cities.

Microbial ecology is an important field for many aspects of
human activity, from ecosystem restoration to food security,
from urban sustainability to water resource management. To
understand the systems that are vital for our health and well-
being, it is essential that we develop mechanisms to observe the
microbial world at sufficiently detailed and broad spatial and
temporal resolutions. At a fundamental level, we need to
parametrize the dynamics of microbial species, so that they can
be modeled and predicted. Existing tools for characterizing the
microbiome require either automated or manual collection of
samples and use expensive, cumbersome apparati that require
extensive personnel and time. In addition, devices need to be
accessed regularly, cannot be remotely deployed, and cannot
send back data without extensive robotization, which can be
prohibitively expensive (ie, remote-operated submarines'>).
When they are collected, most samples need to be processed
for DNA extraction, PCR, and sequencing in the laboratory,
which, while generating a popular data product, is expensive and
time-consuming. Although technology does exist for remote,
inexpensive characterization of microbial communities, the
samples still need to be manually collected and manipulated.'*®
Addressing these challenges will require a cross-disciplinary
program of technology development for automated sampling
devices to enable the repeated characterization and remote data
transfer of the microbiome. These technologies must enable
integrated high spatiotemporal characterization of microbiomes
with similar efforts to characterize the physicochemical and phys-
iological properties of these environments. The ability to capture,
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to analyze, and to model these data also represent significant
challenges.'*°

Biofilm Formation. In most biological, biomedical, and
industrial circumstances, multiple microbial taxa typically form
communities and can exist in biofilms. These microbial
communities are highly structured and exhibit subtle patterns
of spatial organization, as exemplified by microbial mats and soil
communities in the environment and by communities that live
within animal hosts, such as those in dental plaque, the
gastrointestinal tract, and the lungs of cystic fibrosis patients.
The distribution and behavior of species in these communities
influence and are influenced by the role they play in a specific
ecology or ecological trajectory. Important factors include
patterns of cooperation and competition, environmental
conditions, as well as the microbiology of individual species. It
is in this last context, the microbiology of biofilms of individual
species, where we have the most knowledge at present. This
corpus of work provides us with a repertoire of concepts. There
are five steps in the “standard model” of biofilm development:
(1) free swimming planktonic bacteria attach reversibly to a solid
surface and migrate on the surface; (2) bacterial cells adhere
“irreversibly” to a surface and secrete extracellular polysacchar-
ides; (3) microcolonies of 50—100 bacteria are formed, in a step
that is sometimes described as the first social step in the develop-
ment of a biofilm community; (4) a mature, spatially structured
biofilm develops via a process of extracellular polymeric
substances (EPS) production, signaling, motility, cell division;
and (S) free swimming cells are released from the community
and in turn repeat the process. Recent work on biofilm develop-
ment invokes, refines, and sometimes modifies this paradigm.
Mlustrative examples without any attempt at completeness
follow. Cells that land on a surface undergo complex processes
of surface sensing,"*” which is just beginning to be understood.
The transition from free swimming to biofilm physiology is often
dependent on cyclic di-GMP, a bacterial secondary messenger,
which has emerged to be kind of master regulator that impacts
biofilm formation, EPS production, bacterial motility, virulence,
and other processes.'” Extracellular communication becomes
more important; an important example with strong phenotypic
impact is quorum sensing,'**~"*' which remains an active area of
study. Secreted extracellular polysaccharides are a defining
characteristic of biofilms, but they are not simply secreted passive
adhesins and can have important social functions in controllin:
surface motility in the early assembly of microcolonies.'*
Ultimately, biofilms produce a complex matrix of EPS, which
include proteins, lipids, lipopolysaccharides, nucleic acids, as
well as extracellular polysaccharides, that serves as scaffolds
for the community. An outstanding challenge for our field is to
generalize our existing ideas for single-species communities and/
or to come up with the analogues of these guiding principles for
multispecies communities.

The strategies we use for studying communities with two to
three species will be different from those with 100 species, but
both will be crucial for the development of our understanding.
Model communities with simplified interactions will be helpful in
this regard; Silver and co-workers have proposed and developed
the tools to create a simplified gut microbiome that lives and
interacts within a mouse model."*~"* Special considerations
are being built into such systems to enable manipulation of the
microbiome and to contain it within the experimental model.

Solving this complex problem of understanding microbial
communities is like learning a new language without a dictionary
or knowledge of grammar: the fastest approach may be to learn

a language like a child—through imitation and trend identifi-
cation in complex examples of linguistic usage. However, to
achieve the most powerful and nuanced linguistic expression, a
framework of rules needs to be established. We will ultimately
need to study realistic communities with the full diversity of
species. Model systems with a small number of species can be
used to identify predictive rules that help make sense of the
trends. In this spirit, there are a number of interesting examples of
studies that engage multispecies biofilm communities.

Cooperation and Competition in Single-Species
Biofilms. Even in single-species biofilms, good examples of
cooperative and competitive interactions have been reported. In
P. aeruginosa, stratified patterns of protein synthesis and growth
have been demonstrated.'** Using green fluorescent protein
(GFP) reporter gene constructs, it was found that active protein
synthesis was confined to a narrow band in the part of the bio-
film adjacent to the oxygen source. The zone of active GFP
expression was approximately 60 ym wide in colony biofilms and
30 um wide in flow cell biofilms. Mature P. aeruginosa biofilms
contain active, growing cells. However, these biofilms also
comprise large numbers of inactive cells. A recent example of the
subtle interplay of cooperation and competition in these bifur-
cated populations can be seen in Bacillus subtilis. The complex
relationship between peripheral cells and interior cells in a two-
dimensional (2D) B. subtilis community leads to oscillatory
growth.'”” A kind of mutualism emerges. Peripheral cells protect
the interior from external cytotoxic agents but also starve the interior
of nutrients. A novel phenotype with metabolic codependence
emerges, one in which the growth halts periodically, which can, in
principle, benefit interior cells and increase nutrient availability.

Cooperation and Competition in Two-Species Bio-
films. The recurring theme of spatial structuring, already evident
from the above, can be seen in two-species consortia. One
example is cocultures of Acinetobacter sp. C6 and Pseudomonas
putida, two soil-inhabiting bacteria that are members of a
microbial consortium isolated from a creosote-polluted aquifer.
In the presence of aromatic carbon sources, the two species
enter into a symbiotic relationship, where Acinetobacter plays the
role of host and P. putida plays the role of a commensal."**
Acinetobacter metabolizes benzyl alcohol to benzoate. Since
P. putida metabolizes benzoate produced by Acinetobacter, it
mutates to have enhanced ability to attach to Acinetobacter and
forms a “mantle” over Acinetobacter microcolonies. As a result,
the two-species consortium has increased stability and pro-
ductivity relative to their isolated counterparts. Implicit in this
relationship is the adaptation of motility to facilitate this organi-
zation. It will be interesting to see how the rules for monospecies
microcolony formation are altered in this two-species consortium.
Recent work has suggested that small multicellular clusters rather
than single cells can move on the surface and coalesce into
microcolonies. Another demonstration of the role played by
motility in generating spatially structured communities can be
found in rRNA fluorescent in situ hybridization (FISH) confocal
microscopy observations on cocultures of Burkholderia sp.
LB400 and Pseudomonas sp. B13(FR1).'* When the consortium
was fed citrate as the carbon source, which can be metabolized by
both Pseudomonas and Burkholderia, the two species formed
separate microcolonies. However, when the carbon source was
changed from citrate to chlorobiphenyl, Pseudomonas used their
surface motility to form mixed microcolonies with Burkholderia,
as the former can metabolize chlorobenzoate produced by the
latter when grown on chlorobiphenyl.
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Of course, not all two-species consortia enter into symbiotic
relations. Some relationships end in competition. The airways of
cystic fibrosis patients are colonized with bacterial communities
that evolve over time. Staphylococcus aureus is the most prevalent
species in early childhood, but Pseudomonas aeruginosa domi-
nates the ecology in early adulthood. In a recent coculture
experiment on P. aeruginosa and S. aureus on monolayers of
human bronchial epithelial cells with the AF508 cystic fibrosis
transmembrane conductance regulator (CFTR) mutation, "’ it
was shown that P. aeruginosa drives the S. aureus expression
profile from that of aerobic respiration to fermentation. Although
the reasons for this ecological shift are complex, two key factors
have been identified: the production of Fe-chelating side-
rophores by P. aeruginosa and its preferential consumption of
S. aureus-produced lactate over other carbon sources. It has
been established that S. aureus induces the production of
quinolone quorum sensors and subsequent biofilm formation in
P. aeruginosa.">" Although S. aureus and P. aeruginosa can initially
coexist, P. aeruginosa eventually reduces S. aureus viability in
extended cocultures.

Cooperation and Competition in Three-Species Bio-
films. Generalizing from a two-species consortium to a three-
species consortium greatly expands the range of possibilities in
mutualistic relationships. A recent example is a ternary model
biofilm community of Pseudomonas aeruginosa, Pseudomonas
protegens, and Klebsiella pneumonia,">* where the results are quite
suggestive. The biomass of K. pneumonia KP-1 within the mixed
consortium was significantly greater than the biomass of single-
species KP-1 biofilms, despite having to contend, in principle,
with the increased competition with P. aeruginosa and P. protegens.
Moreover, the increased community-level resistance to amino-
glycoside antibiotics is striking: P. protegens produces the infamous
aminoglycoside-modifying enzyme N-acetyltransferase, which
causes aminoglycoside antibiotics to bind inefficiently to bacterial
ribosomes, so that it can no longer inhibit bacterial protein
synthesis. Although P. protegens comprises only ~15% of the total
biomass, it is able to confer protection to both P. aeruginosa and
K. pneumoniae, so that only 10% of the mixed biofilm is removed
by the aminoglycoside antibiotic tobramycin. These model sys-
tems represent a large and underexplored frontier of microbiology
and promise to attract and to reward attention.

Three areas of technology development will underline the
breakthroughs needed to advance the biological questions
described above: (1) sequencing and identifying microbial macro-
molecules and metabolites, (2) increased speed and standardi-
zation of bioinformatics tools, and (3) development and application
of high-resolution imaging approaches to couple biochemical
analyses with micron-scale microbe—microbe and microbe—tissue
interactions. Although DNA sequencing technologies are currently
high throughput and inexpensive, the same cannot be said for other
omics technologies, such as metatranscriptomics, metaproteomics,
and metabolomics, which are still primarily run one sample at a time
and require special equipment and expertise. To elucidate the
functional roles of members of complex microbial communities,
new and better technologies are required for higher dynamic range,
speed of analysis, and throughput. In addition, more complete and
validated databases are needed for protein and metabolite identi-
fication. Advances in imaging technologies are needed to enable
spatial localization of microbial cells and individual proteins in
environmental matrices. Imaging tools for multiscale imaging,
beyond conventional light/electron correlative microscopy tools,

are needed, such that molecular, cellular, biofilm, and larger scales
can be examined and inter-related.

High-Speed, High-Throughput Genomic Sequencing
and Annotation. Genome sequencing, although insufficient for
determining function, is still critical as a first step to under-
standing the function of novel organisms and ecosystems.
Sequencing technologies for DNA have rapidly improved,
achieving cost savings of over a million-fold in the past
15 years. However, there remain many barriers to overcome.
First, the technologies that are currently highest throughput, such
as the Illumina sequencing by synthesis platform, produce only
short fragments of DNA.">* Although these short fragments are
extremely useful when mapped against a reference database, such
as is available for the human genome and for model microbes,
de novo assembly and annotation remain a major challenge, and
many technical parameters such as insert size, read length, and
depth of sequencing are not standardized across projects (nor are
their effects on the final assembled genome known, in general).
Second, long-read technologies, such as zero-mode waveguide
sequencing (e.g, Pacific Biosciences) and nanopore-based
sequencing (e.g, Oxford Nanopore), are both low-throughput
and error-prone and cannot yet operate on very small amounts of
input material.">*'>*> Current methods for amplifying genomic
DNA tend to introduce biases that greatly decrease the efficiency
of sequencing because the parts of the genome that are amplified
the most are read over and over again. However, these longer reads
have proven useful for genome assembly, which is necessary for
understanding higher-order structure, gene regulation, and reveal-
ing which components of the genome most likely work together in
operons. A recent long-read method has extremely low error
rates'*® (and is being commercialized'*”).

Single-cell sequencing (discussed below) remains a challenge
and, despite many recent improvements, typically recovers only
70—90% of a genome. Understanding how to integrate partial
signals from many cells, or to coax a cell through a few cycles of
division before sequencing to reduce stochastic losses such as
DNA attached to the cell wall and therefore lost to sequencing,
remains largely unexplored. The dream system would be to
separate single cells from complex matrix such as stool, soil, or
biofilm, disrupt them in situ, and to separate each into a single
library for highly multiplexed sequencing on a cheap long-read
platform, ideally simultaneously reading out the DNA, the RNA,
and any modified nucleotides at either level (for example,
methylated nucleotides in the DNA are important for under-
standing gene regulation, and many types of modified bases in
the RNA, including inosine, can alter the meaning of the
transcript relative to what is encoded in the genome), all at low
cost. However, the technology for performing these tasks has not
been developed, although various microfluidic protocols show
enormous promise in library preparation. Cellular isolation and
disruption at high throughput remains a considerable challenge,
as the impedance mismatch between a physical specimen and
vast numbers of single-cell genomes is presently large.

Obtaining the DNA sequence is not sufficient: although most
bacterial, archaeal, and viral DNA consist of protein-coding
genes, the same is not true for microbial eukaryotes, and even
in compact genomes, the regulatory elements (including siRNAs,
miRNAs, CRISPR repeats, efc.) are important to understand
both from functional and from evolutionary perspectives. Improved
methods for understanding the functions of protein-coding genes,
including structural genomics, computational structure prediction of
sequences of unknown function that might be members of highly
diverged protein families, and high-throughput expression followed
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by assays of biochemical function (that could be improved by
mass spectrometry and other high-throughput chemical profiling
techniques to identify novel biotransformations), are urgently
needed. Expression data under different conditions, perhaps
involving other organisms as well as pure cultures, may be
necessary for understanding the functions of novel regulatory
elements, although such studies are extremely time-consuming
with existing techniques and impractical to apply to the vast
majority of organisms that cannot yet be grown in culture. Addi-
tionally, compiling large databases of single-cell genomes and
community metagenomes from environmental samples would
allow us to understand the functions of unknown proteins
and regulatory elements by identifying other genes, species, or
environmental conditions with which they are associated (again,
expression data at the RNA, protein, and/or metabolite level
would be especially helpful here). An important side effect of
these efforts would be improved understanding of how microbial
communities function, which would assist in modeling efforts.
Finally, many enzyme functions are known but not relatable to
a single protein sequence, and many protein sequences have had
their functions determined, but the annotations are in individual
publications and not yet aggregated into machine-readable data-
bases. Consequently, a focused effort to identify these missing
enzymes and to apply sophisticated natural language processmg
(NLP) techniques such as IBM’s Watson technology'>* to the
biochemical literature could be especially useful in leveraging
existing efforts in knowledge generation. One could also imagine
nanosensors for enzyme function that might be able to read out
a suite of possible enzyme activities better than currently avail-
able biochemical assays, each of which typically covers only a
restricted range of chemistries.

Nanoscience and Nanotechnology Opportunities. The
great advantage of nanoscience and nanotechnology in studying
microbiomes is that the nanoscale is the scale of function in
biology. It is this convergence of scales at which we can “see” and
at which we can fabricate that heralds the contributions that can
be made by developing new nanoscale analysis tools.'*?71%
Microbiomes operate from the nanoscale up to much larger
scales, even kilometers, so crossing these scales will pose signif-
icant challenges to the field, in terms of measurement,
stimulation/response, informatics, and ultimately understanding.

Some progress has been made in creating model sys-
tems' 719717 that can be used to develop tools and
methods. In these cases, the tools can be brought to bear on more
complex and real systems. Just as nanoscience began with the
ability to image atoms and progressed to the ability to manipulate
structures both directly and through guided interactions,'*>'%»"7#~17¢
it has now become possible to control structure, materials, and
chemical functionality from the submolecular to the centimeter
scales simultaneously. Whereas substrates and surface functional-
ization have often been tailored to be resistant to bioadhesion,
deliberate placement of chemical patterns can also be used for
the growth and patterning of systems, such as biofilms, to be put
into contact with nanoscale probes."””~'*" Such methods in
combination with the tools of other fields (vide infra) will provide
the means to probe and to understand microbiomes.

Key tools for the microbiome will need to be miniaturized and
made parallel. These developments will leverage decades of work
in nanotechnology in the areas of nanofabrlcatlon, 181 imaging
systems,182 1_8% lab-on-a-chip systems,'** control of biological
interfaces,"®> and more. Commercialized and commoditized
tools, such as smart phone cameras, can also be adapted for
use (vide infra). By guiding the development and parallelization

of these tools, increasingly complex microbiomes will be opened
for study.'®’

Imaging and sensing, in general, have been enjoying a
Renaissance over the past decades, and there are various
powerful measurement techniques that are currently available,
making the Microbiome Initiative timely and exciting from the
broad perspective of advanced analysis techniques. Recent
advances in various -omics technologies, electron microscopy,
optical microscopy/nanoscopy and spectroscopy, cytometry,
mass spectroscopy, atomic force microscopy, nuclear imaging,
and other techniques, create unique opportunities for researchers
to investigate a wide range of questions related to microbiome
interactions, function, and diversity. We anticipate that some of
these advanced imaging, spectroscopy, and sensing techniques,
coupled with big data analytics, will be used to create multimodal
and integrated smart systems that can shed light onto some of
the most important needs in microbiome research, including
(1) analyzing microbial interactions specifically and sensitively
at the relevant spatial and temporal scales; (2) determining
and analyzing the diversity covered by the microbial genome,
transcriptome, proteome, and metabolome; (3) managing and
manipulating microbiomes to probe their function, evaluating
the impact of interventions and ultimately harnessing their
activities; and (4) helping us identify and track microbial dark
matter (referring to 99% of micro-organisms that cannot be
cultured).

In this broad quest for creating next-generation imaging
and sensing instrumentation to address the needs and challenges
of microbiome-related research activities comprehensively, there
are important issues that need to be considered, as discussed
below.

The Synthetic Biology Revolution. The microbial world
has been studied intensively since the invention of the
microscope. With the advent of molecular genetics, recombinant
DNA, and rapid DNA sequencing, many microbes are well
understood and form the core of both basic and applied bio-
logical research. We are now ready to reap the benefits of this
investment, and synthetic biology is poised to fuel this future. In
broad strokes, synthetic biology provides the possibility of rapid,
systematic, and predictable engineering of the microbial world.
This includes the creation of microbes for varied purposes: (1) to
act as biological computers to sense and to respond to events in
their environment that cannot be directly observed; (2) to serve
as chassis for chemical engineering to produce molecules of
value more sustainably; (3) to produce new chemistries never
seen before; and (4) to create synthetic microbes with a genetic
firewall that prevents their genes escaping into other organisms
in the environment. Increasing our ability to program microbes,
especially in the context of complex microbiomes, will have vast
implications for human and global health.

Synthetic biology draws from investments in molecular
biology made over the past 50 years. Microbes provided the
basis for much of this work, which ultimately led to sequencing
the human genome, production of drugs such as human insulin
and antibodies, and the growth of the biotechnology industry.
Synthetic biology takes all of the prior knowledge to achieve
faster, more predictable, and ultimately cheaper engineering
of biology for the common good. The ultimate culmination of
these efforts will be to synthesize entire microbial genomes that
will perform as predicted without undesired impacts on the
environment. Recent advances in the synthesis of DNA make this
goal possible in the foreseeable future.
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Figure 2. High-risk projects driven by synthetic biology include a
number of grand challenges, as follows. (1) Development of artificial
microbiomes that can safely live with a human or animal host. These
could, for example, make the use of antibiotics in farm animals
unnecessary and provide new classes of therapeutics. Such synthetic
microbes would become the gold standard in all of bioengineering.
(2) Development of a microbial consortium driven by light
collection that can produce commodity chemicals. This goal lies at
the center of the dream of harnessing our greatest natural resource—
sunlight—which Nature has accomplished but upon which we can
improve. (3) Development of microbes that can function beyond
biological systems in electronics, sensing, and nanotechnology.
Biology is good at production at the mesoscale, which has been
relatively refractory to bioengineers and chemists. Synthetic biology
aims to learn from Nature to produce novel useful molecular
structures to work at the interface between organisms and machines.
(4) Engineering at the interface between microbes and their hosts.
The same principles of synthetic biology can be applied to all cells,
including those of animals and plants, to program their interactions
with the microbial world for both discovery and applied research.

Work at the Interface of Basic and Applied Research.
To impact economic development and the average citizen,
the microbiome initiative must support precommercialization
research. This is particularly important in areas where the ulti-
mate commercial product will require extensive and commer-
cially risky testing or where the science that would underpin such
a product is not yet established. Like other scientific revolutions
that have transformed our understanding of our place in the
universe—the Copernican revolution that made us realize that
the Earth was not the center of the universe, the Darwinian
revolution that made us realize that we were one twig of life
among many, the Woeseian revolution that made us realize that
most of life’s diversity is microbial rather than contained in the
plants and animals we see around us as multicellular organisms—
the implications of the microbiome revolution, that we are

outnumbered within our own bodies in terms of cell count and
vastly so in terms of gene counts, will take time to understand at
the level that permits far-ranging technological development.
However, we are now poised to make rapid progress with
appropriate investments in microbiome research.

Potentially ground-breaking areas include artificial micro-
biomes—engineered consortia of microbes that work together.
One of the best methods of testing hypotheses about
microbiome function will be to try to mimic or to replicate
all or part of this function (vide infra). Exploring even a small part
of the phase space of microbiome and function will help in the
development of predictive understanding. As in other areas
of such multidimensional complexity, theory and simulation can
play critical roles in proposing key experimental tests of hypo-
theses and mechanisms, as well as in explaining observations.
Consequently, improved models at all scales, as well as bridges
across scales, such as appropriate quasi-static approximations, are
required, just as improved modeling has been critical for
understanding which materials in a vast search space are most
likely to have promising properties if synthesized.'*

Microbial electrochemical technologies (METSs) are examples
of such artificial microbiomes. Microbes have been used for
electrolysis, chemical production, and generation of electrical
power."”” In the future, these technologies may further be
coupled with photosynthetic microbes and produce or secrete
advanced biofuels or high-value chemicals and drugs. Microbial
fuel cells (MFCs) have been extensively researched but have not
yet produced a commercial product."*® Current MFCs suffer
from low power densities and small scales."®” Mechanistic
insight into microbe interactions with one another and with fuel
cell components remains elusive and hinders rational design
of MFCs. Intercellular electron transfer, extracellular electron
transfer (EET), and microbe electrode electron exchange are
processes that continue to elude comprehensive mechanistic
understanding."”’

Extracellular electron transfer has been extensively studied
in bacteria of the genera Geobacter and Shewanella. Several
pathways have been proposed to explain how microbes move
electrons beyond their outer membranes. It may be that electrons
can be directly moved to or from an extracellular surface by
contact with outer membrane proteins, shuttled to targets by
secreted electron carriers, or transferred along the length of
bacterial appendages such as pili or membrane extensions. ">
The design of microbial communities for maximal current output
is difficult without understanding the EET pathway and the
microbial components involved. To test how electrons are
moved across length scales ranging from microns across biofilms
to nanometers along individual cell appendages, nanoscience and
nanotechnology methods are needed. Manufacturing nanoscale
electrodes enables experiments to be performed that can probe
electron transfer within larger communities.'”> Furthermore,
scanning probe microscopies such as conductive atomic force
microscopy and scanning electrochemical microscopy can be
used to measure individual parts of cells, and recent enhance-
ments enable measurements of key components of biological
structures.'**191%%

Cocultures of multiple species have been shown to produce
larger currents than any of the pure cultures in MECs.'® Under-
standing the full community of microbes that power MFCs in
wastewater and benthic sediments will enable the efficient design
of artificial microbiomes for energy production. Genome
synthesis and targeted editing allow a far easier entry method
for rapid engineering of microbes that have thus far only been
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sequenced but have not been cultivated, thereby drawing on
the vast potential of the entire microbiome. Techniques that
have primarily been used in homologous libraries can easily be
applied with genes from the environment when those genes can
be rewritten to optimize codon usage and other parameters for
expression in a standardized chassis.

Single-Cell Genomics. Mechanism-based understanding
of microbiome function (vide infra) and its interactions with
host cells requires detailed characterization of the organisms
that compose the microbiome, including their genetic contents.
Complete genomic analysis of the microbiome implies deter-
mining the complete genome sequence of each constituent
strain. Achieving this goal is technically challenging because
of the complexity of microbiome communities, which may
contain hundreds of operational taxonomic units (OTUs), the
wide ranges of organism abundances, distorted representation
of organisms in easily sampled fluids, fine-scale differences in
genomes'*° that are functionally distinct but difficult to identify
and to understand at the DNA sequence level, the diversity in
conditions required for culture,”””"*® and lack of available
culture conditions for most organisms.

Single-cell genomics can productively contribute to the genomic
characterization of the microbiome, although technical improve-
ments to single-cell methods are needed for these methods to have
major impact on microbiome research.'” Standard approaches
to single-cell analyses involve the physical isolation of individual
microbes, lysis of each cell, and the amplification of the cells’
genomic contents by whole-genome amplification (WGA),
commonly multiple displacement amplification (MDA).”*

Single-cell genome sequences can be obtained directly from
crude samples to generate reference sequences for organisms
that are recalcitrant to laboratory culture.”’"*°* Such reference
sequences are valuable because they provide frameworks for
interpreting metagenomic reads from these organisms and can be
used to validate binning approaches that aim to create composite
genome sequences directly from metagenomic data sets.””* ™%
Single-cell sequencing can be used to obtain sequence infor-
mation from rare community members in cases where analyses
can be targeted to these organisms.””°

The high sensitivity of single-cell sequencing opens the
possibility of detailing the spatial structure of the microbiome,
which is lost in conventional genomic analyses. For example, single
cells obtained from microdissected tissues can be sequenced
and assigned to the microsample. This approach has been effec-
tively applied in tumor analyses.””” An alternative approach to
resolving spatial information is the use of single-cell workflows on
small groups of physically associated cells to produce “mini-
metagenome”.””® The co-occurrence of sequences from different
organisms in mini-metagneomic data sets implies physical and
functional association of those organisms, although care must be
taken to exclude technical contamination artifacts. Future in situ
single-cell analysis approaches may enable even higher resolution
of spatial relationships.

The rise of extraordinarily high-throughput DNA sequencing
makes comprehensive genomic analysis of the microbiome
theoretically possible by a number of different approaches. In
principle, high-throughput analyses of cultured isolates and/or
single cells could be used provided that such isolates and/or
amplified single-cell samples could be obtained. If such samples
were available, the major challenges would be cost-effective se-
quence library construction from such a large number of samples
and data analyses.

The major opportunities in single-cell analysis for microbiome
studies are streamlining experimental workflows, improving data
quality, and designing experiments that utilize single-cell data in
synergy with specialized sample collection methods and other
genomic analyses.

Currently available single-cell methods produce data quality
that is distinctly inferior to standard genomics methods. Early on,
contamination was a major impediment to single-cell analysis;***
extreme care remains critical to the production of contaminant-
free single-cell data sets.”” Typically, single-cell data sets enable
recovery of 10—60% of the genome due to the extremely uneven
amplification of the genome by WGA.”” Another issue with
single-cell genomic data quality is the high frequency of chimeric
reads generated in WGA, which can dominate coverage at
specific loci.”’°7*'* Chimeric reads interfere with de novo
analyses and analyses of horizontal gene transfer. In particular,
the high incidence of artifactual chimeras, commonly occurring
once per 5000 raw bases in single-cell MDA data, makes long-
read analyses of typical single-cell data useless.”"> The coverage
bias and location of chimera artifacts are nonreproducible
from cell to cell, enabling substantial gains in genome coverage
and assembly conti§uity if data from several closely related
cells can be pooled.'””*' Finally, techniques for analysis of RNA
(other than abundant rRNA) in single microbial cells are not yet
established,”"” although many groups are actively working on this
problem using strategies ranging from reducing the input
biomass in standard bulk protocols to using in situ sequencing
or probes for specific transcripts.

Si§niﬁcant work on improving WGA chemistries is under-
way."”” To date, efforts have focused on reducing amplification
bias in mammalian cells to enable improved genome recovery
at lower sequencing effort and to enable accurate assessment of
gene copy number. Today, WGA of microbial cells is ;)erformed
almost exclusively using MDA, with few exceptions,”' despite
the advent of alternatives that promise improved performance.”"”

Other work focuses on novel reaction formats for single-cell
WGA to improve throughput and data quality. There are two
ways to improve throughput for single-cell-resolved microbiome
analysis. The first is simply to enable WGA of a larger number
of cells. The second is to preselect cells of interest for WGA,
which is functionally equivalent to higher reaction throughput
when subpopulations are of interest. Lab-on-chip-based micro-
fluidic cell-sorting methods, including optical tweezers-based
approaches, can be used for cell selection based on observed
morphologies.”***°**'® Nucleic acid probes can be used to
identify cells based on lineage markers, although staining
protocols may further compromise data quality.””” Improved
approaches may apply nucleic acid probes to WGA products after
the amplification reaction is complete. Microdroplet approaches
with the potential for very high throughput and/or improved
data quality are also being developed.”'******" In addition, there
are alternative approaches like in-gel amgliﬁcation that offer
unique capabilities for single-cell studies.””

Despite extensive development of microfluidics for microbial
single-cell analysis by individual research groups, established
methods require specialized and/or expensive equipment, and
there is no commercially available system for microbial single-cell
genomics sample preparation.

Single-cell genomics fills important gaps needed to understand
the contents and structure of the microbiome. Single-cell geno-
mics may be the best way to characterize and to quantify micro-
biome composition at the strain level due to its high taxonomic
resolution and lack of culture bias. However, further improvements
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in data quality, throughput, and ability to target organisms
of interest are needed for single-cell genomics to make major
advances in microbiome research. In the intermediate term,
incremental advances in single-cell technology and improved
integration with other tools and approaches like advanced
analysis of metagenomic data and long-read sequencing will keep
single-cell analysis at the forefront of microbiome research.

Proteomics and Metabolomics. To characterize the
proteome and metabolome composition of myriad microbiomes
comprehensively will require transformative developments to
increase analytical sample throughput and biomolecule coverage
and the generation of computational tools necessary to analyze,
to integrate, and to visualize the obtained omics information.
Ultimately, improved analytics and analyses should lead to
tackling the ultimate goals of understanding microbial functions,
microbe—microbe and host—microbe interactions, networks,
and potentially the creation of predictive networks necessary to
manipulate and to control microbial systems.

A major limitation of current proteomics and metabolomics
capabilities is the need to compromise on either the scope of the
experiment or the completeness of the measurements. Another
significant limitation is the capacity of software to handle large
volumes of data. Most mass spectrometry programs/algorithms/
software break down when trying to analyze even hundreds
of data files. Simple conversion of data in tab-delimited forms
(e.g, mzML, .mzXML, or .MGF) so that data can be used easily
with third-party tools performs poorly, often slowly and with
errors. Batch processing requires skills at scripting. Similarly,
we lack good tools and appropriate scoring functions that can
address the complexity of the microbiome with proteomics. For
metabolomics, the reference spectra, some 300,000 in the public
domain covering some 20,000 spectra, do not cover microbial
chemistries well.””* Such limitations are areas of enormous
growth potential if we want to understand the function via the
molecular composition of the microbiome. To handle the vast
numbers of samples that will need to be analyzed to understand
microbiomes at the systems or population levels, traditional
liquid chromatography—mass spectrometry (LC-MS) platforms,
including the required analysis infrastructure, will need to be
optimized or completely changed to obtain rapid sample
throughput and high depth of coverage. A recent development
that is a significant departure from traditional LC-MS is the
construction of structures for lossless ion manipulation.”** This
technology has the potential to enable high resolving power in
ion mobility separations, which exceed the resolving power of LC
separations, and that in conjunction with MS-based platforms
may increase sample throughput by as much as 100-fold.
An additional LC-MS-based improvement with the potential
to improve metabolomics and proteomics analyses greatly is
multidimensional high-throughput separations for analyzing
distinct ion characteristics simultaneously in a single analysis.
Multidimensional separations can increase the overall measure-
ment separation power, resulting in greater information content
and more complete characterization of the complex samples.”*
It is also important to make the data interpretable for the
end user. Data visualization is critical for understanding, and this
need has only begun to be addressed for mass spectrometry.
For example, the development of fragmentation trees for
subclassification of chemistries,> cloudplots,227 structural
classification-based networking,228 and molecular networking229
will all make it easier for us to understand the data that are
collected by mass spectrometry and other means. Visualization is
critical for complex data sets. Although many improvements are

needed to develop these capabilties in a common methodology,
microbial imaging mass spectrometry has seen enormous
advances.”” Microbial imaging mass spectrometry can detect
molecules, or fragments of molecules, at resolutions from 30 nm
to millimeters. Imaging mass spectrometry of germ-free mice
colonized with B. theta. or B. longum revealed how these bacteria
are needed for the metabolism of complex carbohydrates,
altering the immune system as evidenced by the increase in
prostaglandin E2 and how they actively create new bile acid
derivatives (Figure 3A). Three-dimensional cartography expands
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Figure 3. Representative examples of imaging mass spectrometry and
3D cartography. (A) Matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry image of bile acid
metabobolism by B. theta and B. theta/B. longum. Upon colonization,
primary bile acids increase in concentration, specific bile acids have
specific distributions, and the microbes actively metabolize bile
acids. (B) Three-dimensional cartography of the surface of human
skin. The signals shown are representative metabolomics masses
detected in the experiments.

this range to centimeters, as shown for human skin (Figure 3B),
and can be readily adapted to global scales.””" The speed of
technology development for omics analyses is rapid, and the next
steps for microbiome research are to use new technologies
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effectively to answer complex biological questions. Critically,
the massive scale of data to be generated from these new
technologies will challenge current bioinformatics capabilities.
For example, we can currently only annotate less than 2% of
the data that are collected in metabolomics experiments; com-
putational solutions are key to overcome this annotation
challenge.”**~*** New software and algorithms will be required
to compile data sets, to overlay multi-omic analyses, and to
visualize and to communicate important networks, interactions,
functions, and other biological phenomena to emerge from
the data. To our knowledge, at present, the only metabolomics
analysis infrastructure where a large portion of the analysis
is performed on microbiome data sets is the Global Natural
Products Social Molecular Networking (GNPS),”** a crowd-
sourced analysis infrastructure.

Opportunities for Functional Microbiome Character-
ization by Activity-Based Protein Profiling. Considerable
challenges exist in determining the functional roles of human
microbiomes or complex microbial communities in the environ-
ment. Due to the intrinsic complexity of these systems, the
majority of our mechanistic insights into microbiomes and their
enzymatic functions are either inferred from genomic sequence
data or derived from experimental evidence using a relatively
small number of culturable model organisms. More recently,
metatranscriptomic data have been used to evaluate gene
expression of the “active” fraction of microbiomes, provid-
ing greater insight into their potential aggregate functional
capacities.”****” To advance our understanding of the functions
of microbiomes, innovations in analytical approaches are needed
that permit identification of the specific proteins associated with
a given biochemical activity. Such innovations could, for instance,
pave the path toward rational approaches to manipulate the
human microbiome for therapeutic advantage or construct syn-
thetic microbiomes to facilitate bioenergy production or bio-
remediation processes.

Activity-based protein profiling (ABPP) is a powerful chemical
biology approach with the capacity to elucidate understanding of
the specific protein activities that comprise a given microbiome
phenotype. In ABPP, synthetic activity-based probes are used to
report directly on protein function, regulation, and protein—
small-molecule interactions within the native physiological
context of systems under study. The probes target metabolite-
binding sites of proteins (enzymes, transporters, or regulators)
rather than DNA or RNA sequence, and thus their design is not
constrained by sequence similarity or prior knowledge of DNA
sequence, allowing identification of a broad variety of microbial
organisms with the desired functional attributes. Specifically,
probes can be developed to address: (1) targeting of enzymes
with specific metabolic functions;”*® (2) chemical probes that
mimic natural compounds, such as natural products or
metabolites, that selectively label cells able to utilize the natural
compound and bind to transporters and other proteins
(enzymes, regulators) that are involved in metabolite detection,
salvage, and disposition; and (3) probes that target protein
regulator modifications, such as protein thiol redox events.”*”
The probes consist of three elements: (i) a reactive group that
forms an irreversible covalent bond with a target protein via
direct catalytic reaction or photoreaction, (ii) a binding group
(e.g., protein substrate or metabolite) that biases a probe toward a
protein or protein family and may also impart cell permeability,
and (iii) a reporter group such as a fluorophore or biotin for
enrichment and subsequent proteomic characterization. Alter-
natively, several studies employ probes containing an alkyne or

azide moiety to enable the bio-orthogonal “click” chemistry
reaction that permits the addition of a reporter tag following
in situ or in vitro probe labeling; this chemistry also facilitates
the facile exchange of reporter types applied based on the desired
application and outcome of the study and properties of the
sample being assayed.

To understand the function of the
microbiome in different habitats,

it is necessary to look across different
spatial and temporal scales as well as
to determine function at different levels
of expression.

To date, ABPP has been applied to a diverse array of cultured
microbes, from pathogenic organisms such as Mycobacterium
tuberculosis and Staphylococcus aureus to cyanobacteria.”*’
However, application to complex uncultivated microbiomes
has yet to be reported; these challenges include optimizing
sample labeling and processing, obtaining genomes or meta-
genomes representative of the microbiomes under study to be
used for proteomic data analytics, and challenging analysis.
However, these challenges are representative of microbiome
proteomic analyses in general and need to be overcome to enable
comprehensive omic studies. Despite challenges, ABPP has
significant potential to play key roles in resolving spatiotemporal
microbiome dynamics by imaging and proteomics, in character-
izing functional responses due to microbiome perturbation by
the environment or host, and in translating genomes or meta-
genomes directly to functional profiles. Coupled to improved
omic and imaging strategies, ABPP will be important to the
functional characterization of microbiomes.

Multiscale Multi-Omics. Functional testing at the ecosys-
tem rather than the enzyme level is not yet possible. Subsets of
data are accessible. Examples from different fields include bio-
reactors, where concentrations of different chemicals and gases
can be tracked, the gut, where nutritional and physiological status
of the host animal can be assessed, and for soils, where direct
turnover measurements or the nutritional and physiological
status of plants can be determined. At larger scales, one could
apply this concept to aqueous environments to define ocean or
lake health. Understanding the emergent function of microbial
ecosystems remains an unsolved challenge but is a target of this
initiative.

To understand the function of the microbiome in different
habitats, it is necessary to look across different spatial and
temporal scales as well as to determine function at different levels
of expression. Genome and metagenome data are valuable
for making predictions about potential functions. However,
not all genes are expressed and translated to proteins under
all conditions. To assess function more directly, one could use a
multi-omics approach. The combination of 16S rRNA gene
sequencing, metagenome sequencing, metatranscriptome se-
quencing, metaproteomics, and metabolomics has been referred
to as an “omics information pipeline” (Figure 4).”*' Each step
along the omics pipeline provides different details as to potential
function or expression. For example, a multi-omics approach
was recently used to determine the impact of permafrost thaw
on microbial community processes.”** In this study, the ratio
of genes in the metatranscriptome to metagenome was used to
assess relative levels of expression and activity of specific species
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Figure 4. Various stages of the multi-omics pipeline provide different levels of information.

and functional genes in permafrost samples, compared to seasonally
thawed-active layer samples and to a completely thawed
thermokarst bog.

Another example of the use of a multi-omics approach was
the use of 16S sequence analysis,”*’~>* metagenomics and
proteomics,”*® and metabolomics'® to study twins that were
discordant for Crohn’s disease. In this series of studies, the exact
same fecal samples were analyzed using different omics
approaches. There were consistent differences between healthy
and diseased individuals for all of the data sets, including
lower diversity, depletion of Faecalibacterium prauznitzii, and
lower levels of proteins involved in butyrate metabolism by
F. prauznitzii in individuals with Crohn’s disease inflammation
in the ileum. Additionally, at the metabolite level, there were
thousands of metabolites that differentiated healthy from
Crohn’s disease, including a higher amount of bile acids in the
diseased individuals.”*” However, the majority of the metabolites
could not be identified, highlighting the need for better
understanding of and databases for metabolomics.

Each step along the omics pipeline
provides different details as to potential
function or expression.

After the Deepwater Horizon oil spill in the Gulf of Mexico,
samples were taken from a deep plume of oil in the water column
and analyzed by a combination of sequencing technologies,
including 16S, metagenome, metatranscriptome, and single-cell
sequencing.”*® The combined results revealed shifts in structure
of the microbiome, shifts in transcription toward alkane
degradation in the plume, as well as draft genomes of potential
hydrocarbon-degrading members of the community.

A multi-omics approach has also been applied to the charac-
terization of the complex molecular mechanisms employed in
host—pathogen—commensal interplay during Salmonella intesti-
nal infections.*** Proteomics, metabolomics, metagenomics,
and glycomics were used to reveal the dynamic disruptions to
the intestinal microbial population and metabolite profile as a
result of Salmonella enterica serovar Typhimurium infection. The
emergent application of multi-omics strategies to microbiome
research will continue to have significant impact, but bottlenecks
remain in omics strategies. For instance, proteomics requires
annotated genome files to associate experimental spectra to
theoretical spectra for peptide/protein characterization. Metab-
olomics requires spectral libraries and metabolite standards for

high-fidelity identifications. Several groups are addressing these
and other challenges, thereby increasing the individual and com-
bined utility of omics approaches.

Multiscale Imaging and Functional Measurements.
Discovery-based approaches, such as microbial genomics, have
been revealing the composition of the microbiome.”’ How-
ever, there remains a great need to define precisely the roles and
nanoscale relationships of each member of a microbial
community. To understand the interactions that make up the
complex ecosystems in our bodies and our environment, these
communities now need to be understood at the molecular scale.
This advance will require the development of new tools for
investigating the function of molecular processes within
microbial communities.”*' Molecular-scale imaging can provide
dynamical information from which to infer function. This cellular
and subcellular appreciation will yield insight into human health
and disease and enable advances from personalized medicine to
control the human microbial community to engineering the
ecology of natural and built environments.

Optical microscopy is a direct, noninvasive technique that can
attain real-time information about microbial communities. Thus,
imaging stands to have wide-ranging impact in the study of the
microbiome. On the scale of thousands, millions, or more
microbes, imaging will answer questions in real time about
membership and spatial organization of cells in communities,
about heterogeneity, and about diversity. A generalizable method,
imaging promises to elucidate the cellular density and composition
in water, on land, and within the body. On the single-cell and
subcellular scale, imaging will fill in gaps in our knowledge about
the biochemistry of microbiome members. Important questions
will be answered, for instance: how do bacterial cells communicate
with one another and with their host? How do microbes perform
symbiotic functions like nutrient metabolism? How do cells
communicate with and react to their physical environment?

Challenges of Imaging the Microbiome. The challenges
of imaging the microbiome will push the limits of imaging
technology. In particular, the community is of the utmost
importance to the microbiome. Although models can be useful,
communication between cells and interactions with the environ-
ment cannot be ignored. This community is not two-dimen-
sional; complete, thick, three-dimensional (3D) assemblies must
be considered, whether in animal hosts or in soils. Imaging the
microbiome is therefore an inherently multiscale problem in
both time and space. Visualizing the microbiome will require an
arsenal of tools at different levels, from molecular-scale single-cell
studies of prototypical microbes to large-scale, high-throughput/
low-resolution techniques. Overall, new imaging tools need to be
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developed to resolve 3D materials in real time and to handle
thick, opaque samples, including soil and tissue. Indeed,
development of some of the needed imaging technology can
benefit from solutions to other complex problems such as those
being addressed in neuroscience.'*®

Imaging Technologies. Fluorescence and transmission
microscopy are noninvasive methods ideally suited to resolve
the dynamical processes in microbial communities. Confocal
microscopy can achieve ideal diffraction-limited resolution,
enabling optical sectioning and cell-level resolution. Still, optical
microscopy is traditionally limited in its ability to visualize
molecular-scale details and to probe inside bacteria cells. Super-
resolution imaging has therefore been recognized as having the
power to revolutionize biology.”>” In particular, single-molecule
fluorescence tracking and imaging are sensitive to low copy
number proteins, can disentangle heterogeneous behaviors, and
bring the advantages of fluorescence microscopy to the high-
resolution regime by enabling live-cell imaging with nanometer-
scale resolution in conventional fluorescence microscopes.”>
Single-molecule microscopy has been extended to three dimensions,
and modern developments based on adaptive optics, two-photon
microscopy, and lattice light sheets now bring high-resolution
imaging even to deep-tissue imaging.z‘%255

Labeling Technologies. Developments in protein-labeling
technology will be important as we work toward the challenge of
fluorescent imaging in the microbiome. Fusions to intrinsically
fluorescent proteins are the traditional workhorse of optical
microscopy, but these do not extend to the red, making it difficult
to multiplex more than two fluorescent protein colors in high-
sensitivity applications.”*® Furthermore, the chromophore in
traditional GFP derivatives require oxygen to mature, making
them unsuitable choices for imaging living anaerobic cells,
such as most gut bacteria.””” Enzymatic labeling systems like
HaloTag™® provide a useful alternative for specific covalent
linkage of small molecules, and these have been used to label
specifically a prototypical starch catabolism protein, the SusG
a-amylase, in the prominent gut symbiont Bacteroides
thetaiotaomicron.”>’ Looking forward, unnatural amino acid
labeling is a promising way to tag proteins fluorescently in a less
perturbative way, although this labeling scheme has not yet been
demonstrated for single-molecule fluorescence applications.”*’

Although protein-labeling methodologies are now well-
established for fluorescence and super-resolution microscopy,
there remains an important need for fluorescent labeling
techniques that are suitable for high-resolution, high-sensitivity
imaging of other biomacromolecules. Beyond protein imaging,
molecular-scale characterization of bacterial cell biology re-
quires the identification of protein—gene interactions to
elucidate regulatory responses. These can be inferred from
gene knockouts,”*"*** and new technologies based on a repur-
posed CRISPR/Cas system now make it possible to label specific
genetic loci directly.””* Furthermore, fluorescent or fluorogenic
probes for visualizing small molecules will be important to eluci-
date communication. Recently, Karuntilaka et al. demonstrated
that the prominent human gut microbiota member Bacteroides
thetaiotaomicron could grow on fluorescently labeled starch,
allowing nanoscale detection of the mechanism of starch
recognition.259

Model Systems To Aid in Small- and Intermediate-
Scale Studies of the Microbiome. Because of the multiscale
dynamics of the large-scale microbiome, community-level studies
will need to be complemented by high-detail, high-resolution
examinations of model systems. Fortunately, such model systems

exist, for instance, the prototypical starch utilization system (Sus)
in B. thetaiotaomicron,?“é4 which has tractable genetics and can be
manipulated in culture or in mice.”*> Such studies have yielded
tremendous insight into how diet shapes the composition of the
human microbiome.”*® Larger scale, yet microbiologically
manipulatable and transparent models like zebrafish provide
interesting opportunities, in particular, for investigating mech-
anisms leading to intestinal injury and inflammation.**”*%
Finally, engineered environments such as mimic soils, epithelial
monolayers,”*” and synthetic biofilms””® provide well-controlled
substrates that create simplified models of natural environments
and host associations.

Another class of model microbiomes is that provided by plants
and invertebrate animals that have beneficial symbioses with
one or a few species of bacteria. The longest and best studied of
these associations is that between nitrogen-fixing bacteria and
leguminous plants,”’" which have provided great insight into
areas as diverse as the chemistry of cell—cell signaling and the
mechanisms of coevolution. More recently, a number of natural
invertebrate models have begun to produce similar insights
into the principles governing bacterial—animal microbiomes.
The phylogenetic diversity of these associations is exceeded
only by the breadth of biological questions they have opened to
investigation (Figure S). Like nitrogen-fixing symbioses, the
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Figure 5. Examples of simple model symbioses for microbiome
research.

monospecificity of the microbiome present in the biolumines-
cent organ of sepiolid squids has made possible fundamental
discoveries like quorum signaling in a beneficial symbiosis”’* and
provides a window into the experimental manipulation of
population-level diversity in a microbiome.””>*”* In the past few
years, studies of a number of simple consortia such as those
present on the surfaces of hydra’”> and within the guts of leeches
or honey bees”’*””” have begun to reveal the mechanisms of
immunological and physiological communication between a host
and its microbiota. Taken together, these simple, but natural,
microbiomes have proven remarkably useful in providing
windows into the workings of more complex and difficult to
study consortia like that in the mammalian gut. For example,
the roles of bacterial envelope molecules in inducing tissue
development or of symbiont modulation of circadian rhythms
were discovered in invertebrate model symbioses®’® and led
to the reco§niti0n that bacteria regulate similar activities in
the gut.”””**" We have only begun to learn how natural, but
simple, animal symbiotic systems will yield insight into how
microbe—host and microbe—microbe interactions underlie
microbiome function. The small sizes of invertebrate micro-
biomes will make them important platforms upon which to
develop and to apply nanotechnologies that enable microbial
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Figure 6. Molecular-scale depiction of starch catabolism in gut symbionts is derived from single-molecule imaging and structural biology. (a) X-ray
crystal structure of the prominent gut symbiont Bacteroides thetaiotaomicron starch utilization system c-amylase protein SusG. Ribbon diagram of
SusG, colored by domain. Metal ions are displayed as orange spheres, and likely ethylene glycol molecules are in light green. The locations of
maltoheptaose molecules bound to the active site, to the secondary starch-binding site, and to the carbohydrate-binding module CBMS8 are
represented by mauve, green, and gray spheres, respectively. (b) Malto-oligosaccharide bound to the active site of SusG. Electron density from an omit
map at the SusG active site of the SusG-D498N mutant cocrystallized with maltoheptaose. The electron density is contoured at 3 s, and the stick model
of the bound oligosaccharide is colored according to atom type. (c) Single-molecule trajectories of SusG-HaloTag-tetramethyl rhodamine (SusG-HTL)
in glucose (random colors) reveal that the starch utilization protein SusG diffuses heterogeneously on the B. thetaiotaomicron outer membrane.
(d) Single-molecule tracks show confined movement of Alexa 488-labeled amylopectin (AP-Alexa 488) bound to a cell. (e) Time-dependent single-
molecule tracks of SusG-HTL in starch show high confinement of SusG at the position of AP-Alexa 488 (arrow). Panels a and b reproduced with

permission from ref 284. Copyright 2010 Elsevier. Panels c—e reproduced with permission from ref 259. Copyright 2014 Karunatilaka et al.

community manipulation, chemical analysis, imaging, and other
modes of investigation.

Synergies with Biology, Biochemistry, Spectroscopy,
and Bioengineering. While imaging can provide high-
resolution, real-time, 3D glimpses into the microbiome, these
images and tracks can be assigned function only through inte-
gration with data from biology and biochemistry. Importantly,
structural biology, which achieves atomic resolution, can probe
the in vitro structure and binding sites of microbiome
proteins.”*"*** This in vitro snapshot can then provide a context
for the less tidy information that comes from live-cell and in vivo
imaging.”” Optical microscopy can also be easily integrated with
other imaging methods, including electron tomography of cells
and organisms, atomic force microscopy of surfaces, and X-ray
tomography. Overall, synergy between biophysical and optical
tools and cell biological approaches is needed to explore the
molecular-scale aspects of the microbiome.”**

Assigning function to microscopic data will further require
spectroscopy and other functional assays. Comprehensive
understanding of the molecular-scale behavior of microbiomes
will therefore be achieved only by multiplexing functional and
imaging data, for instance, by correlating images with readouts
for nutrient uptake, communication, and quorum sensing. Such a
large-scale effort will need to take advantage of computation and
data repositories, and indeed, these applications will pose significant
challenges that may motivate new computational approaches.

Applying State-of-the-Art Microscopy to Questions
about the Microbiome. The human gut microbiome plays
key roles in health and nutrition by metabolizing many host-
indigestible carbohydrates. Indeed, the ability to recognize and to

process carbohydrates strongly influences the structure of the gut
microbial community. Karunatilaka et al. used nanometer-scale
super-resolution imaging to explore the transient interactions,
assembly, and collaboration of the proteins involved in starch
processing by the starch-utilization system (Sus) in the
prominent human gut symbiont Bacteroides thetaiotaomicron in
real time and in live cells.”>” This project brought molecular-scale
understanding to this aspect of the human microbiome, as well as
demonstrated the power of single-molecule imaging of living
anaerobes. Protein fluorescent labeling was performed based
on information from X-ray crystallography about the structure of
the a-amylase SusG (Figure 6a) and the SusG starch-binding
site (Figure 6b).”** Live-cell super-resolution imaging, single-
molecule tracking (Figure 6c), simultaneous monitoring of starch
and protein moieties (Figure 6d,e), and Sus protein knock-
out strains provided unique mechanistic insights into a glycan
catabolism strategy that is prevalent within the human gut microbial
community. Overall, the results from this study provided a working
model of Sus complex assembly and function during glycan
catabolism and are likely to describe aspects of how other Sus-like
systems function in human gut Bacteroidetes within the human gut.

On the organism scale, another state-of-the-art imaging tech-
nique, light-sheet microscopy,”® has been used to visualize the
colonization of a live, vertebrate gut by specific bacteria with
sufficient resolution to measure activity over a population range
from a few individuals to tens of thousands of bacterial cells.”*
By acquiring 3D images of living, initially germ-free zebrafish
larvae inoculated with fluorescently labeled strains of Aeromonas
bacteria over the course of several hours (Figure 7), the authors
quantified bacterial growth kinetics, finding that the average
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Figure 7. Growth kinetics of a microbial species in the zebrafish gut
monitored in vivo by light-sheet microscopy. (A) Image of a larval
zebrafish § days postfertilization, with the intestine shown by phenol
red dye (red). Scale bar: 250 pm. (B) Maximum intensity projection
(MIP) at 1.6 h postinoculation of the initially germ-free zebrafish
with Aeromonas veronii. Several individual bacteria are visible, and
the inset shows a magnified view of a single bacterium (inset width:
22 um). White bars indicate autofluorescent sources from the
zebrafish host. Scale bar: 100 gm. (C) MIP of the same fish as shown
in (B) at 9.1 h postinoculation, showing a large bacterial population
at this time point. Scale bar: 100 gm. Orientation of all images is
anterior to the left and dorsal to the top of the panel. Reprinted with
permission from ref 268. Copyright 2014 Jemielita et al.

population growth followed a logistical model. Furthermore, the
cell-level resolution of this method uncovered heterogeneities
that would be masked by ensemble measurements. In particular,
by resolving the spatial and temporal dynamics of the bacteria,
these cells were found to be nonuniformly distributed through-
out the gut, and bacterial aggregates were found to grow con-
siderably faster than discrete individuals. These results highlight
the importance of acquiring cell-level maps to predict host—
microbe interactions and suggest that single-organism-level spatial
characterization will help to describe host-associated microbial
community assembly.

Bacteria in biofilm communities are phenotypically distinct
from those in isolated, free swimming form; thus, new strategies
for experimental characterization of these phenotypes will
provide a powerful complement to genome-based and tran-
scriptome-based approaches. Multidisciplinary approaches will
be important since the new tools will be both experimental and
conceptual.'® While much has been learned, we are reaching
the limits of traditional bacteriological methods since biofilm
development depends strongly on epigenetic and communal
factors such as individual responses to chemical gradients,
proximity of neighbors and neighbor behavior, and heterogeneity
of signals. For example, super-resolution microscopy can be used
to delineate the distinguishable individuality of each cell in a
community, as well as the heterogeneous environments that are
created and felt by each cell, as exemplified in recent work on
Vibrio cholerae."®”

Present technology enables either analyses of only a small
number of cells or analyses of entire cell populations that have
been removed from the conditions of interest. Because bacteria
in growing communities often display multiple phenotypes that
are not discerned when observed collectively, what is needed are

methods that track the behavior of individual cells at the
community level. Recently, massively parallel techniques have
been developed to track single-species assemblages at single-
cell resolution.”****” Movies of bacteria imaged by microscopy
are translated into full histories of individual cells and searchable
databases of behavior, so that the information content extracted
is ~100,000X greater than that from traditional methods. These
methods must be generalized to address multispecies communities.

Examples of symbiosis within microbial consortia demonstrate
the importance of motility in the self-assembly of these mixed-
species assemblages. However, we will also need to generalize
our experimental techniques to create surveillance systems for
tracking lineage, signaling, and secretion, in addition to motility,
so that we can determine how dynasties of cells of a given species
interact with themselves and with others. A step in the right
direction can be seen in recent work on combinatorial fluorescent
labeling that combines confocal imaging with spectrometry.”®”
While traditional fluorescence in situ hybridization traditionally
only labels a small number of phylotypes in a community, the array
of fluorescent signatures that can be deconvoluted from a single
microscopy image has been expanded by using binary combi-
nations of fluorophores. Using combinations of genus- and family-
specific oligonucleotide probes targeted to microbial rRNA,
15 different taxa in human dental plaque were simultaneously
imaged and analyzed.”*®

Sample Preparation and Multimodal Imaging for
Advanced Analysis. Sample preparation is an important
element that will determine the overall complexity and success
of a given imaging or sensing instrument and its application to
microbiome-related analysis and characterization. In cases where
destructive or invasive sampling and analysis are acceptable,
various mainstream labeling and sample preparation strategies,
including fluorescence or isotope-based labels and multiplexed
micro- and nanofluidic systems, can be utilized to bring sensi-
tivity and specificity to detection and tracking of various chemical
signatures to probe, for example, genes, enzymes, metabolites,
etc. Recently developed fluorescence microscopy/nanoscopy
super-resolution techniques such as photoactivated localization
microscopy (PALM),**” stochastic optical reconstruction micros-
copy (STORM),” stimulated emission depletion microscopy
(STED),”" structured illumination microscopy,””” and light-sheet
microscopy””” will find critical uses in revealing spatial and
temporal dynamics of nanoscopic processes within single micro-
organisms.”*****7>° On the other hand, there is also an important
need to create nondestructive or minimally invasive sampling
interfaces without altering the natural habitat of the microbiota,
and these types of imagers and/or sensors will need to be mostly
label-free and require minimal front-end processing before a
measurement is performed. For label-free systems, specificity can
still be achieved by various means, through, for example, endo-
genous contrast mechanisms (which can be read, e.g., by Raman
spectroscopy,”*** autofluorescence imaging,”””*’ multispectral
imaging,”®" optical scattering®>**%) for 2D and 3D morphology as
well as motion. The latter can be especially interesting for the
analysis of airborne and waterborne microbiomes and would be an
exciting research direction to create fundamentally new imaging
designs that utilize motion as a key signature for microbiome
analysis.

Measurement Throughput and Sampling Volume. The
spatial and temporal throughput of imaging and sensing
technologies is important, especially if the diversity of microbial
communities is large and their spatiotemporal patterns are not
known. Multimodal and advanced microscopy/nanoscopy and
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spectroscopy tools, although extremely powerful with their
multidimensional information, tend to be low throughput and
can only probe rather small fields of view or sample volumes.
This limitation can potentially be addressed by some of the
emerging computational imaging and sensing techniques, which
can analyze orders of magnitude larger volumes by using lens-free
on-chip designs,”* where the sample volume and field-of-view
are dictated not by optics or lenses, as in the case of traditional
imaging designs, but by the active area of an optoelectronic
sensor chip, which can easily reach 10—20 cm? using modern
CCD and CMOS technologies. Another interesting advantage of
such computational imaging and sensing tools, over their
traditional counterparts, is that they can also be made
significantly more cost-effective and field-portable, which opens
up opportunities currently beyond the reach of traditional
advanced laboratory-grade imaging and analysis tools.”””

Field-Deployable and Ubiquitous Imaging and Sens-
ing Tools. For decades, microscopy has been the workhorse of a
number of fields including medicine and biology. Over the past
tew years, however, cost-effective and compact microscope
designs were developed such that even mobile phones could be
converted into advanced microanalysis tools, capable of
detecting single viruses or bacteria, conducting blood count,
measuring molecular signatures of diseases in bodily fluids, high-
resolution imaging of histopathology slides, malaria smears,
among many others.”*°~*'> All of these mobile imaging, sensing,
and measurement interfaces benefit from economies of scale,
mostly due to mobile phones and other consumer electronics
devices, and through these emerging platforms various imaging
and sensing tasks that are normally performed in advanced
laboratories can now be performed in field settings in extremely
cost-effective ways.”"? Another dimension of this exciting
development is that it opens up new opportunities for citizen
scientists to make meaningful contributions to microbiome
research. In other words, through these simple, cost-effective,
ubiquitous, but powerful interfaces that now give interested and
engaged citizens sensitive and specific measurement capabilities
at the micro- and nanoscales, we are likely to see massive
increases in the numbers of useful measurements that sample
various microbiome-related signals.

Once successfully scaled up, this smart network of micro-
scopes, measurement tools, and their users (ie, professional
scientists as well as citizen scientists) could deliver an
extraordinary bounty of microbiome data through innovative
uses of this network and its expanding database. For instance, by
creating massive libraries of various microbial communities,
parasites, viruses, efc., we can dynamically track the spatiotem-
poral evolution of different micro-organisms and investigate and
identify the cause—effect relationships of these patterns at large
scales. Such a network of microscopes and related databases
could be a priceless global asset for research and for microbiome-
related applications for both the developed and the developing
world. On the other hand, one important potential challenge
toward this vision is handling such large-scale data and creating
standardized interfaces and repositories, as discussed below.

Precision Tools for Manipulating Microbiomes. In the
context of naturally occurring microbiomes of high complexity,
determining the roles of specific microbial species, biovars, genes,
and gene products in community function is critical and will
require tools for precise manipulation. Ideally, these tools would
be useful for studying microbial communities in diverse
environments, from agricultural soils to gingival pockets, but
niche-specific approaches are also of value. A toolkit for deleting,

adding, or genetically modifying specific microbes in situ, alone
and in combination and without the need for prior cultivation,
would be of extraordinary value. In addition to their utility for
interrogating and managing microbiota, a subset of these tools
could provide new approaches for treating infectious diseases in a
way that reduces selection for transmissible resistance and leaves
beneficial microbes unharmed (see Box 2).

Box 2. Modeling approaches to capture microbial meta-omic data to develop neural-
network learning models for forecasting ecosystem responses.

Bottom-Up Mechanistic Models: Genome-Enabled Metabolic models consist of a
stoichiometric matrix with all metabolic reactions, a mapping between metabolic genes and
reactions, and an objective function such as cellular abundance. 33! Genomes acquired from
traditional sampling and metagenome assembly provide a roadmap of the potential
metabolic interactions that can be applied to predict microbe response and behavior using
constraints-based flux balance analysis to capture the metabolic limits of an organism.
Cheminformatics models enable the prediction of biochemical pathways from a mechanistic
analysis of existing biochemical databases.331-333 When applied to a set of substrates and
products, these models can be used to predict novel compounds and pathways. Agent-
based models can be developed that synthesize physicochemical, genomic, and
metabolomic data into compartmentalized species distribution networks, capable of
predicting interspecies metabolic interactions and biochemical activity within spatial and
fluid dynamic models.

Top-down statistical models. Species distribution models test for associations between
environmental parameters and microbial genes, species, transcripts, and metabolites, using
discrete or continuous constructs. Site-specific effects are usually larger unexplained in the
absence of longitudinal data, that is why to model the dynamics of the human microbiome
or a marine ecosystem requires extensive time-series observations to capture the
systematic and periodic trends that can be related across sites127.334-336

Dynamic Bayesian Networks can capture interactions between entities across multiple
system levels (metabolites, genes, species) to enable specific co-dependencies to be
described that can help to connect top-down to the bottom-up approaches. 148:330-337
Convergent Cross-Mapping elucidates codependences between non-linear interacting
variables that are normally missed through traditional networking analysis.?*® Using
longitudinal data, it is possible to create convergence manifolds to cross-map non-linear
temporal co-associations.

Integrating Bottom-Up with Top-Down. By combining bottom-up with top-down
systems-scale models, it is possible to control major cross-site differences observed
between ecosystems, and therefore to develop forecasting neural networks to capture and
predict the linear and non-linear emergent properties of each ecosystem construct. So the
overall deliverables from these models would be a complete interaction-network
representation of microbiome interactions with environmental nutrients overtime with
single-gene resolution (where possible); novel biochemical pathways predicted by
cheminformatics to fill knowledge gaps in food-webs; and a dynamic model of microbiome
structural evolution capable of predicting responses to changes in environmental
conditions, such as climate change, diet, or disease burden.

Design features for a precision antimicrobial capable of
ablating specific members of a diverse microbial community
in situ include (1) high specificity, definable at the species, strain,
biovar, or other relevant level and (2) high efficiency, which
includes gaining access to target cells in natural environments
and killing activity upon arrival. Although still at an early stage,
two approaches for engineering precision antimicrobials have
shown eflicacy in model systems of human disease. The first is a
specifically targeted antimicrobial peptide (STAMP) that
consists of a targeting sequence fused to an antimicrobial peptide
(AMP). A STAMP called C16G2 selectively kills Streptococcus
mutans, which is a predominant cause of tooth decay.’'* For
C16G2, targeting is conferred by a 16 amino acid sequence
derived from a strain-specific bacterial pheromone, competence-
stimulating peptide, fused to a 16 residue broad-spectrum AMP
designated G2. In an in vitro, saliva-derived biofilm model
containing over 100 species representative of the diversity of the
human oral microbiome,*'® C16G2 showed impressive anti-
microbial activity against S. mutans, decreasing average
abundance from 24 to 0.1%. A corresponding community-level
shift in species composition and abundance was also observed.
Although likely due to the ecological consequences of elimi-
nating a predominant member of the multispecies biofilm,
further studies are needed to determine if the broad spectrum of
the G2 AMP also results in some level of off-target killing.
Nonetheless, this is a promising approach for an anticaries
drug, and STAMPs may provide broadly applicable tools for
engineering microbiomes in other environments.
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Another strategy for designing precision antimicrobials is
based on contractile nanotubes, ubiquitous tools used to pene-
trate bacterial surfaces in nature, often with exquisite specificity
and efficiency. Their utility is greatly expanded by the ability to
engineer specificity for different cell-surface receptors, combined
with a generic mechanism of cell penetration. Myovirus bacterio-
phages, exemplified by phage T4, use contractile injection
systems to translocate DNA into bacterial cells.*'® An adaptation
of the same contractile mechanism is used by numerous bacteria
to kill competitors, with the best studied example being the
R-type bacteroicins produced by Pseudomonas aeruginosa.”” In
contrast to phage, these function as bactericidal particles by
inserting ion-conducting channels across the envelopes of target
bacteria. A recent cryo-transmission electron microscope (cryo-
TEM) analysis of pre- and postcontracted particles provides a
model for contraction that likely applies to ejection systems used
by phage, bacterial type-VI secretion systems, and other related
machines.”’” The contractile nanotube shown in Figure 8
consists of an outer sheath surrounding a hollow inner tube. The
precontracted particle is assembled into a high-energy, meta-
stable state in which sheath and tube proteins interact through
charge complementarity. Contraction initiates when tail fibers,
which are disordered and not resolved by cryo-TEM, bind to
cognate receptors on bacterial cell surfaces. This recognition
initiates a cascade of events that results in translational move-
ment of sheath subunits that are intertwined by p-sheet
augmentation. During contraction, the sheath increases in width,
decreases in length, and electrostatic interactions between sheath
and tube proteins are broken. The released energy powers the
injection process, which occurs in the absence of ATP. In many
cases, a single R-type bacteriocin is sufficient to kill a bacterial cell.

The ability to retarget bacteriocin specificity by substituting
ligand-recognition domains of receptor-binding proteins (RBPs)
from phage or other contractile bacteriocins has been demon-
strated in multiple studies.”'*™**° Since bacterial genomes are
often replete with prophage sequences, the ability to culture a
particular organism may not be required to design a precision
ablating tool if sufficient genome sequence information is
available.*””" Although the bactericidal spectrum of the structure
shown in Figure 8 is likely confined to Gram-negative species,
Gram-positive bacteria produce analogous bactericidal structures
that can also be retargeted by substituting RBPs. The utility of
this approach was recently demonstrated in a mouse model of
antibiotic-induced infection by Clostridium difficile,””® which has
become a worldwide public health threat (Box 1). A contractile
nanotube engineered for specificity against a hypervirulent strain
of C. difficile efficiently prevented infection of antibiotic-treated
mice, with no detectable effects on the normal gut microbiota.**’
In the context of infectious diseases, a unique benefit of precision
antimicrobials is their potential for use not only as therapeutic
agents but also for prophylaxis, which is rarely indicated for
conventional antibiotics. A genetic approach with the potential
for genome modification as well as precise ablation has recently
been developed using CRISPR-Cas technology in which RNA-
guided nucleases, delivered by transmissible plasmids or phage,
are engineered to alter specific DNA sequences to modify or to
kill a bacterial host.***

The above examples are based on engineering targeted
bactericidal molecules or structures using naturally occurring
components. The opportunity exists, however, to develop bio-
inspired nanomaterials with desirable properties and utility as
precision tools. Numerous types of nanoparticles have potent
antibacterial killing efficiency, including nitric-oxide-releasing
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Figure 8. Cell penetration by a bactericidal contractile nanotube
(CTN). (A) CTN binds specifically to receptors on the outer
membrane (OM) of a bacterial cell using its six tail fibers (two are
shown, top). Binding induces conformational changes in the outer
sheath (blue diagonals), injecting a hollow tube (black) across the
cell surface, inducing ion flux, and depolarizing the inner membrane
(IM, bottom). (B) Electron micrographs of CTNs stained with
uranyl acetate. (C) Cryo-transmission electron microscopy-based
reconstruction of the trunk of a CTN in the extended state at 3.5 A
resolution. (D) Segmented surface views of the extended CNT trunk
are shown with a cross section (lower right) showing the hollow
center of the tube. (E) Charged surface view of sheath—tube protein
interactions in the extended state (top left), with open-book view
(bottom right) highlighting charge complementarity. Sheath—tube
protein interactions are broken during contraction (top right).
(F) Precontraction (top) and postcontraction (bottom) sheath.
Cryo-EM density map (left) and ribbon diagrams of sheath subunits
(right) show rigid-body movement of subunits intertwined by
P-strand augmentation. Adapted with permission from ref 317.
Copyright 2015 Nature Publishing Group.

nanoparticles, nanoparticles containing chitosan, and metal-
containing Ag, Zn, Cu, Ti, Mg, or Au nanoparticles.323 The
ability to target these materials with phage-derived RBPs,
pheromones, or other specific binding ligands and to engineer
them to deploy only upon binding to bacterial cell surfaces would
provide a platform for an array of new approaches for developing
precision tools for microbiota management, as well as the treat-
ment and prevention of infectious diseases.

Observatories. Microbial observatories are instrumented
stations set in natural environments for long-term analyses of
microbial communities while at the same time observing hydro-
logical, geochemical, and other processes and interactions.***
The first such observatories have been set in both marine and
continental environments across a range of geographical and geo-
chemical extremes. Integration of instruments to probe and
to culture microbes in situ has been used to increase the
microbiological experiments possible in these observatories.”*’
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Measurements of microbe catabolism and growth rates have
been performed in marine sediments as an example.**® Expan-
sion of both the enabling tools to these observatories and the
study of a greater range of environments such as topsoils
will provide critical data to elucidate trends and features arising
from microbiome habitats. Opportunities for nanoscience and
nanotechnology include networks of sensor arrays to monitor
chemical, physical, and biological environments, in addition to
the microbiome itself. Microbial observatories enable exper-
imentation on longer time scales and larger scales than typically
observed in laboratories and can operate with minimal disruption
from the microbiomes’ natural settings.

Data Standardization, Quality Control, and Reposito-
ries. Another important task that needs to be addressed is the
creation of unified data standards and integrated data repositories
on microbiome-related imaging and sensing data that will
be utilized and accessed by various research communities and
organizations collecting, sharing, organizing, and analyzing
vast ranges of biomarkers, molecular signatures, gene profiles,
metabolites, efc. corresponding to different microbiomes and
also as a function of both space and time. As discussed above,
these data might be collected using cost-effective and massively
scalable interfaces and technological solutions based on, for
example, mobile phones or other consumer devices in addition
to mainstream standard laboratory-grade instruments, multi-
modal advanced imaging, and sensing interfaces. For this broad
aim, some important milestones that need be achieved include
(1) standardization of data/metadata formats as well as new
measurement hardware and peripherals (especially important for
ensuring quality measurements from citizen scientists); (2)
development of measures of and methods to assess data quality,
which need to include automated data cleaning and/or correction
techniques for elimination of false and/or contaminated data from
data repositories; and (3) addressing data ownership and ethics-
related issues, including but not limited to human—microbiome-
related data.

Image Labeling, Computer Vision, and Crowd-Sourcing/
Gaming Interfaces. In general, there is much detail and
subtlety associated with microscopic or nanoscopic multidimen-
sional image data, and therefore, accurate analysis and inter-
pretation of such images often become tedious and time-
consuming, even for highly trained professionals and experts.
This is probably one of the main reasons why machine-learning
and automated image-labeling strategies are still not widely
adopted for identification and characterization of micro-organisms
through their microscopic/nanoscopic images. Even for bio-
medical diagnostic applications, such as identification of a parasite
within a sample, machine learning is lagging mostly due to the lack
of large-scale gold-standard image libraries, which makes it difficult
to leverage the power of some of the emerging Big Data analytics
tools that the industry (eg, Google, Facebook, Amazon) has
been routinely utilizing for various image analysis and pattern
recognition tasks.

Crowd-sourcing of microbiome-related microscopic analysis
and image labeling/annotation is timely in several ways.””” With
rapid advances in mobile telecommunication and Internet
technologies such as mobile phones, tablet PCs, etc., we have
hundreds of millions of active users in the cloud that are all
connected to a global network. This current infrastructure and
the state of connectivity make it feasible to create a self-learning
data repository platform that leverages crowd-sourcing, gaming,

and communications theory concepts to conduct accurate and
sensitive analyses of microbiome image data in a distributed
fashion, even using nonexpert users and gamers.””® More
importantly, by coupling microbiome image data repositories
with machine-learning and crowd-sourcing strategies, we can also
create a self-learning hybrid network, machine + human (i.e,, both
professionals and citizen scientists) that gets much better in
automated identification and classification of microscopic images
of specimens. Through such large-scale data analysis, we can also
better identify statistically significant parameters for individual
members of each microbial community, which is extremely
important to harness big data into “useful data” and “small data”,
also helping us to identify and to act on outliers.

All of these efforts will need substantial cross-disciplinary
expertise to make decisions regarding the standards, regulations,
types of data that will be collected and analyzed, and how data
will be organized, processed, and accessed, so that the entire
resulting framework will ultimately be as useful as possible for
microbiome-related research at a global scale.

Simulating Microbial Ecology. Sensors that can enable the
identification and analysis of microbial community structure
and genotype distribution are essential to enabling us to view
the microbial world at the appropriate resolution to understand
the spatiotemporal dynamics we observe in soils, waters, and
even human bodies. However, these sensors will significantly
increase the volume and immediacy of data acquisition, and while
this will improve statistical rigor and enable real-time validation
of predictions, the data stream needs to be handled appropriately
to provide input into predictive models at multiple scales.”””
Well-developed and controlled feedback between observa-
tion and modeling has provided humanity with sophisticated
weather and climate system predictions and enabled ecological
predictions that provide information to support focused restora-
tion initiatives. Therefore, microbiome and metabolite forecasts,
analogous to current weather forecasts, are required for multiple
ecosystems, whereby new data are used to train and to refine
existing models through a neural network that learns as data are
acquired.”*” These microbial and metabolite forecasts must be
able to inform end users to facilitate the design and maintenance
of more resilient and productive ecosystems to support food
production, health promotion, pollution remediation, and global
environmental stability. Complementary bottom-up mechanistic
and top-down statistical models can capture the discrete or
continuous associations between environmental components
and microbial ecology with sufficient predictive power to model
changes and trends within an ecosystem. There are many dif-
ferent types of potential systems-scale models that enable us to
predict either the cellular processes that support emergent
ecosystem dynamics or the ecosystem processes that support
global emergent properties. Bottom-up mechanistic modeling
approaches include cellular systems-based prediction of
metabolic processes, including flux-balance modeling of
individual cells or communities, cheminformatic approaches to
predict novel metabolic pathways, and agent-based models that
leverage multifactorial quantitative parametrization of ecosystem
properties (at both the cellular and community scale) to predict
interspecies interactions and outcomes within a given system.
Top-down statistical models include species distribution net-
work models that use relationships between external and bio-
logical parameters to predict outcomes or extrapolate observa-
tions, while dynamic Bayesian and convergent cross-mapping
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network models capture linear and nonlinear interactions that
support dynamic ecosystem properties. Examples of these
systems are given in Box 2.

Mechanistic models can be calculated based purely on
metagenomic and metabolomic data; these consist of genome-
scale metabolic models with course regulatory components for
each major species identified in a system, which can be assembled
based on a combination of reference genome data and primary
reconstruction of annotated sequencing reads.”” Reference
genomes can provide data on course species behavior and
biology (e.g, redox preferences of species, general growth rates,
growth behavior) that can be used to facilitate simulation of
communities using a combination of steady-state community flux
modeling to identify possible species interactions, and dynamic
flux modeling to predict dynamic growth of all species over time
within a community."*® As one might imagine, dynamic models
require parameters, and generally, flux models are significantly
underdetermined. Put another way, there are many alterna-
tive schemes for interspecies interactions that are initially
equally feasible in these models. A means of identifying the
most plausible interactions and dynamic parameters to use in
constructing, testing, and validating dynamic community models
is required. This nexus is where the conceptual and quantitative
links with statistical models are applicable. Statistical models
operate at low systems resolution, statistically fitting parameters
that represent course nonmechanistic interactions between
species, such that the statistical model can match observed
changes in species abundance in a microbiome over time. These
course parameters derived from the statistical models can be
translated into high-level constraints imposed on the mechanistic
models. For example, a statistical model may determine that
species A and species B have a high probability for mutual
dependency based on analysis of their changing abundance
across a time series (using dynamic Bayesian or convergent cross-
mapping predictions; see Box 2). Longitudinal data are highly
important for the application of this technique, whereby the
temporal dynamics of the community are translated into a
constraint within a community metabolic model that filters
possible schemes for species interaction to only those schemes
that involve some form of mutual interaction between species A
and species B. Of course, these are not hard constraints because
the high-resolution mechanistic flux modeling is based on
optimization approaches. Instead, the optimization algorithms
will favor predicted interactions between species based on the
probability for the interaction calculated by the statistical models.
So how is the mechanistic model adding information if the
statistical model has already predicted the species interaction?
Well, the statistical model predicts which species are likely to
be interacting, and the mechanistic model uses this information
to predict how these species are interacting such that the entire
community forms a single biochemically consistent system that
conforms to observed dynamics.

The outcome of these combined modeling efforts based on
data acquired from continuous high spatiotemporal density
sensors monitoring microbiome dynamics will be the identi-
fication of the keystone taxonomic and metabolic components of
these systems. These keystone components, as in the keystone in
a bridge, support the whole system, helping to make it resilient,
robust, and stable. These models will identify the feedstocks that
form the base of any given microbial interaction network, as well
as the intermediate metabolites exchanged between organisms in
an interaction network. These interaction networks can form the
basis for subsequent dynamic models of microbiome evolution.

These models can predict the evolution of the microbiome
community structure over time, including interactions that may
involve exchange of a signal molecule or the removal of an
inhibitory compound (e.g., oxygen or fatty acid).

Stimulation and Response of Microbiomes. One long-
term vision for applied microbial research is that genetically
engineered microbes could be released into the wild, perform a
useful task, and then disappear without environmental disruption
or genetic contamination of the ecosystem. Applications could
include probiotic microbes used as therapeutics and prophy-
lactics for the health of the gut, skin, and lungs in humans
and livestock; photosynthetic microbes living in open ponds
that produce commodities; carbon-fixing microbes that capture
CO, from coal-burning power plants; bacteria that compete with
fungal parasites that endanger food crops (which is becoming
more urgent due to global warming and crop monoculture);
microbes engineered to metabolize insecticides and other toxins
in cleanup sites; microbes that sense chemicals that may represent
security threats, such as explosives or neurotoxins; and so on.

Synthetic biologists have conceptualized and developed a large
number of such useful microbes, but deployment is always
stymied by the same problem. If we release such organisms into
the environment, what will happen after they carry out their
function? Will they evolve into pests and disrupt an ecosystem?
Will they exchange genetic information with other microbes to
create hybrids in which genetically engineered modules become
established in the wild?

Unless these worries are addressed, synthetic microbiologists
may continue to create useful microbes, but these will remain
in the realm of “toy systems”. An important area of research will
be in containment systems for engineered microbes. These
“systems” would not be physical—rather, we need biologically
based containment. As an illustration, one promising approach is
the development of “recoded” organisms in which the genetic
code—the correlation between bases in DNA and amino acids—
is completely rewritten for an engineered microbe (Figure 9). In
this way, if DNA is transferred in or out of the organism, the
transferred DNA cannot be read and will provide no selective
advantage. This type of technology is broadly enabling for
commercial and defense applications, but it is not currently
funded and needs support in order to reap the benefits of syn-
thetic biology outside the laboratory.

One example of the potential advantages of manipulating
microbiomes is in treating obesity, which has become a global
epidemic. Studies in both mice and humans have implicated gut
microbiomes in the ability to harvest energy from food.”*’ Selec-
tively replacing gut microbiomes in mice indicated the divergent
paths that individuals could take in their synergy with and
dependence on their microbiomes.

Understanding how integrated microbial systems work within
and with the environment, whether that environment is a living
organismal “host”, a biofuel reactor, or an agricultural soil, is a
grand scientific goal. However, a number of ethical issues must be
considered in basic microbiomes research and in association with
manipulation of environmental and human microbiomes. For
example, open data sharing has been proposed for the micro-
biome initiative, including for human microbiome data, yet
human gut microbiomes can be traced to particular patients™*'
and may indicate health status and age, among other private
attributes.”** The public will reap the benefit of insights gleaned
from microbiomes research when information access is broad,
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Figure 9. Synthetic biology can be used to modify organisms that can interact with and thereby drive changes in microbiomes.

but individuals will shoulder the risk to their privacy from misuse
of information. Though human microbiomes are more fluid than
whole human genomes, the fact that under some circumstances
microbiomes can be tied to particular individuals suggests that
similar ethical considerations’** should be tackled.

In documents focused on whole-genome sequencing in
humans and on synthetic biology, the Presidential Commission
on Bioethical Issues emphasizes five ethical principles to guide
research practices:*****> public beneficence, responsible stew-
ardship, intellectual freedom and responsibility, democratic
deliberation, and justice and fairness. These same basic principles
can inform human and environmental microbiomes research.
“Public beneficence” aims to maximize benefit and minimize
harm to the public and entails continuous re-evaluation of
promise and risk from safety, security, environmental, economic,
and social perspectives.’*® “Responsible stewardship” requires
that the global community consider long-term and widespread
implications of actions for our shared environment, for the
currently disenfranchised, and for future generations. “Justice
and fairness” emerge from responsible stewardship—Dbenefits of
new knowledge should accrue to all of society. “Intellectual
freedom” to pursue emerging technologies, though they are by
nature continuously changing, must be delicately balanced with
the development of a regulatory structure to ensure responsible
action.””” “Democratic deliberation” should be at the heart of
community decision-making, with the goal of societal benefit
outweighing individual interests, and with input from philoso-
phy, social sciences, and the general public to maintain public
legitimacy.**°

Beyond the ethical issues associated with study and
manipulation of human microbiomes, manipulation of organ-
ismal and environmental microbiomes to improve food and fuel
supplies, or potentially even to counter global climate change,
also requires scientific, ethical, political, and legal input. Microbes
have tremendous promise as partners in Earth stewardship; they
have shaped and maintained Earth’s life support systems for
billions of years. The first priority of scientists must be to obtain
understanding deep enough to consider both the promise and
the potential perils (unintended consequences) of attempts
to harness microbial activities operating in ecosystems or at
planetary scales. Even within organisms, manipulation of a single
gene can lead to surprising results.’** The complexity of micro-

biomes comprising multiple organisms interacting with their
environment is far higher; the potential for unintended
consequences of microbiome manipulation is thus a very real
risk, particularly in the imperfectly understood natural Earth
systems on which all humanity depends.”*® A highly visible
example of proposed manipulation of an environmental micro-
biome is the decades-old, controversial (bio)geoengineering pro-
posal to fertilize the ocean, in order to stimulate phytoplankton
growth, bury resulting organic carbon deep in the ocean after it
sinks from upper ocean layers, and thus mitiﬁgate increasing
concentrations of atmospheric carbon dioxide.”” The London
Convention/London Protocol formed an international gover-
nance and assessment framework for research testing this geo-
engineering technique.*** Similar frameworks will be essential
before considering any large-scale manipulation of environ-
mental microbiomes, as concerns will emerge over responsibility,
liability for unintended ecological impacts, open and cooperative
research, evaluation, assessment, and public consent.>*¥3%°

There are tremendous opportunities for nanoscience and
nanotechnology to contribute to understanding the microbiome.
The ability to image, to sense, and to stimulate at the scale of
function will be critical in measuring and ultimately under-
standing the microbiome. Hybrid synthetic/biological nano-
structures will yield precise tools to manipulate the microbiome
and also to address key challenges in medicine. Such advances
will enable us to reshape microbiomes in systems ranging from
the gut to the global rhizosphere. New ways of dealing with the
information obtained from what will necessarily involve multiple
measurement modalities will be required. Such data acquisition
and data science opportunities can be used to broaden the
community of those working on the microbiome. We anticipate
that the combinations of nanotechnology with synthetic biology
and other fields will generate fertile new science and applications,
in health, agriculture, climate science, energy, and other areas.

We hope and anticipate that, like the BRAIN Initiative,'*® the
microbiome initiative will leverage the worldwide investments
in science, technology, and people in nanoscience and nano-
technology"**"*** to bear on exploring and understanding the
microbiome and will generate a new world of scientific questions
and opportunities.

DOI: 10.1021/acsnano.5b07826
ACS Nano XXXX, XXX, XXX—XXX


http://dx.doi.org/10.1021/acsnano.5b07826

Corresponding Authors
*E-mail: robknight@ucsd.edu.
*E-mail: jfmiller@ucla.edu.
*E-mail: psw@cnsi.ucla.edu.

Notes

The authors declare the following competing financial
interest(s): P.C.B. is an equity holder in GALT, Inc. and 10X
Genomics, and is a co-inventor of technologies for micro-
analytical systems that may be commercialized. G.M.C. is
consultant and shareholder of Seres Therapeutics and has other
broader involvements (listed at http://arep.med.harvard.edu/
gmc/tech.html). S.E.F. holds patents for imaging tools, some of
which are deployed as imaging diagnostics (at Varocto, Inc.) or
are licensed to Zeiss. J.F.M. is a cofounder, equity holder, and
chair of the scientific advisory board of AvidBiotics Inc., a
biotherapeutics company in San Francisco, California. R.K. is co-
founder and CEO of Biota Technology, Inc., which uses data
science and microbial DNA for oilfield applications. A.O. is the
co-founder of a company that commercializes imaging and
sensing technologies for medical diagnostics applications. S.R.Q.
is a consultant and shareholder of Fluidigm and Karius. G.v.d.E. is
co-inventor of flow cytometers and related instruments that have
been licensed and for which he receives royalties related to cell-
sorting technologies as tools for genome/biome analyses.

We gratefully acknowledge the Kavli Foundation for support and
encouragement of this initiative and the discussions that led up to
it. This research was supported by the Office of Naval Research
Grant #N000141410051 (P.SW. G.C.LW., and T.Y.), the
Genomic Science Program of the U.S. DOE-OBER, and is a
contribution of the PNNL Foundational Scientific Focus Area
(J.KJ. and AW.) and the Panomics project (A.W.) at the Pacific
Northwest National Laboratory, a multiprogram national
laboratory operated by Battelle for the DOE under Contract
DE-AC06-76RL01830. The authors acknowledge helpful
discussions with Profs. Paul Alivisatos, Anne Andrews, Xiangfeng
Duan, Lee Hood, Yu Huang, Andrea Kasko, Ken Nealson, and
Sunney Xie, as well as with many of our other colleagues.
We thank Ms. Andrea Selby for the table of contents artwork, Dr.
Jessica Polka for help with graphics, and Ms. Holly Bunje for help
in preparing the manuscript.

(1) Alivisatos, A. P.; Blaser, M. J; Brodie, E. L.; Chun, M.; Dang], J. L.;
Donohue, T. J.; Gilbert, J. A,; Green, J. L.; Jansson, J. K; Knight, R;;
Maxon, M. E.; McFall-Ngai, M. J.; Miller, J. F.; Pollard, K. S.; Ruby, E. G.;
Taha, S. S. A Unified Initiative to Harness the Earth’s Microbiomes.
Science 2015, 350, 507—508.

(2) Miller, J. F. et al. Towards a Predictive Understanding of Earth’s
Microbiomes to Address 21st Century Challenges. Proc. Natl. Acad. Sci.
U. S. A. Manuscript in preparation.

(3) Parak, W. J; Nel, A. E,; Weiss, P. S. Grand Challenges for
Nanoscience and Nanotechnology. ACS Nano 20185, 9, 6637—6640.

(4) Savage, D. C. Microbial Ecology of the Gastrointestinal Tract.
Annu. Rev. Microbiol. 1977, 31, 107—133.

(5) Costello, E. K.; Lauber, C. L.; Hamady, M.; Fierer, N.; Gordon, J. 1;
Knight, R. Bacterial Community Variation in Human Body Habitats
Across Space and Time. Science 2009, 326, 1694—1697.

(6) The Human Microbiome Project Consortium. The Human
Microbiome Project Consortium. Structure, Function, and Diversity of
the Healthy Human Microbiome. Nature 2012, 486, 207—214.

(7) Ley, R. E.; Lozupone, C. A.; Hamady, M.; Knight, R.; Gordon, J. L
Worlds within Worlds: Evolution of the Vertebrate Gut Microbiota. Nat.
Rev. Microbiol. 2008, 6, 776—788.

(8) Worden, A. Z.; Follows, M. J.; Giovannoni, S. J.; Wilken, S.;
Zimmerman, A. E.; Keeling, P. J. Rethinking the Marine Carbon Cycle:
Factoring in the Multifarious Lifestyles of Microbes. Science 2015, 347,
1257594.

(9) Oswald, R; Behrendt, T.; Ermel, M.; Wy, D.; Su, H,; Cheng, Y.;
Breuninger, C.; Moravek, A,; Mougin, E; Delon, C,; Loubet, B;
Pommerening-Roser, A.; Sérgel, M.; P6schl, M.; Hoffman, T.; Andreae,
M. O.; Meixner, F. X,; Trebs, . HONO Emissions from Soil Bacteria as a
Major Source of Atmospheric Reactive Nitrogen. Science 2013, 341,
1233—123S.

(10) Worm, B.; Barbier, E. B.; Beaumont, N.; Duffy, J. E.; Folke, C;
Halpern, B. S.; Jackson, J. B. C.; Lotze, H. K,; Micheli, F.; Palumbi, S. R ;
Sala, E,; Selkoe, K. A,; Stachowicz, J. J; Watson, R. Impacts of
Biodiversity Loss on Ocean Ecosystem Services. Science 2006, 314,
787—=790.

(11) Edwards, F. A,; Edwards, D. P,; Sloan, S.; Hamer, K. C.
Sustainable Management in Crop Monocultures: The Impact of
Retaining Forest on Oil Palm Yield. PLoS One 2014, 9, €91695.

(12) Atlas, R. M.; Bartha, R. Microbial Ecology. Fundamentals and
Applications, 3rd ed.; Benjamin/Cummings: Redwood City, CA, 1993.

(13) Bulgarelli, D.; Rott, M.; Schlaeppi, K.; Ver Loren van Themaat, E.;
Ahmadinejad, N.; Assenza, F.; Rauf, P.; Huettel, B,; Reinhardt, R;
Schmelzer, E.; Peplies, J.; Gloeckner, F. O.; Amann, R.; Eickhorst, T;
Schulze-Lefert, P. Revealing Structure and Assembly Cues for
Arabidopsis Root-Inhabiting Bacterial Microbiota. Nature 2012, 488,
91-9S.

(14) Lundberg, D. S; Lebeis, S. L.; Paredes, S. H; Yourstone, S.;
Gebhring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; del
Rio, T. G.; Edgar, R. C,; Eickhorst, T.; Ley, R. E.; Hugenholtz, P.; Tringe,
S. G; Dangl, J. L. Defining the Core Arabidopsis thaliana Root
Microbiome. Nature 2012, 488, 86—90.

(15) Ling, L. L.; Schneider, T.; Peoples, A. ].; Spoering, A. L.; Engels, L;
Conlon, B. P.; Mueller, A.; Schaberle, T. F.; Hughes, D. E.; Epstein, S.;
Jones, M,; Lazarides, L.; Steadman, V. A.; Cohen, D. R;; Felix, C. R;
Fetterman, K. A.; Millett, W. P.; Nitti, A. G.; Zullo, A. M,; Chen, C,; et al.
ANew Antibiotic Kills Pathogens without Detectable Resistance. Nature
2015, 517, 455—459.

(16) Fierer, N.; Jackson, R. B. The Diversity and Biogeography of Soil
Bacterial Communities. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 626—
631.

(17) Lauber, C. L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequenc-
ing-Based Assessment of Soil pH as a Predictor of Soil Bacterial
Community Structure at the Continental Scale. Appl. Environ. Microbiol.
2009, 75, 5111-5120.

(18) Rousk, J.; Baath, E.; Brookes, P. C.; Lauber, C. L.; Lozupone, C.;
Caporaso, J. G.; Knight, R; Fierer, N. Soil Bacterial and Fungal
Communities across a pH Gradient in an Arable Soil. ISME J. 2010, 4,
1340—1351.

(19) Chu, H; Fierer, N; Lauber, C. L.; Caporaso, J. G.; Knight, R;
Grogan, P. Soil Bacterial Diversity in the Arctic Is not Fundamentally
Different from that Found in Other Biomes. Environ. Microbiol. 2010,
12, 2998—-3006.

(20) Ramirez, K. S.; Leff, J. W.; Barberan, A.; Bates, S. T.; Betley, J;
Crowther, T. W.; Kelly, E. F; Oldfield, E. E.; Shaw, E. A.; Steenbock, C.;
Bradford, M. A;; Wall, D. H.,; Fierer, N. Biogeographic Patterns in
Below-Ground Diversity in New York City’s Central Park Are Similar to
those Observed Globally. Proc. R. Soc. London, Ser. B 2014, 281,
20141988.

(21) Prober, S. M.; Leff, J. W.; Bates, S. T.; Borer, E. T.; Firn, J;
Harpole, W. S,; Lind, E. M.; Seabloom, E. W.; Adler, P. B.; Bakker, J. D.;
Cleland, E. E.; DeCrappeo, N. M.; DeLorenze, E.; Hagenah, N.; Hautier,
Y.; Hofmockel, K. S.; Kirkman, K. P.; Knops, J. M. H,; La Pierre, K. J;
MacDougall, A. S.; et al. Plant Diversity Predicts Beta but not Alpha
Diversity of Soil Microbes across Grasslands Worldwide. Ecol. Lett.
2015, 18, 85—95.

DOI: 10.1021/acsnano.5b07826
ACS Nano XXXX, XXX, XXX—XXX


mailto:robknight@ucsd.edu
mailto:jfmiller@ucla.edu
mailto:psw@cnsi.ucla.edu
http://dx.doi.org/10.1021/acsnano.5b07826

(22) Bailey, V. L.; Fansler, S. J.; Stegen, J. C.; McCue, L. A. Linking
Microbial Community Structure to S-Glucosidic Function in Soil
Aggregates. ISME ]. 2013, 7, 2044—2053.

(23) Clarridge, J. E. Impact of 16S rRNA Gene Sequence Analysis for
Identification of Bacteria on Clinical Microbiology and Infectious
Diseases. Clin. Microbiol. Rev. 2004, 17, 840—862.

(24) Gilbert, J. A.; Dupont, C. L. Microbial Metagenomics: Beyond the
Genome. Annu. Rev. Mar. Sci. 2011, 3, 347—371.

(25) Simon, C.; Daniel, R. Metagenomic Analyses: Past and Future
Trends. Appl. Environ. Microbiol. 2011, 77, 1153—1161.

(26) Banfield, J. Community-Wide Analysis of Microbial Genome
Sequence Signatures. Genome Biol. 2009, 10, R8S.

(27) Banfield, J. Fermentation, Hydrogen, and Sulfur Metabolism in
Multiple Uncultivated Bacterial Phyla. Science 2012, 337, 1661—166S.

(28) Tarnocai, C; Canadell, J. G; Schuur, E. A. G.; Kuhry, P;
Mazhitova, G.; Zimov, S. Soil Organic Carbon Pools in the Northern
Circumpolar Permafrost Region. Global Biogeochem. Cycle 2009, 23,
GB2023.

(29) Jansson, J. K.; Tas, N. The Microbial Ecology of Permafrost. Nat.
Rev. Microbiol. 2014, 12, 414—425.

(30) Tas, N.; Prestat, E.; McFarland, J. W.; Wickland, K. P.; Knight, R ;
Berhe, A. A;; Jorgenson, T.; Waldrop, M. P.; Jansson, J. K. Impact of Fire
on Active Layer and Permafrost Microbial Communities and
Metagenomes in an Upland Alaskan Boreal Forest. ISME J. 2014, 8,
1904—19109.

(31) Tas, N.; Prestat, E.; McFarland, J. W.; Wickland, K. P.; Knight, R ;
Berhe, A. A;; Jorgenson, T.; Waldrop, M. P.; Jansson, J. K. Impact of Fire
on Active Layer and Permafrost Microbial Communities and
Metagenomes in an Upland Alaskan Boreal Forest. ISME J. 2014, 8,
1904—19109.

(32) Johnson, P. W.; Sieburth, J. M. Chroococcoid Cyanobacteria in
the Sea: A Ubiquitous and Diverse Phototrophic Biomass. Limnol.
Oceanogr. 1979, 24, 928—93S.

(33) Waterbury, J. B.; Watson, S. W.; Guillard, R. R. L,; Brand, L. E.
Wide-Spread Occurrence of a Unicellular, Marine Planktonic,
Cyanobacterium. Nature 1979, 277, 293—294.

(34) Chisholm, S. W.; Olson, R. J; Zettler, E. R;; Waterbury, J;
Goericke, R.; Welschmeyer, N. A Novel Free-Living Prochlorophyte
Occurs at High Cell Concentrations in the Oceanic Euphotic Zone.
Nature 1988, 334, 340—343.

(35) Lomas, M. W.; Bronk, D. A;; van den Engh, G. Use of Flow
Cytometry to Measure Biogeochemical Rates and Processes in the
Ocean. Annu. Rev. Marine Sci. 2011, 3, 537—566.

(36) Petersen, T. W.; Harrison, C. B.; Horner, D. N.; van den Engh, G.
Flow Cytometric Characterization of Marine Microbes. Methods 2012,
57, 350—358.

(37) von Dassow, P_; van den Engh, G.; Iglesias-Rodriguez, D.; Gittins,
J. R. Calcification State of Coccolithophores Can Be Assessed by Light
Scatter Depolarization Measurements with Flow Cytometry. J. Plankton
Res. 2012, 34, 1011—1027.

(38) Bork, P.; Bowler, C.; de Vargas, C.; Gorsky, G.; Karsenti, E.;
Wincker, P. Tara Oceans Studies Plankton at Planetary Scale. Science
2015, 348, 873.

(39) de Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares,
R; Lara, E; Berney, C; Le Bescot, N.; Probert, I; Carmichael, M,;
Poulain, J.; Romac, S.; Colin, S.; Aury, J.-M,; Bittner, L.; Chaffron, S,;
Dunthorn, M.; Engelen, S.; Flegontova, O.; et al. Eukaryotic Plankton
Diversity in the Sunlit Ocean. Science 2015, 348, 1261605.

(40) Sunagawa, S.; Coelho, L. P.; Chaffron, S.; Kultima, J. R.; Labadie,
K,; Salazar, G.; Djahanschiri, B.; Zeller, G.; Mende, D. R.; Alberti, A ;
Cornejo-Castillo, F. M.; Costea, P. L; Cruaud, C.; d’Ovidio, F.; Engelen,
S.; Ferrera, L; Gasol, J. M.; Guidj, L.; Hildebrand, F.; Kokoszka, F.; et al.
Structure and Function of the Global Ocean Microbiome. Science 2015,
348, 1261359.

(41) Brum, J.R; Ignacio-Espinoza, J. C.; Roux, S.; Doulcier, G.; Acinas,
S. G; Alberti, A.; Chaffron, S.; Cruaud, C.; de Vargas, C; Gasol, J. M.;
Gorsky, G.; Gregory, A. C.; Guidi, L.; Hingamp, P.; Iudicone, D.; Not,
F.; Ogata, H.; Pesant, S.; Poulos, B. T.; Schwenck, S. M.; et al. Patterns

and Ecological Drivers of Ocean Viral Communities. Science 2015, 348,
1261498.

(42) Lima-Mendez, G.; Faust, K; Henry, N.; Decelle, J.; Colin, S.;
Carcillo, F.; Chaffron, S.; Ignacio-Espinosa, J. C.; Roux, S.; Vincent, F,;
Bittner, L.; Darzi, Y.; Wang, J; Audic, S.; Berline, L.; Bontempi, G,;
Cabello, A. M.; Coppola, L.; Cornejo-Castillo, F. M.; d’Ovidio, F.; et al.
Determinants of Community Structure in the Global Plankton
Interactome. Science 2015, 348, 1262073.

(43) Karl, D. M,; Church, M. J. Microbial Oceanography and the
Hawaiian Ocean Time-Series Programme. Nat. Rev. Microbiol. 2014, 12,
699—713.

(44) Burrows, S. M.; Elbert, W.; Lawrence, M. G.; Poschl, U. Bacteria
in the Global Atmosphere - Part 1: Review and Synthesis of Literature
Data for Different Ecosystems. Atmos. Chem. Phys. 2009, 9, 9263—9280.

(45) Despres, V. R;; Huffman, J. A.; Burrows, S. M.; Hoose, C.; Safatov,
A. S; Buryak, G.; Frohlich-Nowoisky, J.; Elbert, W.; Andreae, M. O,;
Poschl, U,; Jaenicke, R. Primary Biological Aerosol Particles in the
Atmosphere: A Review. Tellus, Ser. B 2012, 64, 15598.

(46) Jaenicke, R.,; Matthias-Maser, S.; Gruber, S. Omnipresence of
Biological Material in the Atmosphere. Environ. Chem. 2007, 4, 217—
220.

(47) Morris, C. E,; Sands, D. C; Bardin, M.; Jaenicke, R.; Vogel, B.;
Leyronas, C.; Ariya, P. A.; Psenner, R. Microbiology and Atmospheric
Processes: Research Challenges Concerning the Impact of Airborne
Micro-Organisms on the Atmosphere and Climate. Biogeosciences 2011,
8, 17-25.

(48) Brodie, E. L.; DeSantis, T. Z.; Parker, J. P. M.; Zubietta, 1. X,
Piceno, Y. M.; Andersen, G. L. Urban Aerosols Harbor Diverse and
Dynamic Bacterial Populations. Proc. Natl. Acad. Sci. U. S. A. 2007, 104,
299-304.

(49) Bowers, R. M,; Lauber, C. L.; Wiedinmyer, C.; Hamady, M,;
Hallar, A. G; Fall, R;; Knight, R.; Fierer, N. Characterization of Airborne
Microbial Communities at a High-Elevation Site and Their Potential To
Act as Atmospheric Ice Nuclei. Appl. Environ. Microb. 2009, 75, 5121—
5130.

(50) Bowers, R. M.; McLetchie, S.; Knight, R.; Fierer, N. Spatial
Variability in Airborne Bacterial Communities across Land-Use Types
and Their Relationship to the Bacterial Communities of Potential
Source Environments. ISME J. 2011, S, 601—612.

(51) Bowers, R. M,; Sullivan, A. P,; Costello, E. K; Collett, J. L.;
Knight, R; Fierer, N. Sources of Bacteria in Outdoor Air across Cities in
the Midwestern United States. Appl. Environ. Microb 2011, 77, 6350—
6356.

(52) Fierer, N.; Liu, Z. Z.; Rodriguez-Hernandez, M.; Knight, R;
Henn, M.; Hernandez, M. T. Short-Term Temporal Variability in
Airborne Bacterial and Fungal Populations. Appl. Environ. Microb. 2008,
74, 200—207.

(53) Behzad, H.; Gojobori, T.; Mineta, K. Challenges and
Opportunities of Airborne Metagenomics. Genome Biol. Evol. 2015, 7,
1216—1226.

(54) Polymenakou, P. N. Atmosphere: A Source of Pathogenic or
Beneficial Microbes? Atmosphere 2012, 3, 87—102.

(85) Griffin, D. W.; Westphal, D. L; Gray, M. A. Airborne
Microorganisms in the African Desert Dust Corridor over the Mid-
Atlantic Ridge, Ocean Drilling Program, Leg 209. Aerobiologia 2006, 22,
211-226.

(56) Kellogg, C. A; Griffin, D. W. Aerobiology and the Global
Transport of Desert Dust. Trends Ecol. Evol. 2006, 21, 638—644.

(57) Prospero, J. M; Blades, E.; Mathison, G.; Naidu, R. Interhemi-
spheric Transport of Viable Fungi and Bacteria from Africa to the
Caribbean with Soil Dust. Aerobiologia 20085, 21, 1—19.

(58) Uno, L; Eguchi, K;; Yumimoto, K; Takemura, T.; Shimizu, A.;
Uematsu, M,; Liu, Z.Y.; Wang, Z. F.; Hara, Y.; Sugimoto, N. Asian Dust
Transported One Full Circuit around the Globe. Nat. Geosci. 2009, 2,
557—-560.

(59) Smith, D. J.; Jaffe, D. A.; Birmele, M. N.; Griffin, D. W.; Schuerger,
A. C; Hee, J; Roberts, M. S. Free Tropospheric Transport of
Microorganisms from Asia to North America. Microb. Ecol. 2012, 64,
973-98S.

DOI: 10.1021/acsnano.5b07826
ACS Nano XXXX, XXX, XXX—XXX


http://dx.doi.org/10.1021/acsnano.5b07826

(60) Smith, D. J.; Timonen, H. J.; Jaffe, D. A.; Griffin, D. W.; Birmele,
M. N,; Perry, K. D,; Ward, P. D.; Roberts, M. S. Intercontinental
Dispersal of Bacteria and Archaea by Transpacific Winds. Appl. Environ.
Microb. 2013, 79, 1134—1139.

(61) Borys, R. D.; Lowenthal, D. H.; Mitchell, D. L. The Relationships
among Cloud Microphysics, Chemistry, and Precipitation Rate in Cold
Mountain Clouds. Atmos. Environ. 2000, 34, 2593—2602.

(62) Creamean, J. M.; Suski, K. J.; Rosenfeld, D.; Cazorla, A.; DeMott,
P.]J.; Sullivan, R. C.; White, A. B.; Ralph, F. M.; Minnis, P.; Comstock, J.
M.; Tomlinson, J. M.; Prather, K. A. Dust and Biological Aerosols from
the Sahara and Asia Influence Precipitation in the Western U.S. Science
2013, 339, 1572—1578.

(63) Saleeby, S. M.; Cotton, W. R.; Lowenthal, D.; Messina, J. Aerosol
Impacts on the Microphysical Growth Processes of Orographic
Snowfall. J. Appl. Meteorol. Clim. 2013, 52, 834—852.

(64) Pratt, K. A; DeMott, P. J.; French, J. R;; Wang, Z.; Westphal, D.
L.; Heymsfield, A. J.; Twohy, C. H.; Prenni, A. J.; Prather, K. A. In Situ
Detection of Biological Particles in Cloud Ice-Crystals. Nat. Geosci.
2009, 2, 397—400.

(65) Deguillaume, L.; Leriche, M.; Amato, P.; Ariya, P. A; Delort, A.
M.; Poschl, U.; Chaumerliac, N.; Bauer, H.; Flossmann, A. I.; Morris, C.
E. Microbiology and Atmospheric Processes: Chemical Interactions of
Primary Biological Aerosols. Biogeosciences 2008, S, 1073—1084.

(66) Delort, A. M.; Vaitilingom, M.; Amato, P.; Sancelme, M.; Parazols,
M,; Mailhot, G.; Laj, P.; Deguillaume, L. A Short Overview of the
Microbial Population in Clouds: Potential Roles in Atmospheric
Chemistry and Nucleation Processes. Atmos. Res. 2010, 98, 249—260.

(67) Vaitilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M,;
Deguillaume, L.; Flossmann, A. I; Amato, P.; Delort, A. M. Long-
Term Features of Cloud Microbiology at the Puy de Dome (France).
Atmos. Environ. 2012, 56, 88—100.

(68) Amato, P.; Menager, M.; Sancelme, M.; Laj, P.; Mailhot, G;
Delort, A. M. Microbial Population in Cloud Water at the Puy de Dome:
Implications for the Chemistry of Clouds. Atmos. Environ. 2005, 39,
4143—4153.

(69) Amato, P.; Parazols, M; Sancelme, M.; Mailhot, G.; Laj, P;
Delort, A. M. An Important Oceanic Source of Micro-Organisms for
Cloud Water at the Puy de Dome (France). Atmos. Environ. 2007, 41,
8253—8263.

(70) Creamean, J. M.; Ault, A. P.; White, A. B.; Neiman, P. J.; Ralph, F.
M.,; Minnis, P.; Prather, K. A. Impact of Interannual Variations in
Sources of Insoluble Aerosol Species on Orographic Precipitation over
California’s Central Sierra Nevada. Atmos. Chem. Phys. 20185, 15, 6535—
6548.

(71) DeMott, P. J.; Prenni, A. J.; McMeeking, G. R; Sullivan, R. C;
Petters, M. D.; Tobo, Y.; Niemand, M.; Mohler, O.; Snider, J. R.; Wang,
Z.; Kreidenweis, S. M. Integrating Laboratory and Field Data To
Quantify the Immersion Freezing Ice Nucleation Activity of Mineral
Dust Particles. Atmos. Chem. Phys. 2015, 15, 393—409.

(72) DeMott, P. J,; Sassen, K; Poellot, M. R.; Baumgardner, D.;
Rogers, D. C.; Brooks, S. D.; Prenni, A. J.; Kreidenweis, S. M. African
Dust Aerosols as Atmospheric Ice Nuclei. Geophys. Res. Lett. 2003, 30,
1732.

(73) Conen, F.; Morris, C. E.; Leifeld, J.; Yakutin, M. V.; Alewell, C.
Biological Residues Define the Ice Nucleation Properties of Soil Dust.
Atmos. Chem. Phys. 2011, 11, 9643—9648.

(74) Hoose, C.; Kristjansson, J. E.; Burrows, S. M. How Important is
Biological Ice Nucleation in Clouds on a Global Scale? Environ. Res. Lett.
2010, 5, 024009.

(75) Lindow, S. E.; Arny, D. C.; Upper, C. D. Bacterial Ice Nucleation -
A Factor in Frost Injury to Plants. Plant Physiol. 1982, 70, 1084—1089.

(76) Maki, T.; Puspitasari, F.; Hara, K;; Yamada, M.; Kobayashi, F.;
Hasegawa, H.; Iwasaka, Y. Variations in the Structure of Airborne
Bacterial Communities in a Downwind Area during an Asian Dust
(Kosa) Event. Sci. Total Environ. 2014, 488, 75—84.

(77) Burrows, S. M.; Butler, T.; Jockel, P.; Tost, H.; Kerkweg, A.;
Poschl, U.; Lawrence, M. G. Bacteria in the Global Atmosphere - Part 2:
Modeling of Emissions and Transport between Different Ecosystems.
Atmos. Chem. Phys. 2009, 9, 9281—-9297.

(78) Blanchard, D. C. The Ejection of Drops from the Sea and Their
Enrichment with Bacteria and Other Materials - A Review. Estuaries
1989, 12, 127—-137.

(79) Schnell, R. C; Carney, J. F.; Carty, C. E. Ocean Derived Ice
Nuclei. Bull. Am. Meteorol. Soc. 1976, 57, 148.

(80) Wilson, T. W.; Ladino, L. A; Alpert, P. A;; Breckels, M. N;
Brooks, I. M.; Browse, J.; Burrows, S. M.; Carslaw, K. S.; Huffman, J. A,;
Judd, C,; Kilthau, W. P.; Mason, R. H.; McFiggans, G.; Miller, L. A,;
Nijera, J. J.; Polishchuk, E.; Rae, S.; Schiller, C. L.; Si, M.; Temprado, J.
V.; et al. A Marine Biogenic Source of Atmospheric Ice-Nucleating
Particles. Nature 2015, 525, 234—238.

(81) DeLeon-Rodriguez, N.; Lathem, T. L.; Rodriguez-R, L. M,;
Barazesh, J. M.; Anderson, B. E.; Beyersdorf, A. J.; Ziemba, L. D.; Bergin,
M,; Nenes, A; Konstantinidis, K. T. Microbiome of the Upper
Troposphere: Species Composition and Prevalence, Effects of Tropical
Storms, and Atmospheric Implications. Proc. Natl. Acad. Sci. U. S. A.
2013, 110, 2575—2580.

(82) Xia, X. M.; Wang,J.J.; Ji, J. B.; Zhang, J. X.; Chen, L. Q.; Zhang, R.
Bacterial Communities in Marine Aerosols Revealed by 454
Pyrosequencing of the 16S rRNA Gene. J. Atmos. Sci. 2015, 72,
2997-3008.

(83) Mayol, E.; Jimenez, M. A,; Hernd], G. J.; Duarte, C. M.; Arrieta, J.
M. Resolving the Abundance and Air-Sea Fluxes of Airborne
Microorganisms in the North Atlantic Ocean. Front. Microbiol. 2014,
S, 557.

(84) Fahlgren, C.; Gomez-Consarnau, L.; Zabori, J; Lindh, M. V,;
Krejci, R.;; Martensson, E. M,; Nilsson, D.; Pinhassi, J. Seawater
Mesocosm Experiments in the Arctic Uncover Differential Transfer of
Marine Bacteria to Aerosols. Environ. Microbiol. Rep. 2015, 7, 460—470.

(85) Quinn, P. K; Collins, D. B.; Grassian, V. H.; Prather, K. A.; Bates,
T. S. Chemistry and Related Properties of Freshly Emitted Sea Spray
Aerosol. Chem. Rev. 2015, 115, 4383—4399.

(86) Prather, K. A;; Bertram, T. H,; Grassian, V. H.; Deane, G. B.;
Stokes, M. D.; DeMott, P. J.; Aluwihare, L. L; Palenik, B. P.; Azam, F.;
Seinfeld, J. H.; Moffet, R. C.; Molina, M. J.; Cappa, C. D.; Geiger, F. M.;
Roberts, G. C.; Russell, L. M.; Ault, A. P.; Baltrusaitis, J.; Collins, D. B.;
Corrigan, C. E.; et al. Bringing the Ocean into the Laboratory to Probe
the Chemical Complexity of Sea Spray Aerosol. Proc. Natl. Acad. Sci. U.
S. A. 2013, 110, 7550—75855S.

(87) Lee, C.; Sultana, C. M.; Collins, D. B.; Santander, M. V.; Axson, J.
L.; Malfatti, F.; Cornwell, G. C.; Grandquist, J. R.; Deane, G. B.; Stokes,
M. D,; Azam, F.; Grassian, V. H.; Prather, K. A. Advancing Model
Systems for Fundamental Laboratory Studies of Sea Spray Aerosol
Using the Microbial Loop. J. Phys. Chem. A 2018, 119, 8860—8870.

(88) Costello, E. K.; Stagaman, K.; Dethlefsen, L.; Bohannan, B. J. M.;
Relman, D. A. The Application of Ecological Theory Toward an
Understanding of the Human Microbiome. Science 2012, 336, 1255—
1262.

(89) Hicks, L. A.; Bartoces, M. G.; Roberts, R. M.; Suda, K. J.; Hunkler,
R. J; Taylor, T. H.; Schrag, S. J. US Outpatient Antibiotic Prescribing
Variation According to Geography, Patient Population, and Provider
Specialty in 2011. Clin. Infect. Dis. 2015, 60, 1308—1316.

(90) Schulfer, A.; Blaser, M. J. Risks of Antibiotic Exposures Early in
Life on the Developing Microbiome. PLoS Pathog. 2015, 11, e1004903.

(91) Dethlefsen, L.; Huse, S,; Sogin, M. L,; Relman, D. A. The
Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as
Revealed by Deep 16S rRNA Sequencing. PLoS Biol. 2008, 6, €280.

(92) Modi, S. R.; Collins, J. J.; Relman, D. A. Antibiotics and the Gut
Microbiota. J. Clin. Invest. 2014, 124, 4212—4218.

(93) Jernberg, C.; Lofmark, S.; Edlund, C.; Jansson, J. K. Long-Term
Ecological Impacts of Antibiotic Administration on the Human
Intestinal Microbiota. ISME J. 2007, 1, 56—66.

(94) Buffie, C. G.; Pamer, E. G. Microbiota-Mediated Colonization
Resistance against Intestinal Pathogens. Nat. Rev. Immunol. 2013, 13,
790—801.

(95) Frieden, T. Antibiotic Resistance Threats in the United States,
2013. U.S. Department of Health and Human Services. Centers for Disease
Control and Prevention, 2013. Atlanta, Georgia U.S.A.

DOI: 10.1021/acsnano.5b07826
ACS Nano XXXX, XXX, XXX—XXX


http://dx.doi.org/10.1021/acsnano.5b07826

(96) He, M.; Miyajima, F.; Roberts, P.; Ellison, L,; Pickard, D. J;
Martin, M. J.; Connor, T. R; Harris, S. R;; Fairley, D.; Bamford, K. B,;
D’Arg, S.; Brazier, J.; Brown, D.; Coia, J. E.; Douce, G.; Gerding, G.; Kim,
H. J; Koh, T. H,; Kato, H.; Senoah, M.; et al. Emergence and Global
Spread of Epidemic Healthcare-Associated Clostridium difficile. Nat.
Genet. 2012, 45, 109—113.

(97) Louie, T.J.; Miller, M. A.; Mullane, K. M.; Weiss, K.; Lentnek, A.;
Golan, Y,; Gorbach, S.; Sears, P.; Shue, Y. Fidaxomicin versus
Vancomycin for Clostridium difficile Infection. N. Engl. J. Med. 2011,
364, 422—431.

(98) Kelly, C. R;; Kahn, S.; Kashyap, P.; Laine, L.; Rubin, D.; Atreja, A.;
Moore, T.; Wu, G. Update on Fecal Microbiota Transplantation 2015:
Indications, Methodologies, Mechanisms, and Outlook. Gastroenterol-
ogy 2015, 149, 223—237.

(99) Jakobsson, H. E.; Jernberg, C; Andersson, A. F.; Sjolund-
Karlsson, M.; Jansson, J. K; Engstrand, L. Short-Term Antibiotic
Treatment Has Differing Long-Term Impacts on the Human Throat
and Gut Microbiome. PLoS One 2010, S, e9836.

(100) Gillings, M. R. Integrons: Past, Present, and Future. Microbiol.
Mol. Biol. Rev. 2014, 78, 257—277.

(101) Guo, L; McLean, J. S.; Yang, Y.; Eckert, R;; Kaplan, C. W,;
Kyme, P.; Sheikh, O.; Varnum, B.; Lux, R.; Shi, W.; He, X. Precision-
Guided Antimicrobial Peptide as a Targeted Modulator of Human
Microbial Ecology. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 7569—7574.

(102) Gebhart, D.; Lok, S.; Clare, S.; Tomas, M.; Stares, M.; Scholl, D;
Donskey, C. J; Lawley, T. D.,; Govoni, G. R. A Modified R-Type
Bacteriocin Specifically Targeting Clostridium difficile Prevents
Colonization of Mice without Affecting Gut Microbiota Diversity.
mBio 2015, 6, €02368-14.

(103) Hsiao, E.; McBride, S. W.; Hsien, S.; Sharon, G.; Hyde, E. R;;
McCue, T.; Codelli, J. A,; Chow, J.; Reisman, S. E; Petrosino, J. F.;
Patterson, P. H.; Mazmanian, S. K. Microbiota Modulate Behavioral and
Physiological Abnormalities Associated with Neurodevelopmental
Disorders. Cell 2013, 155, 1451—1463.

(104) Song, S. J; Lauber, C.; Costello, E. K; Lozupone, C. A;
Humphrey, G.; Berg-Lyons, D.; Caporaso, J. G.; Knights, D.; Clemente,
J. C.; Nakielny, S.; Gordon, J. I; Fierer, N.; Knight, R. Cohabiting Family
Members Share Microbiota with One Another and with Their Dogs.
eLg'fe 2013, 2, e00458.

(105) Human Microbiome Project Consortium. Human Microbiome
Project Consortium. Structure, Function and Diversity of the Healthy
Human Microbiome. Nature 2012, 486, 207—214.

(106) Clemente, J. C.; Ursell, L. K; Parfrey, L. W.; Knight, R. The
Impact of the Gut Microbiota on Human Health: An Integrative View.
Cell 2012, 148, 1258—1270.

(107) Chen, T.; Yu, W. H; Izard, J.; Baranova, O. C.; Lakshmanan, A.;
Dewhirst, F. E. The Human Oral Microbiome Database: A Web
Accessible Resource for Investigating Oral Microbe Taxonomic and
Genomic Information. Database 2010, 2010, baq013.

(108) Teng, F.; Yang, F.; Huang, S.; Bo, C.; Xu, Z. Z.; Amir, A.; Knight,
R; Ling, J.; Xu, J. Prediction of Early Childhood Caries via Spatial-
Temporal Variations of Oral Microbiota. Cell Host Microbe 20185, 18,
296—-306.

(109) Johansson, L; Witkowska, E.; Kaveh, B.; Lif Holgerson, P.;
Tanner, A. C. The Microbiome in Populations with a Low and High
Prevalence of Caries. J. Dent. Res. 2015, DOI: 10.1177/
0022034515609554.

(110) Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G. M.; Koenig, S. S.;
McCulle, S. L.; Karlebach, S.; Gorle, R;; Russell, J.; Tacket, C. O;
Brotman, R. M,; Davis, C. C.; Ault, K; Peralta, L.; Forney, L. J. Vaginal
Microbiome of Reproductive-Age Women. Proc. Natl. Acad. Sci. U. S. A.
2011, 108, 4680—4687.

(111) Gajer, P.; Brotman, R. M,; Bai, G.; Sakamoto, J.; Schiitte, U. M.;
Zhong, X.; Koenig, S. S.; Fu, L.; Ma, Z. S.; Zhou, X.; Abdo, Z.; Forney, L.
J.; Ravel, J. Temporal Dynamics of the Human Vaginal Microbiota. Sci.
Transl. Med. 2012, 4, 132raS2.

(112) Sivapalasingam, S.; McClelland, R. S.; Ravel, J.; Ahmed, A;
Cleland, C. M.; Gajer, P.; Mwamzaka, M.; Marshed, F.; Shafj, J.; Masese,
L.; Fajans, M.; Anderson, M. E.; Jaoko, W.; Kurth, A. E. An Effective

Intervention To Reduce Intravaginal Practices Among HIV-1
Uninfected Kenyan Women. AIDS Res. Hum. Retroviruses 2014, 30,
1046—1054.

(113) Kang, D.; Shi, B; Erfe, M. C.; Craft, N; Li, H. Vitamin B12
Modulates the Transcriptome of the Skin Microbiota in Acne
Pathogenesis. Sci. Transl. Med. 2015, 7, 293ral03.

(114) Paulino, L. C.; Tseng, C. H.; Strober, B. E.; Blaser, M. J.
Molecular Analysis of Fungal Microbiota in Samples from Healthy
Human Skin and Psoriatic Lesions. J. Clin. Microbiol. 2006, 44, 2933—
2941.

(115) Kong, H. H; O, J; Deming, C; Conlan, S.; Grice, E. A;
Beatson, M. A.; Nomicos, E.; Polley, E. C.; Komarow, H. D.; Murray, P.
R.; Turner, M. L.; Segre, J. A. Temporal Shifts in the Skin Microbiome
Associated with Disease Flares and Treatment in Children with Atopic
Dermatitis. Genome Res. 2012, 22, 850—859.

(116) van Rensburg, J. J; Lin, H.,; Gao, X;; Toh, E; Fortney, K. R;
Ellinger, S.; Zwickl, B.; Janowicz, D. M.; Katz, B. P.; Nelson, D. E.; Dong,
Q.; Spinola, S. M. The Human Skin Microbiome Associates with the
Outcome of and Is Influenced by the Bacterial Infection. mBio 2018, 6,
e01315-1S.

(117) Kueneman, J. G.; Woodhams, D. C.; Van Treuren, W.; Archer,
H. M,; Knight, R.; McKenzie, V. J. Inhibitory Bacteria Reduce Fungi on
Early Life Stages of Endangered Colorado Boreal Toads (Anaxyrus
boreas). ISME J. 2015, DOI: 10.1038/ismej.2015.168.

(118) Boursi, B; Mamtani, R;; Haynes, K; Yang, Y. X. Recurrent
Antibiotic Exposure May Promote Cancer Formation — Another Step in
Understanding the Role of the Human Microbiota? Eur. J. Cancer 2015,
51, 2655—-2664.

(119) Shade, A.; Caporaso, J. G.; Handelsman, J.; Knight, R ; Fierer, N.
A Meta-Analysis of Changes in Bacterial and Archaeal Communities
with Time. ISME J. 2013, 7, 1493—1506.

(120) Dominguez-Bello, M. G.; Costello, E. K.; Contreras, M.; Magris,
M.,; Hidalgo, G.; Fierer, N,; Knight, R. Delivery Mode Shapes the
Acquisition and Structure of the Initial Microbiota across Multiple Body
Habitats in Newborns. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 11971.

(121) Koenig, J. E.; Spor, A.; Scalfone, N.; Fricker, A. D.; Stombaugh,
J.; Knight, R;; Angenent, L. T,; Ley, R. E. Succession of Microbial
Consortia in the Developing Infant Gut Microbiome. Proc. Natl. Acad.
Sci. U. S. A. 2011, 108, 4578—4585.

(122) Yatsunenko, T.; Rey, F. E; Manary, M. J; Trehan, L;
Dominguez-Bello, M. G.; Contreras, M.; Magris, M.; Hidalgo, G,;
Baldassano, R. N.; Anokhin, A. P.; Heath, A. C.; Warner, B.; Reeder, J ;
Kuczynski, J.; Caporaso, J. G.; Lozupone, C. A.; Lauber, C.; Clemente, J.
C.; Knights, D.; Knight, R.; et al. Human Gut Microbiome Viewed
Across Age and Geography. Nature 2012, 486, 222—227.

(123) Fall, T; Lundholm, C; Ortqvist, A. K; Fall, K; Fang, F,;
Hedhammar, A.; Kimpe, O.; Ingelsson, E.; Almqvist, C. Early Exposure
to Dogs and Farm Animals and the Risk of Childhood Asthma. JAMA
Pediatr. 2015, 169, €153219.

(124) Cox, L. M,; Blaser, M. J. Antibiotics in Early Life and Obesity.
Nat. Rev. Endocrinol. 2014, 11, 182—190.

(125) https://www.whitehouse.gov/sites/default/files/microsites/
ostp/PCAST /pcast_carb_report_sept2014.pdf (Accessed December 8,
2015).

(126) https://www.whitehouse.gov/sites/default/files/docs/
national_action_plan_for combating_antibotic-resistant_bacteria.pdf
(Accessed December 8, 2015).

(127) Knight, R.; Jansson, J.; Field, D.; Fierer, N.; Desai, N.; Fuhrman,
J. A;; Hugenholtz, P.; van der Lelie, D.; Meyer, F.; Stevens, R.; Bailey, M.
J.; Gordon, J. I; Kowalchuk, G. A.; Gilbert, J. A. Unlocking the Potential
of Metagenomics through Replicated Experimental Design. Nat.
Biotechnol. 2012, 30, 513—520.

(128) Gilbert, J. A;; Jansson, J. K.; Knight, R. The Earth Microbiome
Project: Successes and Aspirations. BMC Biol. 2014, 12, 69.

(129) Gilbert, J. A.; Meyer, F.; Antonopoulos, D.; Balaji, P.; Brown, C.
T.; Brown, C. T.; Desai, N,; Eisen, J. A.; Evers, D.; Field, D.; Feng, W,;
Huson, D.; Jansson, J.; Knight, R.; Knight, J.; Kolker, E.; Konstantindis,
K; Kostka, J.; Kyrpides, N.; Mackelprang, R.; et al. Meeting Report: The

DOI: 10.1021/acsnano.5b07826
ACS Nano XXXX, XXX, XXX—XXX


http://dx.doi.org/10.1177/0022034515609554
http://dx.doi.org/10.1177/0022034515609554
http://dx.doi.org/10.1038/ismej.2015.168
https://www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/pcast_carb_report_sept2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/pcast_carb_report_sept2014.pdf
https://www.whitehouse.gov/sites/default/files/docs/national_action_plan_for_combating_antibotic-resistant_bacteria.pdf
https://www.whitehouse.gov/sites/default/files/docs/national_action_plan_for_combating_antibotic-resistant_bacteria.pdf
http://dx.doi.org/10.1021/acsnano.5b07826

Terabase Metagenomics Workshop and the Vision of an Earth
Microbiome Project. Stand. Genomic Sci. 2010, 3, 243—248.

(130) Woese, C. R; Fox, G. E. Phylogenetic Structure of the
Prokaryotic Domain: The Primary Kingdoms. Proc. Natl. Acad. Sci. U. S.
A. 1977, 74, S088—5090.

(131) Jansson, J. K; Neufeld, J. D.; Moran, M. A.; Gilbert, J. A. Omics
for Understanding Microbial Functional Dynamics. Environ. Microbiol.
2012, 14, 1-3.

(132) Gibbons, S. M.; Schwartz, T.; Fouquier, J; Mitchell, M,;
Sangwan, N.; Gilbert, J. A.; Kelley, S. T. Ecological Succession and
Viability of Human-Associated Microbiota on Restroom Surfaces. Appl.
Environ. Microbiol. 20185, 81, 765—773.

(133) Lax, S.; Smith, D. P.; Hampton-Marcell, J.; Owens, S. M,;
Handley, K. M,; Scott, N. M.; Gibbons, S. M.; Larsen, P.; Shogan, B. D.;
Weiss, S.; Metcalf, J. L,; Ursell, L. K; Vazquez-Baeza, Y.; Van Treuren,
W.; Hasan, N. A,; Gibson, M. K,; Colwell, R.;; Dantas, G.; Knight, R;
Gilbert, J. A. Longitudinal Analysis of Microbial Interaction Between
Humans and the Indoor Environment. Science 2014, 345, 1048—1052.

(134) Read, D. S.; Gweon, H. S.; Bowes, M. J.; Newbold, L. K; Field,
D.; Bailey, M. J,; Griffiths, R. I. Catchment-Scale Biogeography of
Riverine Bacterioplankton. ISME J. 2018, 9, 516—526.

(135) Stedtfeld, R. D.; Stedtfeld, T. M.; Kronlein, M.; Seyrig, G.;
Steffan, R. J.; Cupples, A. M.; Hashsham, S. A. DNA Extraction-Free
Quantification of Dehalococcoides spp. in Groundwater Using a Hand-
Held Device. Environ. Sci. Technol. 2014, 48, 13855—13863.

(136) Gilbert, J. A; Henry, C. Predicting Ecosystem Emergent
Properties at Multiple Scales. Environ. Microbiol. Rep. 2018, 7, 20—22.

(137) Luo, Y.; Zhao, K; Baker, A. E.; Kuchma, S. L.; Coggan, K. A,;
Wolfgang, M. C.,; Wong, G. C.L.; O’Toole, G. A. A Hierarchical Cascade
of Second Messengers Regulates Pseudomonas aeruginosa Surface
Behaviors. mBio 2018, 6, €02456-14.

(138) Romling, U.; Galperin, M. Y.; Gomelsky, M. Cyclic di-GMP:
The First 25 Years of a Universal Bacterial Second Messenger. Microbiol
Mol. Biol. Rev. 2013, 77, 1-52.

(139) Nealson, K. H; Platt, T.; Hastings, J. W. Cellular Control of the
Synthesis and Activity of the Bacterial Luminescent System. J. Bacteriol.
1970, 104, 313—322.

(140) Fuqua, W. C.; Winans, S. C.; Greenberg, E. P. Quorum Sensing
in Bacteria: The LuxR-LuxI Family of Cell Density-Responsive
Transcriptional Regulators. J. Bacteriol. 1994, 176, 269—75.

(141) Miller, M. B.; Bassler, B. L. Quorum Sensing in Bacteria. Annu.
Rev. Microbiol. 2001, 55, 165—199.

(142) Zhao, K; Tseng, B. S.; Beckerman, B.; Jin, F.; Gibiansky, M. L.;
Harrison, J. J.; Luijten, E.; Parsek, M. R.;; Wong, G. C. L. Psl Trails Guide
Exploration and Microcolony Formation in Pseudomonas aeruginosa
Biofilms. Nature 2013, 497, 388—391.

(143) Kotula, J. W.; Kerns, S. J.; Shaket, L. A.; Siraj, L.; Collins, J. J;
Way, J. C,; Silver, P. A. Programmable Bacteria Detect and Record an
Environmental Signal in the Mammalian Gut. Proc. Natl. Acad. Sci. U. S.
A. 2014, 111, 4838—4843.

(144) Hays, S. G.; Patrick, W. G.; Ziesack, M.; Oxman, N,; Silver, P. A.
Better Together: Engineering and Application of Microbial Symbioses.
Curr. Opin. Biotechnol. 2018, 36, 40—49.

(145) Ford, T. J.; Silver, P. A. Synthetic Biology Expands Chemical
Control of Microorganisms. Curr. Opin. Chem. Biol. 2015, 28, 20—28.

(146) Werner, E; Roe, F.; Bugnicourt, A; Franklin, M. J.; Heydorn, A.;
Molin, S.; Pitts, B.; Stewart, P. S. Stratified Growth in Pseudomonas
aeruginosa Biofilms. Appl. Environ. Microbiol. 2004, 70, 6188—6196.

(147) Liu, J.; Prindle, A.; Humphries, J.; Gabalda-Sagarra, M.; Asally,
M,; Lee, D. Y,; Ly, S.; Garcia-Ojalvo, J.; Siiel, G. M. Metabolic Co-
Dependence Gives Rise to Collective Oscillations within Biofilms.
Nature 20185, 523, 550—554.

(148) Hansen, S. K; Rainey, P. B.; Haagensen, J. A. J; Molin, S.
Evolution of Species Interactions in a Biofilm Community. Nature 2007,
445, 533—536.

(149) Nielsen, A. T.; Tolker-Nielsen, T.; Barken, K. B.; Molin, S. Role
of Commensal Relationships on the Spatial Structure of a Surface-
Attached Microbial Consortium. Environ. Microbiol. 2000, 2, 59—68.

AA

(150) Filkins, L. M.; Graber, J. A.; Olson, D. G.; Dolben, E. L.; Lynd, L.
R.; Bhuju, S.; O'Toole, G. A. Coculture of Staphylococcus aureus with
Pseudomonas aeruginosa Drives S. aureus towards Fermentative
Metabolism and Reduced Viability in a Cystic Fibrosis Model. J.
Bacteriol. 20185, 197, 2252—2264.

(151) Michelsen, C.; Hossein Khademi, S. M.; Johansen, H.; Ingmer,
H.; Dorresetin, P.; Jelsbak, L. ISME J. In press.

(152) Lee, K. W. K; Periasamy, S.; Mukherjee, M.; Xie, C.; Kjelleberg,
S.; Rice, S. A. Biofilm Development and Enhanced Stress Resistance of a
Model, Mixed-Species Community Biofilm. ISME J. 2014, 8, 894—907.

(153) Hert, D. G.; Fredlake, C. P.; Barron, A. E. Advantages and
Limitations of Next-Generation Sequencing Technologies: a Compar-
ison of Electrophoresis and Non-Electrophoresis Methods. Electro-
phoresis 2008, 29, 4618—4626.

(154) Gupta, P. K. Single-Molecule DNA Sequencing Technologies
for Future Genomics Research. Trends Biotechnol. 2008, 26, 602—611.

(155) Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S.
A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; Jovanovich,
S.B.; Krstic, P. S.; Lindsay, S.; Ling, X. S.; Mastrangelo, C. H.; Meller, A,;
Oliver, J. S.; Pershin, Y. V.; Ramsey, J. M; Riehn, R.; et al. The Potential
and Challenges of Nanopore Sequencing. Nat. Biotechnol. 2008, 26,
1146—1153.

(156) Voskoboynik, A.; Neff, N. F.; Sahoo, D.; Newman, A. M,;
Pushkarev, W. K,; Passarelli, B.; Fan, H. C.; Mantalas, G. L.; Palmeri, K.
J.; Ishizuka, K. J.; Gissi, C.; Griggio, F.; Ben-Shlomo, R.; Corey, D. M,;
Penland, L.; White, R. A, II[; Weissman, L. L.; Quake, S. R. The Genome
Sequence of the Colonial Chordate. eLife 2013, 2, é00569.

(157) http://www.illumina.com/technology/next-generation-
sequencing/long-read-sequencing-technology.html (Accessed Decem-
ber 8, 2015).

(158) Ferrucci, D. A. Introduction to “This is Watson". IBM J. Res. Dev.
2012, 56, 1-15.

(159) Binnig, G.; Rohrer, H. Scanning Tunneling Microscopy. Helv.
Phys. Acta 1982, SS, 726—735.

(160) Binnig, G.; Quate, C. F.; Gerber, Ch. Atomic Force Microscope.
Phys. Rev. Lett. 1986, 56, 930—933.

(161) Jackson, N. B.; Chaurand, P. R;; Fulghum, J. E.; Hernandez, R ;
Higgins, D. A.; Hwang, R.; Kneipp, K; Koretsky, A. P.; Larabell, C. A ;
Stranick, S. J.; Webb, W. W.; Weiss, P. S.; Woodbury, N.; Xie, X. S,;
Yeung, E. S. Visualizing Chemistry: The Progress and Promise of Advanced
Chemical Imaging; National Academies Press: Washington, DC, 2006.

(162) Eigler, D. M.; Schweizer, E. K. Positioning Single Atoms with a
Scanning Tunneling Microscope. Nature 1990, 344, 524—526.

(163) Piner, R. D.; Zhy, J.; Xu, F.; Hong, S. H.; Mirkin, C. A. Dip-Pen”
Nanolithography. Science 1999, 283, 661—663.

(164) Claridge, S. A.; Schwartz, J. J.; Weiss, P. S. Electrons, Photons,
and Force: Quantitative Single-Molecule Measurements from Physics to
Biology. ACS Nano 2011, S, 693—729.

(165) Roco, M. C., Mirkin, C. A., Hersam, M. C., Eds. Nanotechnology
Research Directions for Societal Needs in 2020: Retrospective and Outlook,
Science Policy Reports; Springer: Berlin, 2011.

(166) Wong, G. C. L,; O'Toole, G. A. All Together Now: Integrating
Biofilm Research across Disciplines. MRS Bull. 2011, 36, 339—342.

(167) Weiss, P. S. New Tools Lead to New Science. ACS Nano 2012, 6,
1877—1878.

(168) Alivisatos, A. P.; Andrews, A. M.; Boyden, E. S.; Chun, M,;
Church, G. M,; Deisseroth, K;; Donoghue, J. P.; Fraser, S. E.; Lippincott-
Schwartz, J.; Looger, L. L.; Masmanidis, S.; McEuen, P. L.; Nurmikko, A.
V.; Park, H,; Peterka, D. J; Reid, C.; Roukes, M. L,; Scherer, A;
Schnitzer, M.; Sejnowski, T. J.; et al. Nanotools for Neuroscience and
Brain Activity Mapping. ACS Nano 2013, 7, 1850—1866.

(169) Berk, V.; Fong, J. C. N.; Dempsey, G. T.; Develioglu, O. N.;
Zhuang, X.; Liphardt, J.; Yildiz, F. H.; Chu, S. Molecular Architecture
and Assembly Principles of Vibrio cholerae Biofilms. Science 2012, 337,
236—239.

(170) Yawata, Y.; Cordero, O. X.; Menolascina, F.; Hehemann, J. H;
Polz, M. F.; Stocker, R. Competition-Dispersal Trade-Off Ecologically
Differentiates Recently Speciated Marine Bacterioplankton Populations.
Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 5622—5627.

DOI: 10.1021/acsnano.5b07826
ACS Nano XXXX, XXX, XXX—XXX


http://www.illumina.com/technology/next-generation-sequencing/long-read-sequencing-technology.html
http://www.illumina.com/technology/next-generation-sequencing/long-read-sequencing-technology.html
http://dx.doi.org/10.1021/acsnano.5b07826

(171) Liv, J.; Prindle, A.; Humpbhries, J.; Gabalda-Sagarra, M.; Asally,
M,; Lee, D. D,; Ly, S.; Garcia-Ojalvo, J; Siiel, G. M. Metabolic Co-
Dependence Gives Rise to Collective Oscillations within Biofilms.
Nature 2015, 523, 550—554.

(172) Moree, W.].; Phelan, V. V.; Wy, C. H.; Bandeira, N.; Cornett, D.
S.; Duggan, B. M,; Dorrestein, P. C. Interkingdom Metabolic
Transformations Captured by Microbial Imaging Mass Spectrometry.
Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 13811—13816.

(173) Park, S.; Wolanin, P. M.; Yuzbashyan, E. A.; Silberzan, P.; Stock,
J. B.; Austin, R. H. Motion To Form a Quorum. Science 2003, 301, 188—
188.

(174) Smith, R. K.; Lewis, P. A.; Weiss, P. S. Patterning Self-Assembled
Monolayers. Prog. Surf. Sci. 2004, 75, 1—68.

(175) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides,
G. M. Self-Assembled Monolayers of Thiolates on Metals as a Form of
Nanotechnology. Chem. Rev. 2005, 105, 1103—1169.

(176) Saavedra, H. M.; Mullen, T. J.; Zhang, P. P.; Dewey, D. C,;
Claridge, S. A.; Weiss, P. S. Hybrid Approaches in Nanolithography. Rep.
Prog. Phys. 2010, 73, 036501.

(177) Qian, X; Metallo, S. J; Choi, I. S; Wu, H; Liang, M. N,;
Whitesides, G. M. Arrays of Self-Assembled Monolayers for Studying
Inhibition of Bacterial Adhesion. Anal. Chem. 2002, 74, 1805—1810.

(178) Weibel, D. B;; Lee, A,; Mayer, M; Brady, S. F.; Bruzewicz, D.;
Yang, J.; DiLuzio, W. R.; Clardy, J.; Whitesides, G. M. Bacterial Printing
Press that Regenerates Its Ink: Contact-Printing Bacteria Using
Hydrogel Stamps. Langmuir 2005, 21, 6436—6442.

(179) Barth, K. A; Coullerez, G.; Nilsson, L. M.; Castelli, R;
Seeberger, P. H.; Vogel, V,; Textor, M. An Engineered Mannoside
Presenting Platform: Escherichia coli Adhesion under Static and
Dynamic Conditions. Adv. Funct. Mater. 2008, 18, 1459—1469.

(180) Costello, C. M.; Kreft, J.; Thomas, C. M.; Hammes, D. M.; Bao,
P,; Evans, S. D.; Mendes, P. M. Exploiting Additive and Subtractive
Patterning for Spatially Controlled and Robust Bacterial Co-Cultures.
Soft Matter 2012, 8, 9147—9155.

(181) Chen, Y.; Pépin, A. Nanofabrication: Conventional and
Nonconventional Methods. Electrophoresis 2001, 22, 187—207.

(182) Huang, B.; Bates, M.; Zhuang, X. Super Resolution Fluorescence
Microscopy. Annu. Rev. Biochem. 2009, 78, 993—1016.

(183) Zheng, X. T.; Li, C. M. Single Cell Analysis at the Nanoscale.
Chem. Soc. Rev. 2012, 41, 2061—-2071.

(184) Oosterbroek, R. E., Van den Berg, A, Eds. Lab-on-a-chip.
Miniaturized Systems for (Bio)Chemical Analysis and Synthesis; Elsevier:
Amsterdam, 2003.

(185) Weibel, D. B.; DiLuzio, W. R,; Whitesides, G. M. Micro-
fabrication Meets Microbiology. Nat. Rev. Microbiol. 2007, 5, 209—218.

(186) National Science and Technology Council. Materials Genome
Initiative for Global Competitiveness, 2011. http://www.whitehouse.gov/
sites/default/files/microsites/ostp/materials_genome_initiative-final.
pdf (Accessed November 1, 2015).

(187) Logan, B. E.; Wallack, M. J.; Kim, K.; He, W.; Feng, Y.; Saikaly, P.
E. Assessment of Microbial Fuel Cell Configurations and Power
Densities. Environ. Sci. Technol. Lett. 2018, 2, 206—214.

(188) Li, W,; Yu, H; He, Z. Towards Sustainable Wastewater
Treatment by Using Microbial Fuel Cells-Centered Technologies.
Energy Environ. Sci. 2014, 7, 911-924.

(189) Pant, D; Singh, A;; Van Bogaert, G.; Irving Olsen, S.; Singh
Nigam, P.; Diels, L.; Vanbroekhoven, K. Bioelectrochemical Systems
(BES) for Sustainable Energy Production and Product Recovery from
Organic Wastes and Industrial Wastewaters. RSC Adv. 2012, 2, 1248—
1263.

(190) Logan, B. E.; Regan, J. M. Microbial Fuel Cells-Challenges and
Applications. Environ. Sci. Technol. 2006, 40, S172—5180.

(191) Gralnick, J. A; Newman, D. K. Extracellular Respiration. Mol.
Microbiol. 2007, 65, 1—11.

(192) El-Naggar, M. Y.; Wanger, G.; Leung, K. M; Yuzvinsky, T. D.;
Southam, G.; Yang, J; Lau, W. M,; Nealson, K. H.; Gorby, Y. A.
Electrical Transport along Bacterial Nanowires from Shewanella
oneidensis MR-1. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 18127—18131.

AB

(193) Strycharz-Glaven, S. M.; Roy, J.; Boyd, D.; Snider, R.; Erickson, J.
S.; Tender, L. M. Electron Transport through Early Exponential-Phase
Anode-Grown Geobacter sulfurreducens Biofilms. ChemElectroChem
2014, 1, 1957—1968.

(194) Allison, D. P.; Mortensen, N. P.; Sullivan, C. J.; Doktycz, M. J.
Atomic Force Microscopy of Biological Samples. Wiley Interdiscip. Rev.
Nanomed. Nanobiotechnol. 2010, 2, 618—634.

(195) Claridge, S. A.; Thomas, J. C.; Silverman, M. A.; Schwartz, J. J.;
Yang, Y.,; Wang, C; Weiss, P. S. Differentiating Amino Acid Residues
and Side Chain Orientations in Peptides Using Scanning Tunneling
Microscopy. J. Am. Chem. Soc. 2013, 135, 18528—18535.

(196) Pamp, S. J.; Harrington, E. D.; Quake, S. R;; Relman, D. A;
Blainey, P. C. Single-Cell Sequencing Provides Clues About the Host
Interactions of Segmented Filamentous Bacteria (SFB). Genome Res.
2012, 22, 1107—1119.

(197) Turnbaugh, P.]J.; Ridaura, V. K; Faith, J. J.; Rey, F. E.; Knight, R ;
Gordon, J. I The Effect of Diet on the Human Gut Microbiome: A
Metagenomic Analysis in Humanized Gnotobiotic Mice. Sci. Transl.
Med. 2009, 1, 6ral4.

(198) Goodman, A. L.; Kallstrom, G.; Faith, J. J.; Reyes, A.; Moore, A.;
Dantas, G.; Gordon, J. I. Extensive Personal Human Gut Microbiota
Culture Collections Characterized and Manipulated in Gnotobiotic
Mice. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 6252—6257.

(199) Blainey, P. C. The Future is Now: Single-Cell Genomics of
Bacteria and Archaea. FEMS Microbiol. Rev. 2013, 37, 407—427.

(200) Dean, F. B; Nelson, J. R;; Giesler, T. L.; Lasken, R. S. Rapid
Amplification of Plasmid and Phage DNA using Phi 29 DNA
Polymerase and Multiply-Primed Rolling Circle Amplification. Genome
Res. 2001, 11, 1095—1099.

(201) McLean, J. S,; Lombardo, M.-J,; Badger, J. H; Edlund, A;
Novotny, M.; Yee-Greenbaum, J.; Vyahhi, N.; Hall, A. P,; Yang, Y,;
Dupont, C. L. Candidate Phylum TM6 Genome Recovered from a
Hospital Sink Biofilm Provides Genomic Insights into This
Uncultivated Phylum. Proc. Natl. Acad. Sci. U. S. A. 2013, 110,
E2390—E2399.

(202) Fodor, A. A; DeSantis, T. Z.; Wylie, K. M.; Badger, J. H.; Ye, Y.;
Hepburn, T.; Hu, P.; Sodergren, E.; Liolios, K;; Huot-Creasy, H. The
“Most Wanted” Taxa from the Human Microbiome for Whole Genome
Sequencing. PLoS One 2012, 7, e41294.

(203) Youssef, N. H.; Blainey, P. C.; Quake, S. R; Elshahed, M. S.
Partial Genome Assembly for a Candidate Division OP11 Single Cell
from an Anoxic Spring (Zodletone Spring, Oklahoma). Appl. Environ.
Microb. 2011, 77, 7804—7814.

(204) Dodsworth, J. A; Blainey, P. C.; Murugapiran, S. K.; Swingley,
W. D,; Ross, C. A,; Tringe, S. G.; Chain, P. S.; Scholz, M. B.; Lo, C.-C,;
Raymond, J.; Quake, S. R.; Hedlund, B. P. Single-Cell and Metagenomic
Analyses Indicate a Fermentative and Saccharolytic Lifestyle for
Members of the OP9 Lineage. Nat. Commun. 2013, 4, 1854.

(205) Hess, M.; Sczyrba, A.; Egan, R;; Kim, T. W.; Chokhawala, H.;
Schroth, G.; Luo, S.; Clark, D. S,; Chen, F.; Zhang, T. Metagenomic
Discovery of Biomass-Degrading Genes and Genomes from Cow
Rumen. Science 2011, 331, 463—467.

(206) Marcy, Y.; Ouverney, C.; Bik, E. M.; Losekann, T.; Ivanova, N.;
Martin, H. G,; Szeto, E.; Platt, D.; Hugenholtz, P.; Relman, D. A.; Quake,
S. R. Dissecting Biological "Dark Matter” with Single-Cell Genetic
Analysis of Rare and Uncultivated TM7 Microbes from the Human
Mouth. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 11889—11894.

(207) Navin, N.; Kendall, J; Troge, J.; Andrews, P.; Rodgers, L.;
McIndoo, J.; Cook, K; Stepansky, A.; Levy, D.; Esposito, D. Tumour
Evolution Inferred by Single-Cell Sequencing. Nature 2011, 472, 90—94.

(208) Blainey, P. C.; Quake, S. R. Digital MDA for Enumeration of
Total Nucleic Acid Contamination. Nucleic Acids Res. 2011, 39, e19.

(209) Woyke, T.; Sczyrba, A; Lee, J; Rinke, C.; Tighe, D;
Clingenpeel, S.; Malmstrom, R.; Stepanauskas, R.; Cheng, J. F.
Decontamination of MDA Reagents for Single Cell Whole Genome
Amplification. PLoS One 2011, 6, €26161.

(210) Lasken, R.; Stockwell, T. Mechanism of Chimera Formation
During the Multiple Displacement Amplification Reaction. BMC
Biotechnol. 2007, 7, 19.

DOI: 10.1021/acsnano.5b07826
ACS Nano XXXX, XXX, XXX—XXX


http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://dx.doi.org/10.1021/acsnano.5b07826

(211) Haas, B.]J.; Gevers, D.; Earl, A. M.; Feldgarden, M.; Ward, D. V,;
Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S. K; Sodergren, E.
Chimeric 16S rRNA Aequence Formation and Detection in Sanger and
454-Pyrosequenced PCR Amplicons. Genome Res. 2011, 21, 494—504.

(212) Note that ChimeraSlayer is tuned for 165 rRNA data; applying it
to whole genomes may be difficult.

(213) Marshall, L. P.; Blainey, P. C.; Spormann, A. M.; Quake, S. R. A
Single-Cell Genome for Thiovulum sp. Appl. Environ. Microbiol. 2012,
78, 8555—8563.

(214) Blainey, P. C.; Mosier, A. C.; Potanina, A.; Francis, C. A.; Quake,
S. R. Genome of a Low-Salinity Ammonia-Oxidizing Archaeon
Determined by Single-Cell and Metagenomic Analysis. PLoS One
2011, 6, e16626.

(215) Taniguchi, Y.; Choi, P.J.; Li, G.-W.; Chen, H.; Babu, M.; Hearn,
J; Emili, A; Xie, X. S. Quantifying E. coli Proteome and Transcriptome
with Single-Molecule Sensitivity in Single Cells. Science 2010, 329, 533—
538.

(216) Leung, K.; Zahn, H.; Leaver, T.; Konwar, K. M.; Hanson, N. W,;
Pagé, A. P,; Lo, C. C,; Chain, P. S; Hallam, S. J.; Hansen, C. L. A
Programmable Droplet-Based Microfluidic Device Applied to Multi-
parameter Analysis of Single Microbes and Microbial Communities.
Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 7665—7670.

(217) Zong, C; Lu, S; Chapman, A. R; Xie, X. S. Genome-Wide
Detection of Single-Nucleotide and Copy-Number Variations of a
Single Human Cell. Science 2012, 338, 1622—1626.

(218) Landry, Z. C; Giovanni, S. J; Quake, S. R; Blainey, P. C.
Optofluidic Cell Selection from Complex Microbial Communities for
Single-Genome Analysis. Methods Enzymol. 2013, 531, 61—90.

(219) Clingenpeel, S.; Schwientek, P.; Hugenholtz, P.; Woyke, T.
Effects of Sample Treatments on Genome Recovery via Single-Cell
Genomics. ISME J. 2014, 8, 2546—2549.

(220) Dichosa, A. E.; Daughton, A. R;; Reitenga, K. G.; Fitzsimons, M.
S.; Han, C. S. Capturing and Cultivating Single Bacterial Cells in Gel
Microdroplets To Obtain Near-Complete Genomes. Nat. Protoc. 2014,
9, 608—621.

(221) Tamminen, M. V.; Virta, M. P. Single Gene-Based Distinction of
Individual Microbial Genomes from a Mixed Population of Microbial
Cells. Front. Microbiol. 2015, 6, 195.

(222) Allen, L. Z; Ishoey, T.; Novotny, M. A.; McLean, J. S.; Lasken, R.
S.; Williamson, S. J. Single Virus Genomics: A New Tool for Virus
Discovery. PLoS One 2011, 6, e17722.

(223) Johnson, S. R; Lange, B. M. Open-Access Metabolomics
Databases for Natural Product Research: Present Capabilities and
Future Potential. Front. Bioeng. Biotechnol. 20185, 3, 22.

(224) Webb, 1. K; Garimella, S. V.; Tolmachev, A. V.; Chen, T. C,;
Zhang, X.; Norheim, R. V,; Prost, S. A,; LaMarche, B.; Anderson, G. A,;
Ibrahim, Y. M.; Smith, R. D. Experimental Evaluation and Optimization
of Structures for Lossless Ion Manipulations for Ion Mobility
Spectrometry with Time-of-Flight Mass Spectrometry. Anal. Chem.
2014, 86, 9169—9176.

(225) Zhang, X.; Ibrahim, Y. M.; Chen, T. C.; Kyle, J. E.; Norheim, R.
V.; Monroe, M. E,; Smith, R. D.; Baker, E. S. Enhancing Biological
Analyses with Three Dimensional Field Asymmetric Ion Mobility, Low
Field Drift Tube Ion Mobility and Mass Spectrometry (uFAIMS/IMS-
MS) separations. Analyst 20185, 140, 6955—6963.

(226) Rasche, F.; Scheubert, K.; Hufsky, F.; Zichner, T.; Kai, M.;
Svatos, A.; Bocker, S. Identifying the Unknowns by Aligning
Fragmentation Trees. Anal. Chem. 2012, 84, 3417—3426.

(227) Patti, G. P.; Tautenhahn, R; Rinehart, D.; Cho, K_; Shriver, L. P.;
Manchester, M.; Nikolskiy, I; Johnson, C. H.; Mahieu, N. G.; Siuzdak,
G. A View from Above: Cloud Plots to Visualize Global Metabolomic
Data. Anal. Chem. 2013, 85, 798—804.

(228) Barupal, D. K; Haldiya, P. K; Wohlgemuth, G.; Kind, T;
Kothari, S. L.; Pinkerton, K. E.; Fiehn, O. MetaMapp: Mapping and
Visualizing Metabolomic Data by Integrating Information from
Biochemical Pathways and Chemical and Mass Spectral Similarity.
BMC Bioinf 2012, 13, 99.

AC

(229) Watrous, J. D.; Roach, P. Mass Spectral Molecular Networking
of Living Microbial Colonies. Proc. Natl. Acad. Sci. U. S. A. 2012, 109,
E1743—E1752.

(230) Watrous, J. D.; Dorrestein, P. C. Imaging Mass Spectrometry in
Microbiology. Nat. Rev. Microbiol. 2011, 9, 683—694.

(231) Bouslimani, A.; Porto, C.; Rath, C. M,; Wang, M; Guo, Y,;
Gonzalez, A.; Berg-Lyon, D.; Ackermann, G.; Moeller Christensen, G.J.;
Nakatsuji, T.; Zhang, L.; Borkowski, A. W.; Meehan, M. J.; Dorrestein,
K; Gallo, R. L.; Bandeira, N.; Knight, R.; Alexandrov, T.; Dorrestein, P.
C. Molecular Cartography of the Human Skin Surface in 3D. Proc. Natl.
Acad. Sci. U. S. A. 2015, 112, E2120—E2129.

(232) da Silva, R. R; Dorrestein, P. C.; Quinn, R. A. Illuminating the
Dark Matter in Metabolomics. Proc. Natl. Acad. Sci. U. S. A. 2015, 112,
12549.

(233) Diihrkop, K; Shen, H.,; Meusel, M.; Rousu, J.; Bocker, S.
Searching Molecular Structure Databases with Tandem Mass Spectra
Using CSI:FingerID. Proc. Natl. Acad. Sci. U. S. A. 2018, 112, 12580—
1258S.

(234) Wolf, S.; Schmidt, S.; Miiller-Hannemann, M.; Neumann, S. In
Silico Fragmentation for Computer Assisted Identification of Metabolite
Mass Spectra. BMC Bioinf. 2010, 11, 148.

(235) http://gnps.ucsd.edu (Accessed December 8, 2015).

(236) Maurice, C. F.; Haiser, H. J.; Turnbaugh, P. J. Xenobiotics Shape
the Physiology and Gene Expression of the Active Human Gut
Microbiome. Cell 2013, 152, 39—50.

(237) Morgan, X. C.; Huttenhower, C. Meta’omic Analytic
Techniques for Studying the Intestinal Microbiome. Gastroenterology
2014, 146, 1437—1448.

(238) Cravatt, B. F.,; Wright, A. T.; Kozarich, J. W. Activity-Based
Protein Profiling: From Enzyme Chemistry to Proteomic Chemistry.
Annu. Rev. Biochem. 2008, 77, 383—414.

(239) Paulsen, C. E.; Carroll, K. S. Cysteine-Mediated Redox
Signaling: Chemistry, Biology, and Tools for Discovery. Chem. Rev.
2013, 113, 4633—4679.

(240) Sadler, N. C.; Wright, A. T. Activity-Based Protein Profiling of
Microbes. Curr. Opin. Chem. Biol. 2015, 24, 139—144.

(241) Lamendella, R;; VerBerkmoes, N.; Jansson, J. K. Omics of the
Mammalian Gut — New Insight into Function. Curr. Opin. Biotechnol.
2012, 23, 491—500.

(242) Hultman, J.; Waldrop, M. P.; Mackelprang, R;; David, M. M,;
McFarland, J.; Blazewicz, S. J.; Harden, J.; Turetsky, M. R.; McGuire, A.
D.; Shah, M. B.; VerBerkmoes, N. C.; Lee, L. H.; Mavrommatis, K;
Jansson, J. K. Multi-Omics of Permafrost, Active Layer and Thermokarst
Bog Soil Microbiomes. Nature 2015, 521, 208—212.

(243) Dicksved, J.; Halfvarson, J.; Rosenquist, M.; Jarnerot, G.; Tysk,
C.; Apajalahti, J.; Engstrand, L.; Jansson, J. K. Molecular Analysis of the
Gut Microbiota of Identical Twins with Crohn’s Disease. ISME J. 2008,
2,716=727.

(244) willing, B.; Halfvarson, J.; Dicksved, J.; Rosenquist, M.; Jarnerot,
G.; Engstrand, L.; Tysk, C.; Jansson, J. K. Twin Studies Reveal Specific
Imbalances in the Mucosa-Associated Microbiota of Patients with Ileal
Crohn’s Disease. Inflamm. Bowel Dis. 2009, 15, 653—660.

(245) Willing, B.; Dicksved, J.; Halfvarson, J.; Andersson, A.; Lucio, M.;
Zheng, Z.; Jarnerot, G.; Tysk, C; Jansson, J. K; Engstrand, L. A
Pyrosequencing Study in Twins Shows that GI Microbial Profiles Vary
with Inflammatory Bowel Disease Phenotypes. Gastroenterology 2010,
139, 1844—1854.

(246) Erickson, A. R; Cantarel, B. L; Lamendella, R;; Darzi, Y.;
Mongodin, E. F.; Pan, C.; Shah, M,; Halfvarson, J.; Tysk, C.; Henrissat,
B.; Raes, J.; Verberkmoes, N. C.; Fraser, C. M.; Hettich, R. L.; Jansson, J.
K. Integrated Metagenomics/Metaproteomics Reveals Human Host-
Microbiota Signatures of Crohn’s Disease. PLoS One 2012, 7, e49138.

(247) Jansson, J. K; Willing, B.; Lucio, M.; Fekete, A.; Dicksved, J.;
Halfvarson, J.; Tysk, C.; Schmitt-Kopplin, P. Metabolomics Reveals
Metabolic Biomarkers of Crohn’s Disease. PLoS One 2009, 4, 6386.

(248) Mason, O. U,; Hazen, T. C; Borglin, S.; Chain, P. S. G;
Dubinsky, E. A,; Fortney, J. L.; Han, J.; Holman, H.-Y. N.; Hultman, J.;
Lamendella, R.; Mackelprang, R.; Malfatti, S.; Tom, L. M.; Tringe, S. G.;
Woyke, T.; Zhou, J; Rubin, E. M, Jansson, J. K. Metagenome,

DOI: 10.1021/acsnano.5b07826
ACS Nano XXXX, XXX, XXX—XXX


http://gnps.ucsd.edu
http://dx.doi.org/10.1021/acsnano.5b07826

Metatranscriptome and Single Cell Sequencing Reveal Microbial
Response to Deepwater Horizon Oil Spill. ISME J. 2012, 6, 1715—1727.

(249) Deatherage Kaiser, B. L; Li, J.; Sanford, J. A;; Kim, Y. M,;
Kronewitter, S. R; Jones, M. B,; Peterson, C. T.; Peterson, S. N.; Frank,
B. C,; Purvine, S. O.; Brown, J. N.; Metz, T. O.; Smith, R. D.; Heffron, F.;
Adkins, J. N. A Multi-Omic View of Host-Pathogen-Commensal
Interplay in Salmonella-Mediated Intestinal Infection. PLoS One 2013,
8, e6715S.

(250) Dantas, G.; Sommer, M. O.; Degnan, P. H,; Goodman, A. L.
Experimental Approaches for Defining Functional Roles of Microbes in
the Human Gut. Annu. Rev. Microbiol. 2013, 67, 459—475.

(251) Martens, E. C.; Sonnenburg, J. L.; Relman, D. A. Editorial
Overview: Insights Into Molecular Mechanisms of Microbiota. J. Mol.
Biol. 2014, 426, 3827—3829.

(252) The Nobel Prize in Chemistry 2014 - Press Release Nobel Media
AB 2014. http://www.nobelprize.org/nobel_prizes/chemistry/
laureates/2014/press.html (Accessed July 27, 2015).

(253) Tuson, H. H,; Biteen, J. S. Unveiling the Inner Workings of Live
Bacteria Using Super-Resolution Microscopy. Anal. Chem. 2018, 87,
42—63.

(254) Chen, B. C; Legant, W. R;; Wang, K; Shao, L.; Milkie, D. E;
Davidson, M. W,; Janetopoulos, C.; Wu, X. S.; Hammer, J. A;; Liu, Z;
English, B. P.; Mimori-Kiyosue, Y.; Romero, D. P.; Ritter, A. T ;
Lippincott-Schwartz, J.; Fritz-Laylin, L.; Mullins, R. D.; Mitchell, D. M.;
Bembenek, J. N.; Reymann, A. C. Lattice Light-Sheet Microscopy:
Imaging Molecules to Embryos at High Spatiotemporal Resolution.
Science 2014, 346, 1257998.

(255) Wang, K.; Sun, W,; Richie, C. T.; Harvey, B. K; Betzig, E.; Ji, N.
Direct Wavefront Sensing for High-Resolution in Vivo Imaging in
Scattering Tissue. Nat. Commun. 2015, 6, 7276.

(256) Enterina, J. R;; Wu, L.; Campbell, R. E. Emerging Fluorescent
Protein Technologies. Curr. Opin. Chem. Biol. 2015, 27, 10—17.

(257) Anderson, K. L.; Salyers, A. A. Genetic Evidence that Outer
Membrane Binding of Starch is Required for Starch Utilization by
Bacteroides thetaiotaomicron. J. Bacteriol. 1989, 6, 3199—3204.

(258) Los, G. V.; Encell, L. P.; McDougall, M. G.; Hartzell, D. D.;
Karassina, N.; Zimprich, C.; Wood, M. G.; Learish, R.; Ohana, R. F;
Urh, M,; Simpson, D.; Mendez, J.; Zimmerman, K; Otto, P.; Vidugiris,
G.; Zhu, J; Darzins, A.; Klaubert, D. H,; Bulleit, R. F.; Wood, K. V.
HaloTag: A Novel Protein Labeling Technology for Cell Imaging and
Protein Analysis. ACS Chem. Biol. 2008, 3, 373—382.

(259) Karunatilaka, K. S.; Cameron, E. A.; Martens, E. C.; Koropatkin,
N. M,; Biteen, ]J. S. Superresolution Imaging Captures Carbohydrate
Utilization Dynamics in Human Gut Symbionts. mBio 2014, §, e02172-
14.

(260) Lang, K.; Chin, J. W. Cellular Incorporation of Unnatural Amino
Acids and Bioorthogonal Labeling of Proteins. Chem. Rev. 2014, 114,
4764—4806.

(261) Haas, B. L.; Matson, J. S.; DiRita, V. J.; Biteen, J. S. Single-
Molecule Tracking in Live Vibrio cholerae Reveals that ToxR Recruits
the Membrane-Bound Virulence Regulator TcpP to the toxT Promoter.
Mol. Microbiol. 2018, 96, 4—13.

(262) Liao, Y.; Schroeder, J. W.; Gao, B.; Simmons, L. A.; Biteen, J. S.
Single-Molecule Motions and Interactions in Live Cells Reveal Target
Search Dynamics in Mismatch Repair. Proc. Natl. Acad. Sci. U. S. A. 2015,
DOI: 10.1073/pnas.1507386112.

(263) Chen, B.; Gilbert, L. A.; Cimini, B. A.; Schnitzbauer, J.; Zhang,
W.,; Li, G. W,; Park, J.; Blackburn, E. H,; Weissman, J. S;; Qi, L. S;
Huang, B. Dynamic Imaging of Genomic Loci in Living Human Cells by
an Optimized CRISPR/Cas System. Cell 2013, 155, 1479—1491.

(264) Tancula, E; Feldhaus, M. J.; Bedzyk, L. A; Salyers, A. A.
Location and Characterization of Genes Involved in Binding of Starch to
the Surface of Bacteroides thetaiotaomicron. J. Bacteriol. 1992, 17, 5609—
5616.

(265) Koropatkin, N. M.; Cameron, E. A.; Martens, E. C. How Glycan
Metabolism Shapes the Human Gut Microbiota. Nat. Rev. Microbiol.
2012, 5, 323—335.

(266) Martens, E. C.; Kelly, A. G.; Tauzin, A. S.; Brumer, H. The Devil
Lies in the Details: How Variations in Polysaccharide Fine-Structure

AD

Impact the Physiology and Evolution of Gut Microbes. J. Mol. Biol. 2014,
426, 3851—3865.

(267) Sadler, K. C.; Rawls, J. F.; Farber, S. A. Getting the Inside Tract:
New Frontiers in Zebrafish Digestive System Biology. Zebrafish 2013,
10, 129—131.

(268) Jemielita, M.; Taormina, M. J.; Burns, A. R;; Hampton, J. S;
Rolig, A. S.; Guillemin, K; Parthasarathy, R. Spatial and Temporal
Features of the Growth of a Bacterial Species Colonizing the Zebrafish
Gut. mBio 2014, S, e01751-14.

(269) Sperandio, V.; Girén, J. A; Silveira, W. D.; Kaper, J. B. The
OmpU Outer Membrane Protein, a Potential Adherence Factor of
Vibrio cholerae. Infect. Immun. 1995, 11, 4433—4438.

(270) Liu, J.; Prindle, A.; Humpbhries, J.; Gabalda-Sagarra, M.; Asally,
M,; Lee, D. D,; Ly, S.; Garcia-Ojalvo, J.; Suel, G. M. Metabolic Co-
Dependence Gives Rise to Collective Oscillations within Biofilms.
Nature 2015, 523, 550—554.

(271) Oldroyd, G. E. Speak, Friend, and Enter: Signalling Systems that
Promote Beneficial Symbiotic Associations in Plants. Nat. Rev. Microbiol.
2013, 11, 252—263.

(272) Verma, S. C.; Miyashiro, T. Quorum Sensing in the Squid-Vibrio
Symbiosis. Int. J. Mol. Sci. 2013, 14, 16386—16401.

(273) Wollenberg, M. S.; Ruby, E. G. Phylogeny and Fitness of Vibrio
fischeri from the Light Organs of Euprymna scolopes in Two Oahu,
Hawaii Populations. ISME J. 2012, 6, 352—362.

(274) Koch, E. J; Miyashiro, T.; McFall-Ngai, M. J.; Ruby, E. G.
Features Governing Symbiont Persistence in the Squid-Vibrio
Association. Mol. Ecol. 2014, 23, 1624—1634.

(275) Bosch, T. C. Cnidarian-Microbe Interactions and the Origin of
Innate Immunity in Metazoans. Annu. Rev. Microbiol. 2013, 67, 499—
S18.

(276) Engel, P.; Moran, N. A. Functional and Evolutionary Insights
into the Simple Yet Specific Gut Microbiota of the Honey Bee from
Metagenomic Analysis. Gut Microbes 2013, 4, 60—6S.

(277) Graf, J.; Kikuchi, Y.; Rio, R. V. Leeches and Their Microbiota:
Naturally Simple Symbiosis Models. Trends Microbiol. 2006, 14, 365—
371.

(278) McFall-Ngai, M. J. The Importance of Microbes in Animal
Development: Lessons from the Squid-Vibrio Symbiosis. Annu. Rev.
Microbiol. 2014, 68, 177—194.

(279) Wheeler, R.; Chevalier, G.; Eberl, G.; Gomperts Boneca, L. The
Biology of Bacterial Peptidoglycans and Their Impact on Host
Immunity and Physiology. Cell. Microbiol. 2014, 16, 1014—1023.

(280) Leone, V.; Gibbons, S. M.; Martinez, K.; Hutchison, A. L.;
Huang, E.Y.; Cham, C. M,; Pierre, J. F.; Heneghan, A. F.; Nadimpalli, A.;
Hubert, N.; Zale, E.; Wang, Y.; Huang, Y.; Theriault, B.; Dinner, A. R;;
Musch, M. W,; Kudsk, K. A.; Prendergast, B. J; Gilbert, J. A.;; Chang, E.
B. Effects of Diurnal Variation of Gut Microbes and High-Fat Feeding
on Host Circadian Clock Function and Metabolism. Cell Host Microbe
2015, 17, 681—689.

(281) Rogowski, A; Briggs, J. A; Mortimer, J. C; Tryfona, T.;
Terrapon, N.; Lowe, E. C,; Basle, A,; Morland, C.; Day, A. M.; Zheng,
H.; Rogers, T. E; Thompson, P.; Hawkins, A. R,; Yadav, M. P;
Henrissat, B.; Martens, E. C.; Dupree, P.; Gilbert, H. J.; Bolam, D. N.
Glycan Complexity Dictates Microbial Resource Allocation in the Large
Intestine. Nat. Commun. 2015, 6, 7481.

(282) Koropatkin, N. M.; Martens, E. C.; Gordon, J. L; Smith, T. J.
Starch Catabolism by a Prominent Human Gut Symbiont is Directed by
the Recognition of Amylose Helices. Structure 2008, 16, 1105—1115.

(283) Zhang, M.; Chekan, J. R.; Dodd, D.; Hong, P. Y.; Radlinski, L.;
Revindran, V,; Nair, S. K,; Mackie, R. I; Cann, L. Xylan Utilization in
Human Gut Commensal Bacteria is Orchestrated by Unique Modular
Organization of Polysaccharide-Degrading Enzymes. Proc. Natl. Acad.
Sci. U. S. A. 2014, 111, E3708—E3717.

(284) Koropatkin, N. M.; Smith, T. J. SusG: A Unique Cell-
Membrane-Associated alpha-Amylase from a Prominent Human Gut
Symbiont Targets Complex Starch Molecules. Structure 2010, 18, 200—
218.

DOI: 10.1021/acsnano.5b07826
ACS Nano XXXX, XXX, XXX—XXX


http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/press.html
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/press.html
http://dx.doi.org/10.1073/pnas.1507386112
http://dx.doi.org/10.1021/acsnano.5b07826

(285) Huisken, J.; Swoger, J.; Del Bene, F.; Wittbrodt, J.; Stelzer, E. H.
K. Optical Sectioning Deep Inside Live Embryos by Selective Plane
Ilumination Microscopy. Science 2004, 305, 1007—1009.

(286) Gibiansky, M. L,; Conrad, J. C. J; Jin, F,; Gordon, V. V. D,;
Motto, D. A.; Mathewson, M. A.; Stopka, W. G.; Zelasko, D. C.; Shrout,
J. D.; Wong, G. C. L. Bacteria Use Type IV Pili to Walk Upright and
Detach from Surfaces. Science 2010, 330, 197.

(287) Conrad, J. C.; Gibiansky, M. L,; Jin, F.; Gordon, V. D.; Motto, D.
A.; Mathewson, M. A,; Stopka, W. G.; Zelasko, D. C.; Shrout, J. D.;
Wong, G. C. Flagella and Pili-Mediated Near-Surface Single-Cell
Motility Mechanisms in P. aeruginosa. Biophys. J. 2011, 100, 1608—1616.

(288) Valm, A. M.; Welch, J. L. M,; Rieken, C. W.; Hasegawa, Y.; Sogin,
M. L; Oldenbourg, R.; Dewhirst, F. E.; Borisy, G. G. Systems-Level
Analysis of Microbial Community Organization through Combinatorial
Labeling and Spectral Imaging. Proc. Natl. Acad. Sci. U. S. A. 2011, 108,
4152—4157.

(289) Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W,;
Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.;
Hess, H. F. Imaging Intracellular Fluorescent Proteins at Nanometer
Resolution. Science 2006, 313, 1642—1643.

(290) Rust, M. J.; Bates, M.; Zhuang, X. Stochastic Optical
Reconstruction Microscopy (STORM) Provides Sub-Diffraction-
Limit Image Resolution. Nat. Methods 2006, 3, 793—795.

(291) Hell, S. W.; Wichmann, J. Breaking the Diffraction Resolution
Limit by Stimulated Emission: Stimulated-Emission-Depletion Fluo-
rescence Microscopy. Opt. Lett. 1994, 19, 780—782.

(292) Gustafsson, M. G. L. Surpassing the Lateral Resolution Limit by
a Factor of Two Using Structured Illumination Microscopy. J. Microsc.
2000, 198, 82—87.

(293) Fuchs, E.; Jaffe, J.; Long, R.; Azam, F. Thin Laser Light Sheet
Microscope for Microbial Oceanography. Opt. Express 2002, 10, 145—
154.

(294) Wang, W,; Li, G-W,; Chen, C; Xie, X. S; Zhuang, X.
Chromosome Organization by a Nucleoid-Associated Protein in Live
Bacteria. Science 2011, 333, 1445—1449.

(295) Lelek, M.; Di Nunzio, F.; Henriques, R.; Charneau, P.; Arhel, N.;
Zimmer, C. Superresolution Imaging of HIV in Infected Cells with
FIAsH-PALM. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 8564—8569.

(296) Hammar, P.; Leroy, P.; Mahmutovic, A.; Marklund, E. G.; Berg,
O. G; Elf, J. The Lac Repressor Displays Facilitated Diffusion in Living
Cells. Science 2012, 336, 1595—1598.

(297) Jarvis, R. M.; Goodacre, R. Discrimination of Bacteria Using
Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2004, 76, 40—47.

(298) Schuster, K. C.; Urlaub, E.; Gapes, J. R. Single-Cell Analysis of
Bacteria by Raman Microscopy: Spectral Information on the Chemical
Composition of Cells and on the Heterogeneity in a Culture. J.
Microbiol. Methods 2000, 42, 29—38.

(299) Koenig, K; Schneckenburger, H.; Hemmer, J.; Tromberg, B. J.;
Steiner, R. W. In-Vivo Fluorescence Detection and Imaging of
Porphyrin-Producing Bacteria in the Human Skin and in the Oral
Cavity for Diagnosis of Acne Vulgaris, Caries, and Squamous Cell
Carcinoma. In OE/LASE’94; International Society for Optics and
Photonics, 1994; pp 129—138.

(300) Albrecht-Buehler, G. Autofluorescence of Live Purple Bacteria in
the Near Infrared. Exp. Cell Res. 1997, 236, 43—50.

(301) Lawrence, J. R;; Neu, T. R.;; Swerhone, G. D. W. Application of
Multiple Parameter Imaging for the Quantification of Algal, Bacterial
and Exopolymer Components of Microbial Biofilms. J. Microbiol.
Methods 1998, 32, 253—261.

(302) Javidi, B.; Moon, L; Yeom, S.; Carapezza, E. Three-Dimensional
Imaging and Recognition of Microorganism using Single-Exposure On-
Line (SEOL) Digital Holography. Opt. Express 2005, 13, 4492—4506.

(303) Seo, S.; Su, T-W.; Tseng, D. K;; Erlinger, A.; Ozcan, A. Lensfree
Holographic Imaging for On-Chip Cytometry and Diagnostics. Lab
Chip 2009, 9, 777—787.

(304) Greenbaum, A.,; Luo, W.; Su, T..-W.; Gorocs, Z.; Xue, L.
Isikman, S. O.; Coskun, A. F.; Mudanyali, O.; Ozcan, A. Imaging
Without Lenses: Achievements and Remaining Challenges of Wide-
Field On-Chip Microscopy. Nat. Methods 2012, 9, 889—895.

AE

(305) Mudanyali, O.; Tseng, D.; Oh, C.; Isikman, S. O.; Sencan, I;
Bishara, W.; Oztoprak, C,; Seo, S.; Khademhosseini, B.; Ozcan, A.
Compact, Light-Weight and Cost-Effective Microscope Based on
Lensless Incoherent Holography for Telemedicine Applications. Lab
Chip 2010, 10, 1417—1428.

(306) Martinez, A. W.; Phillips, S. T.; Carrilho, E.; Thomas, S. W., I1I;
Sindi, H.; Whitesides, G. M. Simple Telemedicine for Developing
Regions: Camera Phones and Paper-Based Microfluidic Devices for
Real-Time, Off-Site Diagnosis. Anal. Chem. 2008, 80, 3699—3707.

(307) Breslauer, D. N.; Maamari, R. N.; Switz, N. A; Lam, W. A;
Fletcher, D. A. Mobile Phone Based Clinical Microscopy for Global
Health Applications. PLoS One 2009, 4, e6320.

(308) Tseng, D.; Mudanyali, O.; Oztoprak, C.; Isikman, S. O.; Sencan,
L; Yaglidere, O.; Ozcan, A. Lensfree Microscopy on a Cellphone. Lab
Chip 2010, 10, 1787—1792.

(309) Bogoch, I. I; Andrews, J. R.; Speich, B.; Utzinger, J.; Ame, S. M.;
Alj, S. M.; Keiser, ]. Mobile Phone Microscopy for the Diagnosis of Soil-
Transmitted Helminth Infections: A Proof-of-Concept Study. Am. J.
Trop. Med. Hyg. 2013, 88, 626—629.

(310) Wei, Q;; Qi, H.; Luo, W.; Tseng, D.; Ki, S.J.; Wan, Z.; Gérdcs, Z.;
Bentolila, L. A,; Wu, T.-T.; Sun, R;; Ozcan, A. Fluorescent Imaging of
Single Nanoparticles and Viruses on a Smart Phone. ACS Nano 2013, 7,
9147-91S58S.

(311) Wei, Q.; Luo, W.; Chiang, S.; Kappel, T.; Mejia, C.; Tseng, D.;
Chan, R. Y. L;; Yan, E;; Qi, H.; Shabbir, F.; Ozkan, H.; Feng, S.; Ozcan,
A. Imaging and Sizing of Single DNA Molecules on a Mobile Phone.
ACS Nano 2014, 8, 12725—12733.

(312) Berg, B.; Cortazar, B.; Tseng, D.; Ozkan, H.; Feng, S.; Wei, Q,;
Chan, R. Y. L.; Burbano, J.; Farooqui, Q.; Lewinski, M.; Di Carlo, D.;
Garner, O. B,; Ozcan, A. Cellphone-Based Hand-Held Microplate
Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent
Assays. ACS Nano 2015, 9, 7857—7866.

(313) Ozcan, A. Mobile Phones Democratize and Cultivate Next-
Generation Imaging, Diagnostics and Measurement Tools. Lab Chip
2014, 14, 3187—3194.

(314) Eckert, R.; He, J.; Yarbrough, D. K; Qi, F.; Anderson, M. H.; Shi,
W. Targeted Killing of Streptococcus Mutans by a Pheromone-Guided
“Smart” Antimicrobial Peptide. Antimicrob. Agents Chemother. 2006, S0,
3651—-3657.

(315) Guo, L; McLean, J. S; Yang, Y.; Eckert, R; Kaplan, C. W,;
Kyme, P.; Sheikh, O.; Varnum, B.; Lux, R.; Shi, W.; He, X. Precision-
Guided Antimicrobial Peptide as a Targeted Modulator of Human
Microbial Ecology. Proc. Natl. Acad. Sci. U. S. A. 2018, 112, 7569—7574.

(316) Kostyuchenko, V. A.; Chipman, P. R; Leiman, P. G.; Arisaka, F.;
Mesyanzhinov, V. V.; Rossmann, M. G. Nat. Struct. Mol. Biol. 2005, 12,
810—813.

(317) Ge, P.; Scholl, D.; Leiman, P. G; Yu, X.; Miller, J. F.; Zhou, Z. H.
Atomic Structures of a Bactericidal Contractile Nanotube in its Pre- and
Postcontraction States. Nat. Struct. Mol. Biol. 2018, 22, 377—382.

(318) Scholl, D.; Cooley, M.; Williams, S. R.; Gebhart, D.; Martin, D.;
Bates, A.; Mandrell, R. An Engineered R-Type Pyocin Is a Highly
Specific and Sensitive Bactericidal Agent for the Food-Borne Pathogen
Escherichia coli O157:H7. Antimicrob. Agents Chemother. 2009, S3,
3074—3080.

(319) Williams, S. R.; Gebhart, D.; Martin, D. W.; Scholl, D.
Retargeting R-Type Pyocins to Generate Novel Bactericidal Protein
Complexes. Appl. Environ. Microbiol. 2008, 74, 3868—3876.

(320) Gebhart, D.; Lok, S.; Clare, S.; Tomas, M.; Stares, M.; Scholl, D.;
Donskey, C. J; Lawley, T. D.; Govoni, G. R. A Modified R-Type
Bacteriocin Specifically Targeting Clostridium difficile Prevents
Colonization of Mice without Affecting Gut Microbiota Diversity.
mBio 2015, 6, €02368-14.

(321) Scholl, D.; Gebhart, D.; Williams, S. R.; Bates, A.; Mandrell, R.
Genome Sequence of E. coli O104:H4 Leads to Rapid Development of a
Targeted Antimicrobial Agent against This Emerging Pathogen. PLoS
One 2012, 7, e33637.

(322) Citorik, R. J; Mimee, M,; Lu, T. K. Sequence-Specific
Antimicrobials Using Efficiently Delivered RNA-Guided Nucleases.
Nat. Biotechnol. 2014, 32, 1141—11453.

DOI: 10.1021/acsnano.5b07826
ACS Nano XXXX, XXX, XXX—XXX


http://dx.doi.org/10.1021/acsnano.5b07826

(323) Pelgrift, R. Y.; Friedman, A. J. Nanotechnology as a Therapeutic
Tool to Combat Microbial Resistance. Adv. Drug Delivery Rev. 2013, 68,
1803—181S.

(324) Orcutt, B. N.; Bach, W.; Becker, K; Fisher, A. T.; Hentscher, M.;
Toner, B. M.; Wheat, C. G.; Edwards, K. J. Colonization of Subsurface
Microbial Observatories Deployed in Young Ocean Crust. ISME ].
2011, 5, 692—703.

(325) Edwards, K. J.; Becker, K; Colwell, F. The Deep, Dark Energy
Biosphere: Intraterrestrial Life on Earth. Annu. Rev. Earth Planet. Sci.
2012, 40, 551—568.

(326) LaRowe, D. E.; Amend, J. P. Catabolic Rates, Population Sizes
and Doubling/Replacement Times of Microorganisms in Natural
Settings. Am. J. Sci. 2015, 315, 167—203.

(327) Howe, J. The Rise of Crowdsourcing. Wired Magazine 2006, 14
(6), 1—4.

(328) Mavandadi, S.; Dimitrov, S.; Feng, S,; Yu, F.; Sikora, U;
Yaglidere, O.; Padmanabhan, S.; Nielsen, K; Ozcan, A. Distributed
Medical Image Analysis and Diagnosis through Crowd-Sourced Games:
A Malaria Case Study. PLoS One 2012, 7, e37245.

(329) Gilbert, J. A; Henry, C. Predicting Ecosystem Emergent
Properties at Multiple Scales. Environ. Microbiol. Rep. 2018, 7, 20—22.

(330) Larsen, P. E.; Field, D; Gilbert, J. A. Predicting Bacterial
Community Assemblages Using an Artificial Neural Network Approach.
Nat. Methods 2012, 9, 621—625.

(331) Henry, C. S.; DeJongh, M.; Best, A. A.; Frybarger, P. M.; Linsay,
B.; Stevens, R. L. High-Throughput Generation, Optimization and
Analysis of Genome-Scale Metabolic Models. Nat. Biotechnol. 2010, 28,
977-982.

(332) Feist, A. M.; Henry, C. S.; Reed, J. L.; Krummenacker, M.; Joyce,
A. R; Karp, P. D.; Broadbelt, L. J.; Hatzimanikatis, V.; Palsson, B. @. A
Genome-Scale Metabolic Reconstruction for Escherichia coli K-12
MGI1655 that Accounts for 1260 ORFs and Thermodynamic
Information. Mol. Syst. Biol. 2007, 3, 121.

(333) Henry, C. S; Xia, F; Stevens, R. Application of High-
Performance Computing to the Reconstruction, Analysis, and
Optimization of Genome-Scale Metabolic Models. J. Phys. Conf. Ser.
2009, 180, 012025

(334) Gilbert, J. A;; Steele, J. A.; Caporaso, J. G.; Steinbriick, L.; Reeder,
J.; Temperton, B.; Huse, D.; McHardy, A. C,; Knight, R; Joint, I;
Somerfield, P.; Fuhrman, J. A; Field, D. Defining Seasonal Marine
Microbial Community Dynamics. ISME J. 2012, 6, 298—308.

(335) Fierer, N.; Laday, J.; Clemente, J. C.; Leff, J. W.; Owens, S. M.;
Pollard, K. S.; Knight, R.; Gilbert, J. A.; McCulley, R. L. Reconstructing
the Microbial Diversity and Function of Pre-Agricultural Tallgrass
Prairie Soils in the United States. Science 2013, 342, 621—624.

(336) Ladau, J.; Sharpton, T. J.; Finucane, M. M.; Jospin, G.; Kembel,
S. W.,; O'Dwyer, J.; Koeppel, A. F.; Green, J. L; Pollard, K. S. Global
Marine Bacterial Diversity Peaks at High Latitudes in Winter. ISME J.
2013, 7, 1669—1677.

(337) Larsen, P. E.; Gibbons, S. M.; Gilbert, J. A. Modeling Microbial
Community Structure and Functional Diversity across Time and Space.
FEMS Microbiol. Lett. 2012, 332, 91—98.

(338) Sugihara, G.; May, R; Ye, H.; Hsieh, C-h.; Deyle, E.; Fogarty, M.;
Munch, S. Detecting Causality in Complex Ecosystems. Science 2012,
338, 496—500.

(339) Henry, C. S.; Broadbelt, L. J.; Hatzimanikatis, V. Discovery and
Analysis of Novel Metabolic Pathways for the Biosynthesis of Industrial
Chemicals: 3-Hydroxypropanoate. Biotechnol. Bioeng. 2010, 106, 462—
473.

(340) Turnbaugh, P. J.; Ley, R. E.; Mahowald, M. A.; Magrini, V.;
Mardis, E. R.; Gordon, J. I. An Obesity-Associated Gut Microbiome with
Increased Capacity for Energy Harvest. Nature 2006, 444, 1027—1031.

(341) Franzosa, E. A,; Huang, K.; Meadow, J. F.; Gevers, D.; Lemon, K.
P; Bohannan, B. J. M,; Huttenhower, C. Identifying Personal
Microbiomes using Metagenomic Codes. Proc. Natl. Acad. Sci. U. S. A.
2015, 112, E2930—E2938.

(342) Byrd, A. L, Segre, J. A. Elucidating Microbial Codes to
Distinguish Individuals. Proc. Natl. Acad. Sci. U. S. A. 2018, 112, 6778—
6779.

AF

(343) McGuire, A. L.; Caulfield, T.; Cho, M. K. Research Ethics and
the Challenge of Whole-Genome Sequencing. Nat. Rev. Genet. 2008,
2008, 152—156.

(344) Gutmann, A.; Wagner, J. W.; Alj, Y; Allen, A. L;; Arras, J. D;
Atkinson, B. F.; Farahany, N. A,; Garza, A. G.; Grady, C.; Hauser, S. L,;
Kucherlapati, R. S.; Michael, N. L.; Sulmasy, D. P. Privacy and Progress in
Whole-genome Sequencing. Presidential Commission for the Study of
Bioethical Issues, Washington, DC, October 2012. http://bioethics.
gov/sites/default/files/PrivacyProgressS08.pdf (Accessed October 25,
2015).

(345) Gutmann, A.; Wagner, J. W.; Alj, Y.; Allen, A. L;; Arras, J. D.;
Atkinson, B. F.; Farahany, N. A; Garza, A. G.; Grady, C.; Hauser, S. L,;
Kucherlapati, R. S.; Michael, N. L.; Sulmasy, D. P. New Directions. The
Ethics of Synthetic Biology and Emerging Technologies. Presidential
Commission for the Study of Bioethical Issues, Washington, DC,
December 2010. http://bioethics.gov/sites/default/files/PCSBI-
Synthetic-Biology-Report-12.16.10_0.pdf (Accessed October 25,
2015).

(346) Cho, M. K; Relman, D. A. Synthetic “Life,” Ethics, National
Security, and Public Discourse. Science 2010, 329, 38—39.

(347) Holdren, J. P.; Shelanski, H.; Vetter, D.; Goldfuss, C.
Memorandum: Modernizing the Regulatory System for Biotechnology
Products; The White House Office of Science and Technology Policy,
Washington, DC, July 2, 201S.

(348) Russell, L. M.; Rasch, P. J.; Mace, G. M,; Jackson, R. B.;
Shepherd, J.; Liss, P.; Leinen, M.; Schimel, D.; Vaughan, N. E.; Janetos,
A. C; Boyd, P. W,; Norby, R. J.; Caldeira, K.; Merikanto, J.; Artaxo, P.;
Melillo, J.; Morgan, M. G. Ecosystem Impacts of Geoengineering: A
Review for Developing a Science Plan. Ambio 2012, 41, 350—369.

(349) Buesseler, K. O.; Doney, S. C; Karl, D. M; Boyd, P. W;;
Caldeira, K.; Chai, F.; Coale, K. H.; de Baar, H. J. W.; Falkowski, P. G;
Johnson, K. S.; Lampitt, R. S.; Michaels, A. F.; Naqvi, S. W. A.; Smetacek,
V.; Takeda, S.; Watson, A. J. Ocean Iron Fertilization — Moving Forward
in a Sea of Uncertainty. Science 2008, 319, 162.

(350) Preston, C. J. Ethics and Geoengineering: Reviewing the Moral
Issues Raised by Solar Radiation Management and Carbon Dioxide
Removal. WIREs Clim. Change 2013, 4, 23—37.

(351) Roco, M. C; Mirkin, C. A,; Hersam, M. C. Nanotechnology
Research Directions for Societal Needs in 2020: Retrospective and
Outlook. Sci. Polym. Rep. 2011, 1, 71—107.

(352) Report of the Fast-Track Action Committee on Mapping the
Microbiome, 201S. https://www.whitehouse.gov/sites/default/files/
microsites/ostp/NSTC/ftac-mm_report_final 112015 _0.pdf (Ac-
cessed November 28, 2015).

DOI: 10.1021/acsnano.5b07826
ACS Nano XXXX, XXX, XXX—XXX


http://bioethics.gov/sites/default/files/PrivacyProgress508.pdf
http://bioethics.gov/sites/default/files/PrivacyProgress508.pdf
http://bioethics.gov/sites/default/files/PCSBI-Synthetic-Biology-Report-12.16.10_0.pdf
http://bioethics.gov/sites/default/files/PCSBI-Synthetic-Biology-Report-12.16.10_0.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/ftac-mm_report_final_112015_0.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/ftac-mm_report_final_112015_0.pdf
http://dx.doi.org/10.1021/acsnano.5b07826

