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ABSTRACT: The microbiome has been heralded as a
gauge of and contributor to both human health and
environmental conditions. Current challenges in probing,
engineering, and harnessing the microbiome stem from its
microscopic and nanoscopic nature, diversity and complex-
ity of interactions among its members and hosts, as well as
the spatiotemporal sampling and in situ measurement
limitations induced by the restricted capabilities and norm
of existing technologies, leaving some of the constituents of
the microbiome unknown. To facilitate significant progress
in the microbiome field, deeper understanding of the
constituents’ individual behavior, interactions with others,
and biodiversity are needed. Also crucial is the generation of multimodal data from a variety of subjects and environments
over time. Mobile imaging and sensing technologies, particularly through smartphone-based platforms, can potentially
meet some of these needs in field-portable, cost-effective, and massively scalable manners by circumventing the need for
bulky, expensive instrumentation. In this Perspective, we outline how mobile sensing and imaging technologies could lead
the way to unprecedented insight into the microbiome, potentially shedding light on various microbiome-related mysteries
of today, including the composition and function of human, animal, plant, and environmental microbiomes. Finally, we
conclude with a look at the future, propose a computational microbiome engineering and optimization framework, and
discuss its potential impact and applications.

Microorganisms and viruses play profound roles
around the globe. Bacteria, archaea, protists, and
viruses inhabit the ocean, the soil, the air, and even

our infrastructure, homes, and bodies, all together comprising
the “global microbiome”. Although estimates have varied, it has
been reported that within the human body, the number of non-
human cells is on the order of the number of human cells.1,2

These microbes live on our skin, in our mouth, and in our gut,
forming mysterious and complex ecosystems. Comprising
upwards of 10,000 different species of bacteria,3 with 500 or
more distinct species in the gut alone, the composition of the
human microbiome varies wildly among individuals, over time,
and at different locations of the body.4 The many microbiota of
the natural environment are even more expansive, with an
estimated 160 different species of bacteria in 1 mL of ocean
water, and between 6,400 and 38,000 species per gram of soil.5

The “built” environment, positioned at the nexus of the human
and environmental microbiomes, is another unique landscape
with specific microbial compositions, functions, and cultiva-
tion.6 Because many of these bacteria cannot be cultured using
traditional means, they have been essentially invisible until now,
comprising what has been called microbial “dark matter”. Only

with the advent of DNA sequencing technology has the
scientific community begun to appreciate fully the vastness of
these microbial communities. Therefore, with this newfound
knowledge and aided by emerging technology, we are tasked
with discovery. What unique roles do these microbes play in
our global health and the environment? How can we best
monitor, facilitate, and cultivate or engineer a healthy
microbiome and maintain it?
Already, dysfunction of the gut microbiome has been

correlated with a number of disorders related to the digestive
tract, such as Crohn’s disease, irritable bowel syndrome (IBS),
and ulcerative colitis.7−10 Obesity has similarly come to be
viewed through the optics of the microbiome. For example, a
recent study reported that during a randomized, controlled,
fiber and whole grain diet intervention, the ratio of Prevotella to
Bacteroides bacteria in the participants’ gut was found to be an
important biomarker associated with loss of body fat.11 Many
other conditions outside the digestive system have also been
linked to changes or dysbiosis of the microbiome. Patients with
multiple sclerosis, allergies, acne, diabetes, and even cancer have
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been shown to possess microbiomes with different makeups
than those of healthy individuals, painting an intricate picture of
how microorganisms may influence, or be gauges of our health,
beyond that of well-characterized pathogenic infections.12−18

There is even evidence that the gut microbiome influences
neural function through the so-called “gut−brain axis” and, by
extension, our mental health, encompassing stress, anxiety, and
mood as “microbial symptoms”.19−22 Even if microbes are not
the sole cause of these disorders, the fact that such disorders
and their progression impact the population distribution of
microbes could pave the way for early detection of and
improved treatments for various diseases through the analysis
and engineering of the microbiome. In addition, many external
factors have been shown to alter the makeup of a person’s
microbiome, such as age, geographic location, and a myriad of
lifestyle choices.23−28

Parallel to investigations on the impact of the microbiome on
human health, environmental health is also undergoing a period
of microbiome-related discoveries.29−34 Characterization of the
microbiome within the permafrost, soil, ocean, and air are being
performed to gain insight into the relationship between human
health and our environment, as well as the effects of global
warming and other anthropogenic disturbances.35−44 Taken
together, these ongoing discoveries of the microbiome will be
important for the future of global health and environmental
studies, as emphasized by the U.S. National Microbiome
Initiative launched in 2016 by the White House Office of
Science and Technology Policy (OSTP), which aims to
advance microbiome science to benefit individuals, commun-
ities, and the planet.45 Therefore, the technologies that enable
these studies at a global scale will set the pace for
transformative progress in our understanding and engineering
of the global microbiome.
Here, we highlight some of the emerging mobile

technologies that, enabled by the economies of scale
accompanying consumer electronics (e.g., mobile phones),
provide highly sensitive, yet cost-effective sensing and
microscopy tools that uniquely complement high-end labo-
ratory equipment.46,47 In addition, these mobile technologies
can enable distributed data collection in a wide range of field
settings as well as spatiotemporal mapping of the microbiome,
leading to a wealth of global health information. Once scaled-up
and made available to consumers, such technologies can help us
dynamically monitor the state of a given microbiome and open
up ways to probe the efficacy of therapies that target and
engineer microbiome health and state. Through such mobile
technologies, remote studies with extensive automated sensor
networks can be more easily realized. The environmental
sample processor (ESP), developed at the Monterey Aquarium
Research Institute, is a good example of such an automated
microbial monitoring system; it was designed for submersible
exploration of ocean waters and can provide an early warning
system for the development of harmful algae, or identification
of negative effects of wastewater among other pollu-
tants.42−44,48 Mobile technologies such as the ESP, therefore,
can facilitate “big data” solutions through coordinated, high-
throughput, potentially crowd-sourced measurement efforts. If
largely accessible, such technologies can even engage “citizen
scientists” to contribute to meaningful microbial discoveries
akin to the way amateur astronomers collectively observe the
sky. However, most important is the imperative to democratize
these measurement and analysis tools for improving global

health, such that the benefit of discovery is wide-reaching and
impactful.

In this Perspective, we first discuss mobile sensing
technologies that can aid in discovering the global microbiome,
with a specific focus on DNA-sequencing technologies, DNA
amplification, and quantification, along with the emerging
molecular-sensing technologies, which can be used for
measuring proteins and metabolites of a microbiome. Second,
we discuss mobile imaging technologies. Here, we pay special
attention to fluorescence read out, along with computational
imaging techniques. Finally, we look into the future and
propose a computational microbiome engineering and
optimization framework that can be used to define and to
quantify the state of a given microbiome and to transform it
gradually into desired states in a controlled manner. Ultimately,
such a framework can help us leverage the inherent
measurement parameter space provided by cost-effective and
mobile technologies to garner and to engineer meaningful
health outcomes.

MOBILE SENSING TECHNOLOGIES FOR THE
MICROBIOME

DNA Sequencing. High-throughput DNA sequencing,
termed next-generation sequencing (NGS), can be considered
the workhorse of microbiome discovery. Advances in
sequencing technologies over the past two decades have
dramatically lowered the cost per base pair, by nearly 6 orders
of magnitude, heralding unprecedented flow of genomic data
into the research community.49−51 The Illumina HiSeq
sequencing machines, for example, can process multiple
samples in parallel, each collected from a unique microbial
environment, sequencing the metagenome of the entire
microbial ecosystem in 1 day. Such “snapshots” of the
microbiome, coupled with relevant clinical data, have led to
many revelatory findings.14,52−55 For example, it has been
shown that exposure to diverse microorganisms at an early age
can reduce instances of asthma and other allergies, and that the
vaginal microbiome becomes less diverse in preparation for
childbirth.55,56 In addition, maladaptation of the nominal
microbiome composition of the stomach has been associated
with carcinogenesis.13 Such discoveries will have profound
effects on global health, and have recently been bolstered by
research initiatives such as the Unified Microbiome Initiative,
the Human Microbiome Project, and the Earth Microbiome
Project, among others.49,57−59

Next-generation sequencing technologies will continue to be
foundational to these efforts, and have made significant strides
in terms of proliferating into research laboratories. However, in
their present form, these NGS devices are expensive and have
bulky benchtop instrumentation, relegated to high-resource
facilities. Illumina’s NGS approach, called sequencing by
synthesis, requires DNA to be fragmented into millions of
strands, each around 150 bases in length, whereupon they are
immobilized within a flow cell. A bridge amplification
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procedure is then performed, using polymerase enzymes to
copy the DNA fragments over many cycles. The actual
sequencing is then performed, in which fluorescently tagged
nucleotides bond to the fragmented single-stranded DNA and
emit a wavelength-encoded fluorescence signal indicating the
synthesized sequence. This process, known as “shotgun”
sequencing, is massively parallelized, producing gigabytes of
data that must then be processed to uncover the comprehensive
sequence made up of the random fragments. As a result of this
intricate and multistep approach, NGS technologies, despite
significant progress, are still not cost-effective enough for
ubiquitous use. The high research and development costs,
specialized hardware required, such as high-end cameras and
scanning components, as well as the need for relatively large
volumes of costly reagents, are some of the areas for
improvement as sequencing technologies evolve. In addition,
eliminating the requirement for external laboratory equipment,
trained personnel, and excess handling time will be key steps in
moving toward democratization of this technology and its
widespread use in microbiome analysis.
Despite the challenging prospect of sequencing DNA on a

low-cost mobile platform, efforts toward this goal are vital to
discovering the global microbiome, even if they come at the
cost of shorter sequencing depths or lower throughput, among
other trade-offs. For example, when using shotgun sequencing
methods, as few as 20 base pairs can be sufficient to identify a
micro-organism against the background ecosystem.60 To this
end, there are additional emerging sequencing techniques that
offer practical advantages, which might lead to mobile
implementations. For example, the Ion Torrent Personal
Genome Machine (PGM) DNA sequencer uses scalable
semiconductor technology to measure protons released by
nucleotides as they bond to the target DNA, eliminating the
need for fluorescence optics, high-end cameras, and scanning
components.51,61 Nanopore sequencing is another emerging
technique, where single DNA strands are passed through a
protein nanopore or an artificial nanopore while the electric
current across the pore is continuously measured. The signal
can be matched to the passing A-C-T-G nucleotides over long
read lengths (>5 kbp) and at fast speeds (1 bp/ns) without the
need for fluorescent read-out or a DNA amplification step. The
MinION sequencer from Oxford Nanopore, for example, is a
recently developed nanopore sequencer, which is roughly the

size of a deck of cards, weighs 100 g, and can be entirely
powered via a USB connection to a laptop. Although yielding
higher error rates than the high-end NGS technologies, recent
studies have successfully utilized the MinION sequencer in
remote and challenging environments such as the Ecuadorian
Choco Rainforest for the analyses of rare endemic fauna, and in
remote hospitals in Guinea for genomic surveillance of the
Ebola virus and its mutations (Figure 1).62,63 Pushing the
envelope further, Oxford Nanopore has begun the development
of an even smaller, matchbox-sized, sequencer, the SmidgION,
which will connect directly to a smartphone for field-based
analysis.64 Innovations such as these can build upon the
progress made thus far to democratize DNA sequencing. Taken
together, this “third generation” sequencing technology can
open vast opportunities for microbiome analysis and discovery
by leveraging mobility, robustness, affordability, and, in turn,
ubiquity. Along with a genomic database curated by the greater
research community, such mobile sequencing technologies
could pinpoint characteristic aspects of the microbiome and, as
a network, greatly expand our statistical, spatial, and temporal
foundation for microbiome discovery and engineering.

Polymerase Chain Reaction and Microbiome Quanti-
fication. In addition to exciting developments in DNA
sequencing using low-cost and mobile systems, sensing
technologies that amplify, identify, or quantify specific DNA
sequences are also being pushed to deliver mobile and cost-
effective implementations. Polymerase chain reaction (PCR) is
an important example of a ubiquitous DNA sensing technology
that has a unique role to play in exploring the microbiome, and
has recently been shown to be effective in a mobile capacity.
During PCR, a DNA sample, in the presence of a PCR
nucleotide mixture, is first heated to temperatures >90 °C such
that the double stranded structure can “melt”, or denature,
leaving two complementary single strands of DNA. Next, the
sample is cooled to a characteristic annealing temperature
(usually around 60 °C) to enable hybridization between the
single-stranded DNA and the chosen ‘primer,’ which consists of
a sequence complementary to the target DNA. Lastly, by
bringing the sample to a third characteristic temperature zone
(e.g., between 75 and 80 °C for Taq polymerase), the newly
hybridized DNA is then elongated by polymerase enzymes,
filling in the remaining sequence not complemented by the
primer. This thermal cycle is repeated dozens of times,

Figure 1. (a) All sequencing instruments and consumables packed into conventional luggage. (b−d) Genomic surveillance laboratory in
Donka Hospital in Conakry, Guinea, and (e) collected and sequenced samples plotted as a function of time, showcasing high-throughput
sequencing capabilities used for Ebola surveillance. Reprinted with permission from ref 63. Copyright 2016 Macmillan Publishers Limited.
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synthesizing millions of copies of the DNA sequence targeted
by the primer. Thus, PCR can be used to amplify trace amounts
of a specific microbial DNA sequence against a complex and
varied genomic or metagenomic background, and is a powerful
tool for the identification of harmful pathogens or other
microbes of interest, among others. In addition, the inclusion of
fluorophores, intercalated with amplified DNA strands, enables
real-time quantification of the amplified sequence through the
use of fluorescence imaging or sensing tools, resulting in
quantitative PCR (qPCR).65 Digital PCR is another extension
of this technique, compartmentalizing the reaction to thousands
of “on” or “off” signals, which, taken together, can yield more
sensitive and robust quantification, without the use of standard
calibration curves. Digital PCR provides exciting opportunities
toward developing mobile technologies for microbiome analysis
and, in fact, is already being used in the food industry to screen
samples for E. coli, Listeria, Campylobacter, and Salmonella.66

One example of a mobile PCR platform is the cobas Liat
PCR System developed by Roche Diagnostics, which was
approved by the U.S. Food and Drug and Drug Administration
(FDA) in 2015 (Figure 2a).70 It is about the size of a small
toaster, and can perform qPCR with sensitivities as high as
99.2% and with 100% for influenza A/B and Streptococcus
specific DNA strands, respectively, as well as 100% specificity
for both. This performance is far beyond that of the
traditionally employed antigen-based rapid diagnostic tests
(RDTs).71 With integrated microfluidics for automated sample
and reagent handling and convenient reagent loading strips, the
cobas Liat PCR system requires ∼5 min of hands-on time, and
∼20 min of processing time until results are reported. Other
examples of commercial PCR devices, marketed as highly
sensitive, cost-effective, easy-to-use instruments include the
Palm PCR by Ahram, and the POCKIT Nucleic Analyzer from
Genereach (Figure 2).72 These technologies realize DNA
amplification in a mobile platform, providing powerful tools for
discovering the global microbiome. As the scientific community
learns more about the functions and the diversity of the human
microbiome, diagnostic tests will emerge that perhaps require
the quantification of statistically significant ratios of microbial
DNA, or even characteristic relationships among a panel of
microbes.73 In fact, multiplexed PCR assays for the
quantification of eight key bacteria have already been developed
for the diagnosis of lower respiratory tract infections.74

Screening microbial communities for pathogenic members
will also advance some of the existing microbiome-centered
treatments, such as fecal transplants. Mobile and cost-effective
PCR technologies will therefore be vital for democratizing

diagnosis and capitalizing on the knowledge gained from the
microbiome. As we detail in the final section of this Perspective,
these capabilities will also help us to quantify various states of
the microbiome of interest using a panel of measurements,
which might form the basis of an optimization framework to
engineer and to probe microbiomes for specific outcomes.

Toward the broad goal of low-cost and mobile DNA
detection and quantification, several emerging technologies
show promise in providing practical alternatives to the currently
employed PCR-based techniques. For example, the thermo-
cyclers typically used in PCR require relatively large amounts of
power to achieve the desired heating and cooling speeds. One
alternative approach has been to engineer a spatial domain PCR
cycler, where the sample solution is physically moved to
different thermal regions using fluidics or simple servos.75,76

The microfluidics, fabricated as low-cost cartridges, can be
carefully designed to minimize reagent use (to sub-picoliter
levels), optimize heat exchange, and even automate sample
pretreatment steps.77 Polymerase chain reaction with iso-
thermal operation is another attractive emerging technology.
Eliminating the need for active heating and cooling of the
sample, Priye et al. demonstrated isothermal PCR by utilizing a
single localized heater, which induced the proper convection
flow in an open chamber in order to cycle DNA in and out of
the appropriate temperature zones.78,79 This design, while
employing complex fluid dynamics, provides a viable, cost-
effective alternative to traditional thermocyclers, employing
standard USB power, and a compact form factor, fitting onto a
commercial drone.
Isothermal operation for DNA amplification can also be

achieved by changing the underlying amplification chemistry.
Techniques such as nucleic acid sequence-based amplification
(NASBA), helicase-dependent amplification (HDA), rolling
circle amplification (RCA), and strand displacement amplifica-
tion (SDA) have demonstrated isothermal operation conducive
to compact, battery-powered microbial DNA-sensing devices,
forgoing the need for thermo-cycles altogether.80,81 As another
alternative, loop-mediated isothermal amplification (LAMP)

Figure 2. (a) cobas Liat polymerase chain reaction (PCR) system. Reprinted with permission from ref 67. Copyright 2018 Roche Diagnostics.
(b) Palm PCR. Reprinted with permission from ref 68. Copyright 2017 Ahram Biosystems, Inc. (c) POCKIT nucleic analyzer (micro series).
Reprinted with permission from ref 69. Copyright 2018 GeneReach Biotechnology Corp.
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has emerged as a robust and promising isothermal amplification
technique. In LAMP, DNA amplification is achieved at a single
temperature ∼60−65 °C through the use of several strand-
displacing primers that self-hybridize, forming “loops” on their
3′ and 5′ ends, triggering an autocycling process, which, in turn,
synthesizes millions of copies of double-stranded DNA at a
constant temperature. Recent work has showcased the
advantages of isothermal operation of LAMP, by demonstrating
paper-based point-of-care tests.82,83 In these works, the reagent
handling is minimal, and the cost per assay is reported to be as
low as $1.83. Connelly et al even demonstrated end-point read
out with a hand-held UV source and a mobile phone, used to
excite and to read the SYBR Green I intercalating dye,
respectively, ultimately demonstrating a 500 cells/mL limit of
detection for the malB gene of E. coli.
In addition, Kong et al. demonstrated lambda DNA

quantification by utilizing LAMP in a simple “one-pot” assay,
reading the fluorescence signal from intercalating dyes with a
mobile phone-based well-plate reader (Figure 3).84 They also
reported that introducing Hydroxynaphthol blue (HNB), a
commonly used colorimetric indicator, into the fluorescent
LAMP assay can lead to a 20-fold increase in the fluorescence
signal against the background, enabling a limit of detection as
low as 25 copies/μL. With further advances in quantitative
read-out schemes alongside the development of LAMP primers
for microbes of interest, this type of mobile technology can
bring ultrasensitive and multiplexed measurements to low-
resource settings, including, for example, the home. Moreover,
in addition to fluorophores as the status quo reporter, DNA
amplification protocols that can leverage simple colorimetric
indicator dyes, or turbidity-based tests for simpler and cheaper
read-out instrumentation, should also be considered.
Proteomics and Metabolomics. Sensing and quantifica-

tion of proteins and metabolites are also essential to
microbiome discovery and analysis. These biomolecules carry
out the microbiome function, and thus are vital to the life of the
microbial community and, in turn, that of its host or
environment. DNA sequencing of the microbiome is a powerful
surveying tool; however, it is inadequate for providing
functional information about specific pathways, interactions,

and behavior. Therefore, mobile technologies that enable
multiplexed proteomics or metabolomics testing will be
invaluable tools alongside deep-sequencing technologies to
uncover microbiome functions, operations, and overall health.
Already, several multiomic studies have illuminated the intricate
workings of the microbiota, their proteins, and metabolites. For
example, colon cells use butyrate produced from the colon
microbiome as an energy source, in order to help catalyze
important steps in the metabolic and Krebs cycles.85 The
oceanic microbiome has even been documented to adapt to oil
plumes, such as that created by the Deepwater Horizon oil spill
in 2010,86−88 through increased microorganism motility,
chemotaxis, and hydrocarbon degradation via an alkane
degradation pathway.31

Even with a limited number of proteomic and metabolomic
measurements, high-throughput, cost-effective, and mobile
imaging and sensing technologies can populate a measurement
parameter space in a massively parallel way. This parameter
space can be used to quantify and to evaluate the underlying
microbiome state and, in turn, indicate how best to perturb the
given inputs to the complex microbiome network (e.g., drugs,
nutrition, etc.) to achieve a desired outcome. This iterative
optimization framework, discussed in the final section of this
Perspective, will largely benefit from mobile technologies that
can measure and monitor the proteome and metabolome of the
global microbiota, among other multiplexed information
channels.
In addition, as the larger function and diversity of the

microbiome are uncovered, novel diagnostic tests will emerge

Figure 3. (a) Schematic of the mobile-phone based fluorescent well-plate reader for DNA quantification. (b) Commercial fluorescent well-
plate reader alongside a (c) mobile-phone-based reader for comparison. (d) Fluorescent signal versus DNA concentration with EvaGreen
intercalating dye only (c) and with hydroxynaphthol blue (HNB) indicator added to the EvaGreen intercalating dye. Reprinted from ref 84.
Copyright 2017 American Chemical Society.
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that rely on sensing the proteins or metabolites that are
produced or consumed by, or otherwise interact with, the
microbiota. Mobile technologies provide alternate tools for
these indirect measurements and, therefore, play a role in
democratizing diagnosis. One example of such a diagnostic test,
the “Helicobater pylori (H. pylori) breath test” is commonly
employed in hospitals to measure excessive H. pylori presence
in the human gut. CO2 is released by H. pylori and subsequently
measured in the patient’s breath.89 This microorganism is
commonly found in the human gut, but a large presence of H.
pylori has been correlated with peptic ulcer disease, chronic
heartburn, nausea, bloating, and even gastric adenocarcinomas.
Therefore, quantifying H. pylori is essential knowledge for
doctors when deciding a diagnosis and treatment. Of course, a
fecal sample could be taken for genomic analysis, but CO2 can
be more readily measured, and therefore exists as a practical
diagnostic biomarker. Taken together, any technology that can
specifically lock onto a biomarker or a panel of biomarkers of
the underlying microbiota state can be leveraged for better
diagnostics as well as microbiome discovery and analysis.
It is important to note that proteomic and metabolomic

technologies have existed for decades, employing a wide array
of sensing and amplification strategies. In this Perspective, we
do not attempt a comprehensive assessment of all of the
progress made in this vital field. Instead, we highlight a few
recently developed sensing technologies that show promise in
uncovering the omics information pipeline. For instance, one
recently developed technique, homogeneous entropy-driven
biomolecular assay (HEBA), uses existing DNA amplification
mechanisms as a means to transduce and to amplify a specific
protein signal.90 Through the inclusion of two catalyst-
precursor oligonucleotides that are modified to have specific
protein-binding elements, an entropy-driven DNA displace-
ment assay was shown to create an amplified DNA signal
proportional to the targeted protein concentration. Such an
assay can be performed in a “one-pot” operation within 10 min,
without the need for precise thermal control or cycling, and,
therefore, is well-suited for point-of-care use. Thus, HEBA can
leverage the DNA amplification and quantification technologies
currently undergoing maturation for sequencing applications,
while being broadly applicable to a number of proteins related
to the microbiome. Such assays can be performed in a well-
plate configuration, in line with traditionally employed high-
throughput assays, as discussed below.
Well-plate-based tests/assays have long been a cornerstone

of clinical microbiology and life sciences. They offer relatively
high sensitivities using high-throughput and simple optical
readout, and are therefore ideal for various applications such as
antimicrobial susceptibility testing (AST), and colorimetric and
fluorescent enzyme-linked immunosorbent assays (ELISAs).
For example, AST is used to quantify a microbe’s susceptibility
to a range of antibiotics. A well-plate is used so that many drugs
at different concentrations can be tested in parallel, enabling
physicians to identify and to prescribe precise treatments that
effectively target the pathogen with the minimum inhibitory
concentration of the right antibiotic, helping to limit the growth
of resistant strains. As another example, ELISA is one of the
most common methods of protein sensing, leveraging the
specificity of antigen−antibody interactions to quantify an
analyte. However, despite the ubiquity of such microplate-based
assays like AST and ELISA, they are largely relegated to well-
equipped laboratories and clinics due to their reliance on costly
reagents as well as bulky and expensive benchtop plate readers.

In an effort to democratize this molecular-sensing technology,
researchers have been working to make ELISA and its
corresponding readout instrumentation mobile and cost-
effective. Berg et al. demonstrated a mobile-phone-based
ELISA reader, utilizing low-cost plastic optical fibers to sample
each of the 96 wells on a conventional ELISA well-plate
without the need for any mechanical scanning or large field-of-
view optics.84,91 All the fibers are bundled together and imaged
through the use of a simple external lens and the smartphone
camera. A similar design, but with fluorescent read-out
capabilities, can be seen in Figure 3. Of course, reagents and
their necessary storage is a drawback to such assays, along with
the need to have trained personnel to pipet the substrates and
wash buffers. To address these drawbacks, researchers are
exploring inkjet-printing technologies to print reagents in
microarrays, in an effort to store them on-chip without the need
for refrigeration, among other approaches.92

Another strategy for reducing the reagent burden is to design
label-free sensors. Without the need for additional steps after
sample collection, such as fluorescent tagging and pipetting of
the substrate or stop solution, label-free sensors can report
molecular information at low cost and with simplified
operation. Lateral flow assays, and paper-based antigen or
antibody tests are perfect examples of such mobile sensing
technologies; however, by and large, these tests come with
severe limits in terms of sensitivity and specificity. One method
of increasing the sensitivity in a label-free modality is through
the use of surface-plasmon resonance. Surface plasmons, or the
general field of plasmonics, are based on resonance phenomena,
whereupon light, at a given resonant wavelength, excites
collective electron oscillations at a metal−dielectric interface.
These electron oscillations manifest as spectral features in the
transmission and/or reflection spectra of the surface,
responding to the presence of analytes at the sensor surface
via resonant frequency changes. With the proper surface
chemistry, plasmonics-based sensing elements can specifically
capture a biomolecule of interest using antibody−antigen
binding. Such elements can also be used to amplify Raman
scattering (through surface-enhanced Raman scattering, SERS),
fluorescence, or work in highly sensitive aggregation or
nanoparticle degradation assays.93−96 Plasmonic sensors have
been used for direct detection of pathogenic microorganisms
such as E. coli, Salmonella spp., Listeria monocytogenes,
Campylobacter jejuni, and Staphylococcus aureus, among others,
as well as nonpathogenic species such as Bacillus subtilis and
Helicobacter pylori.97,98 In addition, plasmonic techniques have
been used for concentration measurements for a number of
different large molecule biomarkers and even for viral load
measurements in whole, unprocessed blood.99,100 Combined
with enzymatic reactions or responsive hydrogels, plasmonic
sensors have demonstrated small molecule sensing of glucose
and gas concentrations.101−103 Surface-enhanced Raman
scattering shows further promise as a technique to differentiate
different bacterial species from their spectral signatures,
although the weak Raman scattering signal often requires
relatively expensive optics for read-out instrumentation.104,105

Another example of label-free optical sensors, called
“holographic sensors”, which work by exploiting interference
phenomenon, have also shown promise for a number of
microbiome proteins and metabolites, e.g., protease, calcium
dipicolinate, and exoenzymes produced during cell growth of B.
megaterium and B. subtilis.106−108 In addition, by selecting
characteristic spectral bands (e.g., employing light-emitting

ACS Nano Perspective

DOI: 10.1021/acsnano.7b08660
ACS Nano XXXX, XXX, XXX−XXX

F

http://dx.doi.org/10.1021/acsnano.7b08660


diodes, LEDs, or inexpensive laser diodes) and incorporating
complementary metal−oxide semiconductor (CMOS) or
photodiode technology, sensor readers that register a spectral
response can be made cost effectively without sacrificing
throughput.109−111 Taken together, these label-free optical
sensors offer a versatile technique for molecular sensing and
will be increasingly useful in designing multiplexed mobile
proteomics and metabolomics sensors.
These emerging sensing technologies, including plasmonics,

will not only have to be demonstrated in proof-of-concept
studies performed in laboratory settings, but must overcome
sensitivity and specificity problems in the context of real
biological and chemical environments, where the sensor
fabrication variability109 and end-user operational variance are
serious concerns. In addition, the demand for expanded
spatiotemporal resolution for proteomics and metabolomics
places an extra burden on these technologies to operate as
wearable, implantable, or ingestible sensors, potentially forming
distributed sensing networks. Molecular sensors embedded in
clothing, or on a wrist watch can physically integrate in vivo
with the microbiome (e.g., skin microbiome) and record real-
time dynamics and responses to stimuli. Electrochemical
sensors, for example, have already made headway in this
capacity.112 Recently, simultaneous, real-time sensing of
glucose, lactate, sodium, potassium, and temperature was
demonstrated in a flexible arm band for sweat analysis.113 An
eyeglasses-based metabolite sensor platform has also been
reported.114 Similarly, several disposable, “smart bandages”
have been demonstrated, which are able to measure uric acid
and pyocyanin, important metabolites of the microbiome that
can act as biomarkers for wound healing status, for
example.115,116 The human gut, however, presents a formidable
sensing environment, due to its acidity, darkness, and limited
accessibility. Therefore, gut-based sensing technologies must
aim toward a capsule-sized form factor, with wireless power and
data transfer, as well as full biocompatibility of materials.
Toward this goal, exciting preliminary studies by Kim et al. have
demonstrated food material-based electrochemical sensors for
the sensing of metabolites and molecules such as catechol, uric
acid, ascorbic acid, dopamine, and acetaminophen.117 Although
not yet integrated with compact, body-friendly, wireless
communications, such ingestible sensors could potentially
provide an omic snapshot of the gut, at least partially, and
prove transformative for microbiome discovery and analysis.
Regardless of the specific omics approach that is selected,

quality control is a crucial requirement so that data from
different spatiotemporal locations can be meaningfully
compared. For example, data collection for the America Gut
Project requires samples to be taken by volunteers and sent to a
sequencing facility, and is therefore subject to days of travel
under varying conditions that may affect the constituent
microbes. The process of taking a sample is also vulnerable to
variations among human subjects, requiring special sample
collection kits and detailed instructions.179 These sources of
variability will need to be addressed in the next generation of
large-scale microbiome investigations, perhaps through fully
automated sample collection and pretreatment steps that are
robust and repeatable even for nonprofessionals’ use.

MOBILE IMAGING TECHNOLOGIES FOR THE
MICROBIOME
Although the sequencing methods discussed earlier have
become the primary tools used for microbiome discovery,

optical imaging approaches offer several unique advantages.
They can provide visual information about constituent
microbes, enabling investigation of the relationships among
bacteria and how they exchange resources with one another and
with the environment. Because most bacteria cannot be
cultured, it is clear that their interactions with other organisms
in situ are critical for their survival. Imaging also lends itself to
mobile, cost-effective, and nondestructive implementations,
which could pave the way for democratized research into the
microbiome and help us elucidate the complex relationships
among microbes in a community by providing functional
information (e.g., motility or taxis, trajectories, and viability) in
vivo and/or in situ. The development of ever-improving CMOS
image sensor technology and exponentially decreasing
computation costs have been the driving forces behind the
recent growth in the number of field-portable imaging
systems.46

Bacteria are typically cocci (round), bacilli (rod-shaped), or
spirilla (curved). Their longest dimension can reach 10 μm,
while the smallest dimension is often submicron. This means
that conventional optical microscopy techniques, with reso-
lutions defined by the diffraction limit, are on the bleeding edge
in terms of seeing the microbial world. In other words, most
bacteria can be seen or detected, however, they appear similar
to each other under a bright-field microscope. Without the use
of any labels, resolving characteristic nanoscale features such as
flagella, key organelles, or cell wall structures remains a central
challenge for optical imaging, requiring a combination of
techniques to be employed in order to reveal functional
information that is otherwise buried below the diffraction limit.
These limitations become even more challenging when one
considers the imaging and tracking of viruses within the
microbiome, due to their nanoscopic size and the large sample
volume that needs to be imaged.
Microscopes are typically designed to balance the required

resolution and field of view (FOV) for the desired application.
As the magnification and the numerical aperture of an objective
lens are increased to enable smaller objects to be resolved, the
FOV and the sample volume that are imaged shrink, limiting
the number of individual objects that can be imaged at one
time. This limited FOV presents a challenge for microbiome
analysis because we are interested in microorganisms and
viruses that are small and in many cases rare, requiring a large
FOV and imaging volume to increase the odds of imaging and
tracking the target objects.3,118

Next, we discuss a number of techniques, conducive to
mobile and ubiquitous implementations, that have been
developed to address these central challenges and to improve
the utility of optical microscopy for discovery and analysis of
the global microbiome.

Computational Microscopy Techniques. As the cost of
computation has decreased dramatically,119 mostly due to
economies of scale driven by the consumer electronics industry,
it has become feasible to replace bulky, expensive imaging
optics with rapid, powerful algorithms employed during
postprocessing and image reconstruction. Computation trans-
forms the captured imagewhich may be noisy, aberrated, out
of focus, or otherwise unusable in its captured stateto a
result/image that can be better interpreted by the end user.
Computation can also be used to design an optical imager or
sensor, optimizing the raw data acquisition along with the
reconstruction process.109 Examples of computational imaging
techniques that have proven valuable in the field of micro-
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biology include super-resolution,120,121 light-field microsco-
py,122,123 and compressive sensing or sampling.124−126

Perhaps one of the computational imaging approaches most
adaptable to a mobile system is lens-free on-chip imaging. In
lens-free on-chip imaging, a sample is placed directly on top of
an imager (typically a CMOS imager chip) and illuminated
with partially coherent light.127,128 This method results in the
formation of a characteristic interference pattern, called a
hologram, created by the interference between the light
scattered from the object and the partially coherent reference
wave that is directly transmitted. If the illumination wavelength
is known, then the recorded holograms can subsequently be
computationally transformed onto the object plane, recovering
a focused image of the samples. This approach, therefore,
forgoes the need for bulky, expensive lenses or focusing stages,
offering a robust and compact platform. It also boasts a large
FOV, limited only to the total size of the sensor (typically
greater than 10−20 mm2), enabling much higher throughput
than conventional lens-based microscopy. Because of their
simple, in-line design, lens-free microscopes are compact and
portable. The spatial resolution is tied to the pixel size of the
sensor, but can be improved through pixel super-resolution
techniques to submicron resolution.129−131 One common
approach involves capturing multiple images, each with unique
information, and subsequently employing algorithms to fuse
these images together, producing one image of higher
resolution than any of the individual images. This higher
resolution image can be achieved by capturing images while
shifting the object with respect to the image sensor or vice
versa,129 varying the wavelength of the illumination light
used,130 or slightly changing the angle of illumination,131

offering design flexibility for application-specific lens-free
microscopes.132

One recent example of the significant potential of mobile
lens-free imaging demonstrated environmental monitoring
through spatiotemporal air-quality measurements.133 In this
work, a battery-powered, mobile pump captured particulate
matter in air and deposited it onto a coverslip. Once
immobilized, these particulates were rapidly imaged by a lens-
free computational microscope. Employing further computa-
tion, a machine-learning algorithm discerned true particles from
other artifacts, and used spatial features relating to particle
geometry to determine their sizes with a high accuracy of
∼93%. The device, termed c-Air, was used to gather samples
from the neighborhoods adjacent to Los Angeles International
Airport (LAX), measuring the effect of air traffic on the
concentration of particulate matter as a function of both time
and distance from the airport. Such a mobile, accurate system
could be adapted to monitor the air microbiota for
pathogens134 or to deepen our understanding of the effect of
microbes on climate.135 It has been demonstrated that
biological aerosols can travel across the globe,136 and even
play roles in ice nucleation leading to precipitation.137 Particle
sizing, as implemented in the c-Air platform, could enable the
quantification of different strains of bacteria or mold based on
geometrical features such as size and shape as well as spectral
characteristics, which can be obtained by using multiband
illumination.138 For instance, an investigation into the particle
size distribution of the air microbiota in the wake of a dust
storm near the Mediterranean Sea found that Firmicutes were
the most common at large (>3.3 μm) particle sizes, while
Actinobacteria and Bacteroidetes (typical soil/environmental
microbes) were dominant at smaller sizes (<3.3 μm).134

Similar particle sizing approaches could offer further insight
into the air microbiome and its effects on health and the
environment. Although this type of investigation would not
give a comprehensive breakdown of the constituent microbes in
a sample, it could be used to track the relative frequencies of
the more abundant types in the environmental microbiome,
such as the phyla mentioned above, as well as the genera
Arthrobacter or Streptococcus.139

As seen with the c-Air, machine learning is another emerging
computational framework that can aid microscopy in
elucidating the microbiome. Machine learning and, more
recently, deep learning have become popular in the realm of
image processing and analysis, not only because of the decrease
in the cost of computation, but also due to the explosive
amount of data that has become readily available from
smartphones and digital cameras as well as the increased
bandwidth to access the Internet. These changes are critical
developments because the efficacy of machine learning for
microbiology is predicated on the availability of a large volume
of well-characterized training images. The vast quantities of
data that could be generated from mobile imaging devices for
the microbiome will be ripe for analysis using machine learning.
It is also important to emphasize that machine-learning
techniques require large computational capital only when
algorithms are in training phases. Implementing previously
trained algorithms requires only limited computational power,
as readily available with smartphones, tablets, or laptop
processors. Alternatively, data can be transferred over a
network to enable remote servers to perform the computations
and report the results. As an example, a portable implementa-
tion of machine learning for microbe viability analysis has been
demonstrated for yeast cells, using a basic tablet and a lens-free
microscope.140 Such a platform, along with many others,141,142

demonstrate how machine learning, alongside computational
microscopy, can provide insight that cannot be obtained by
sequencing approaches alone. Classification of different micro-
organisms based on their morphological and/or spectral
signatures, i.e., without DNA analysis, is therefore another
central application of machine learning.143 In fact, efforts to
distinguish bacteria of the bacilli (rod) shape have already been
successful, enabling automated diagnosis of tuberculosis using
images of stained sputum samples,144 as well as label-free
classification of four different bacilli using quantitative phase
imaging and light scattering.145 A software package has also
been developed that uses machine learning to determine
bacterial cell boundaries, track cells between frames, and trace
cell division events.146 With the vast amount of data promised
by various mobile imaging technologies, machine learning has a
unique opportunity to address microbiota characterization, and
may even be aided by “gamification” approaches, as has been
demonstrated for protein folding147 and malaria parasite
detection,148−150 among others.

Fluorescence Microscopy. Fluorescence microscopy has
been a cornerstone of microbiology research for decades. It

With the vast amount of data promised
by various mobile imaging technolo-
gies, machine learning has a unique
opportunity to address microbiota
characterization,
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enables the imaging of a wide range of target particles, cells, or
cellular components with high specificity. In fluorescence
microscopy, the target object (e.g., a virus, protein, or
metabolite) is “tagged” with fluorescent molecules that emit
light when illuminated (i.e., excited), enabling the detection of
specific targets even against a complex background. Tagging is
performed with a fluorescent dye or quantum dot solution that
is added to the sample, eventually binding specifically to the
target of interest via antibody−antigen interactions or specific
oligonucleotides. The specificity of this chemistry, therefore,
determines the utility of fluorescence imaging for a given
target−tag pair. The tagging process can be performed quickly,
and ensures a stable, localized bond that is not disruptive to the
target microbes. Furthermore, fluorophores of different
emission wavelengths can be multiplexed to enable specific
detection of many targets simultaneously.151 Because of these
advantages, fluorescence microscopy has been readily applied to
genomics and proteomics as an invaluable tool for microbiome
analysis.152

Fluorescence microscopy, in step with lens-free imaging, has
already been implemented in portable, cost-effective devices for
various global health applications.81,153−157 A bright-field
platform can be adapted for fluorescence imaging with the
simple incorporation of excitation filters, which control the
wavelength of the light responsible for exciting the fluorescent
molecules, and emission filters, which transmit only the light
emitted from the fluorescent molecules. For example,
Koydemir et al. demonstrated a smartphone-based fluorescence
microscope for Giardia lamblia cyst detection and quantifica-
tion for rapid water quality screening.157 The low-cost, field-
portable fluorescence microscope design incorporates a three-
dimensional printed mobile phone attachment that houses
LEDs, batteries, a z-stage, an external lens, excitation and
emission filters, and a sample cassette. A water sample is
collected, filtered to remove large particulates, and then
combined with a Giardia lamblia-specific fluorescent tag
(antibodies conjugated with fluorescein dye). The sample
collection, preparation, and fluorescence conjugation processes
are all “field-portable” and can be implemented at or near the

site where the water is being sampled, in less than 1 h. Images
of labeled cysts are then captured with the smartphone
microscope, sent to a remote server (or a local laptop) for
processing using a machine-learning algorithm, and, in less than
2 min, a cyst count is sent back to the mobile phone. With a
reported limit of detection of ∼12 cysts per 10 mL, this device
demonstrates the utility of mobile fluorescence imaging
technologies for quantifying microbial targets in the field,
and, in principle, can be extended to any microorganism of
interest, provided the proper fluorescent tag is avaialble.
In addition to using fluorescent tags that bind to the exterior

of target cells, direct imaging of select genetic material itself can
give further insight into the microbiome. Fluorescence in situ
hybridization (FISH), for example, has been used to probe for
specific DNA/RNA sequences, through fluorescent conjugation
to a specific targeted gene or sequence (Figure 4a).
Fluorescence in situ hybridization is a mature technique, with
readily available kits and refined protocols,158 and is already
being leveraged for microbiome applications including imaging
microbes that cannot be cultured,159 marine bacteria,160 as well
as bacteria in fecal samples.161,162 However, FISH has largely
been supplanted for laboratory microbiome investigations by
sequencing technologies, due to their ability to reveal similar
genetic information with high throughput. However, as an
imaging technique, FISH offers information about the spatial
distributions of target genes (and, thus, the distribution of the
microbes containing those genes), information that sequencing
alone cannot provide. For example, FISH was used to reveal the
spatial distribution of bacteria in kitchen sponges resulting from
different sanitation levels (Figure 4b,c).163 Although sequenc-
ing of the 16A rRNA genes obtained the population
distribution of the sponge bacteria, FISH revealed that biofilms
formed on the surface and in internal cavities of the sponge,
and that bacterial concentrations in those areas reached up to
5.4 × 1010 cells per cubic cm. This type of spatial information is
necessary for investigating how microbes interact with one
another as well as with their environment. Although not yet
demonstrated in a mobile, cost-effective capacity, FISH has
been adapted to a microhole array chip, fabricated from silicon,

Figure 4. (a) Image captured with fluorescence in situ hybridization (FISH)-based microscopy. Reprinted with permission from ref 165.
Copyright 2018 ThermoFisher Scientific. The red and green fluorescence indicates the location on the chromosome of specific sequences.
Kitchen sponges are imaged (b) using FISH to show the spatial distribution of bacteria, and (c) under a bright-field microscope. Reprinted
with permission from ref 163. Copyright 2017 Cardinale et al.
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enabling the capture of an individual cell at each hole in a 35-
by-35 array configuration.164 If the technique can be scaled up,
leveraging established silicon microfabrication techniques, the
reagent and labor costs of FISH could be dramatically reduced.
When coupled with the previously discussed recent develop-
ments on field-portable fluorescence microscopy, FISH has the
potential to become a cost-effective imaging tool for the
exploration of the microbiome.
Similarly, several groups have developed mobile DNA

imaging technologies that could be used for the analysis of
the microbiome. For example, Wei et al. demonstrated a
smartphone-based platform to measure the length of DNA
strands with <1 kilobase pair (kbp) accuracy for strands of ≥10
kbp (Figure 5I).156 Such DNA sizing measurements can reveal
copy number variations in specific sequences, indicating
unwanted mutations that have been correlated with drug
resistance, cancers, and neurological diseases, among others. In
addition, DNA length measurements can be an important
presequencing step to ensure that the strands are all of
comparable length for both short-read or long-read systems.
Similarly, a multimodal smartphone-based fluorescent imaging
system was used to quantify isothermal amplification products
(rolling circle amplification, RCA) as well as to detect point
mutations against a strong wild type background signal (Figure
5II).81 These mobile implementations are able to perform
certain steps of the sequencing process and to demonstrate the
potential of field-compatible imaging techniques for investigat-
ing microbes’ genetic material.
Other Optical Techniques. In addition to computational

imaging techniques and fluorescence microscopy, other
emerging optical technologies are providing exciting solutions

to the aforementioned challenges of imaging the microbiome.
One such technique is the use of self-assembled nanolenses.166

These nanolenses enable the detection of nanoparticles or
viruses as small as 30−40 nm over a large FOV, ultimately
improving the detection signal-to-noise ratio of a diffraction
limited imaging system. The sample preparation and formation
of the nanolenses are fast and easy, with no need for equipment
that could not be used in field settings. The objects to be
imaged are diluted in a Tris-HCl/PEG 600 solution, sonicated,
and pipetted onto a coverslip, which is then inverted and placed
on a CMOS image sensor for lens-free imaging. A technique
has also been developed to produce vapor-condensed nano-
lenses, enabling greater control over their formation, while
maintaining a cost-effective, field-portable design.167,168 Re-
cently, nanolenses have been utilized in a field-portable system
for the specific detection of herpes simplex virus.169 The
nanolens approach could conceivably be adapted to detect
other pathogenic microbes or give counts of the more common
bacteria. Because of the low cost, large FOV, and simple
operation of the system, many information-rich tests can be
performed in quick succession, potentially enabling high-
throughput screening of diseases.
Another optical technique that is particularly suited to

obtaining population profiles of cells in a sample is flow
cytometry. This technique involves flowing large volumes of a
given sample and recording the fluorescence and/or scattering
signals of each object during the flow, and it was applied to the
characterization of microbes long before NGS technologies
matured.170 Fluorescent tags are typically used to identify target
cells or microbes as they flow past a detector, and as many as 17
different fluorophores can be multiplexed for flow cytometry,171

Figure 5. (I) Smartphone-based imager for DNA sizing. (a) Device schematic, featuring laser diode, focusing knob, sample coverslip, external
lens, optical filter, and smartphone camera. (b) Image captured with this smartphone device. (c) DNA length measured with smartphone-
based versus standard benchtop microscope. Reprinted from ref 156. Copyright 2014 American Chemical Society. (II) Multimodal
smartphone-based imager for sequencing products and point-mutation analysis, with two laser diodes for exciting multiple fluorescence
probes, as well as a white LED for bright-field microscopy. (a) Device schematic. (b) KRAS wild type image. (c) KRAS with codon 12
mutation image. (d) Smartphone image of a 1000:1 wild type to mutant ratio sample. Reprinted with permission from ref 81. Copyright 2017
Kühnemund et al.
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which could give tremendous insight into the microbial
populations in fluids such as bodies of water, urine, or saliva,
among many others. In one study, multiple fluorophores were
used within a flow cytometer for the analysis of the microbiome
inside a powdered infant formula facility, revealing microbial
membrane integrity, metabolic activity, respiratory activity, and
Gram characteristics within the analyzed samples.172 Whereas
16S rRNA sequencing gave phylogenic population distributions
for samples from different zones of the production facility, flow
cytometry distinguished between viable and dead bacteria. This
proved important because the zone in the facility with the
highest total cell count differed from the zone with the highest
viable cell count, possibly indicating that humidity plays a larger
role in determining the density of viable microorganisms than
do the hygiene practices in the production facility.
Flow cytometry has also been employed to investigate the

populations of microbes in the natural environment, in
particular in bodies of water.173−175 The response of
phytoplankton to ocean acidification, for example, has been
investigated by flow cytometry.173 In this study, phytoplankton
were sorted into six distinct clusters based on their
autofluorescence and side scatter signals, without the need for
specific staining, while viruses and prokaryotes were studied
using specific fluorescent tags. Flow cytometric measurements

revealed that the population profile tended to shift toward
smaller organisms after acidification. It was even shown, by
comparison with 16S rRNA sequencing, that flow cytometric
measurements of side scattering and nucleic acid content can
track changes in the phylogenetic makeup of the ocean (Figure
6a,b).174 Monitoring techniques such as this would be critical
for engineering the microbiome because understanding the
factors that influence any environmental microbiome will
require temporal information to establish cause−effect relation-
ships. These cytometry studies could be implemented to study
other microbiota, such as those in river systems, which have
been shown to vary, for example, from primarily Bacteroidetes in
the headwaters to Actinobacteria downstream (Figure 6c−e).175
It is important to note that all the flow cytometric studies
mentioned above were performed on laboratory flow
cytometers after sample collection in the field, however, low-
cost, mobile flow cytometry tools have been demonstrated,
raising the possibility of remote or autonomous sampling over
unprecedented spatiotemporal landscapes.176,177

ENGINEERING THE MICROBIOME AND FUTURE
OUTLOOK
In addition to the discovery of the global microbiome, various
microbiome-related applications urgently need technologies for

Figure 6. (a) Fluorescence and scattering distributions for bacteria in seawater samples in summer versus winter. Clustering is demonstrated
based on high or low nucleic acid content (HNA/LNA) and scattering (HS/LS). (b) Bacteria population distributions in summer versus
winter. The size of the graphs corresponds to the abundance of the groups, and the axes are the same as those in (a). Reprinted with
permission from ref 174. Copyright 2012 Society for Applied Microbiology and Blackwell Publishing Ltd. (c) Map of a river basin and water
sampling locations for flow cytometric and 16S rRNA measurements. (d) Bacteria population distribution at each sampling site. (e) Plots of
population dissimilarity versus distance along the river between the sampling sites. Results show a linear relationship between the two.
Reprinted with permission from ref 175. Copyright 2015 International Society for Microbial Ecology.
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precise engineering, monitoring, and control of the state of a
microbiome. The definition of “normal” for a human being and
their microbiome has been an extensively researched topic with
various exciting recent findings.178−181 Despite all the progress,
many unknowns remain: for example, what measurable
parameter space can be used to cover the states of a specific
microbiome, and what mathematical function of this multi-
parameter space can quantify these different states? If one can
define such a quantifiable metric for the “microbiome state,”
what are the practical inputs that can be used to perturb and to
engineer the microbiome, and what are the local gradients of
the selected microbiome metric with respect to each input? The
answers to these questions would help researchers in the
microbiome field formulate an optimization framework that
could gradually transform any given state of the microbiome
into new states using small perturbations, which could lead to
the optimization of the microbiome state with respect to a
certain target metric or “health function”. In addition, one
could also then define different metrics or mathematical
functions to be optimized depending on the desired outcome
from an engineered microbiome. A simplified overview of such
a computational microbiome engineering and optimization
framework is shown in Figure 7.
Depending on the level of complexity and the size of the

microbiome, its response time to small changes in each input,
and the number of inputs and measurement parameters, the
framework summarized in Figure 7 could gradually converge to
desired states, even though it might eventually be a local
optimum, and not necessarily the global optimal state of the
microbiome, if one exists. Such a framework should intuitively
remind the readers of an artificial neural network (used in
machine learning) and its training or optimization. Unlike an
artificial neural network that is typically engineered with a
known connectivity map and activation function, the microbial
community (Figure 7) defines a constantly evolving (as a
function of both time and space) and an unknown network
architecture between the inputs (I ̅ = [I1, I2, ..., IN]) and the
measurement parameters (P̅ = [P1, P2, ..., PM]) or consequently
the health metric that is defined, f (P̅). In deep learning, it is
well-known that the small perturbations of a network following
the gradients associated with a metric or cost function is the key
for the network to perform extremely complicated tasks even
though it does not necessarily converge at a global optimal
point. From the perspective of microbiome engineering, the
definition and quantification of the microbiome state through a
multiparameter function, f (P̅), that can be measured on
demand, would be the key to engineer, to transform, and to
monitor microbiomes through a controlled feedback process.

This continuous feedback process could then “optimally”
perturb the inputs to the microbiome using, for example, a
gradient descent-based optimization framework, i.e .,

α̅′ = ̅ − ∂
∂ ̅

I I f
I
. Here, α is a perturbation or optimization

parameter (or a vector), the magnitude of which depends on
the desired severity of the perturbations to the input
parameters. Depending on how f (P̅) is defined, one can either
minimize or maximize the selected metric, or aim to maintain it
within a desired “healthy” range of values.
To be able to perform this level of engineering control and

design of microbiome states in situ, we need advanced
multimodal imaging and sensing technologies that are massively
scalable, cost-effective, and ideally field-portable or mobile. In
addition to on-demand and in situ evaluation of f (P̅), we also
need to integrate on the same platforms technologies that can
control and perturb I ̅ in a desired manner. Depending on the
microbiome of interest and its conditions in situ, what
constitutes I,̅ P̅, and f (P̅) will widely vary. I ̅ can include
various physical variables such as temperature or pH, as well as
chemicals, prebiotics, nutrition (e.g., glucose), antibiotics, or
different species of microbes (e.g., probiotics) that can be added
into the microbial network in a controlled manner. Similarly, P̅
can include a panel of proteomic, metabolomic, genomic and/
or simple phenotypic measurements of the microbiome,
including the spatial distribution of growth and inhibition of
various species that constitute the microbiome. Importantly,
this approach will work even if we do not specifically recognize
the individual constituents of the microbiome, which is almost
always the case.
In addition to engineering the microbiome, the same

framework that is summarized in Figure 7 could also be used
to engineer the dosage and composition of antimicrobials to be
administered to patients, replacing the standard antimicrobial
susceptibility testing (AST) that is conducted in clinical
microbiology laboratories using microwell plates. The tradi-
tional AST method screens a predefined set of antibiotics at
discrete concentrations on patient samples and, in this sense, it
is suboptimal in terms of fine-tuning the antibiotic treatment to
a specific patient’s needs.182−184 On the contrary, the
optimization framework shown in Figure 7 might be used to
converge to more optimized combinations of antibiotics and
concentrations rapidly, tailored for the patient’s sample. For
such an application, P̅ could simply involve turbidity measure-
ments of the microbial network through bright-field and/or
fluorescence imaging measurements, for example, and I ̅ could
involve the concentrations of different antibiotics (or
combination drugs) that are mixed with the cultured sample(s)

Figure 7. Schematic of the optimization framework for engineering the microbiome.
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taken from the patient in a controlled manner. In this specific
example, the metric f (P̅) would quantify the suppression of the
growth of the pathogenic microbes by having a higher cost as
the turbidity increases, whereas in other cases it could involve
the quantification of a different desired outcome. To avoid
overdosing the patient with many different types of antibiotics,
the cost function/metric can also include in its definition a
strong penalty term for a nonsparse drug combination, I.̅ For
this purpose, among other possibilities, the L-1 norm of I,̅ i.e.,
∥I∥̅1, can be used as a penalty term in a regularization
formulation, i.e., I′̅ = arg minI{̅f (P̅) + λ∥I∥̅1}, in order to force
the optimization framework to converge on a single antibiotic
type, or a sparse subset, with the minimum inhibitory
concentration.109,185 Here, λ represents a regularization, or
“penalty” parameter, that can be tuned to increase or to
decrease the sparsity of the types of antibiotics desired in the
final treatment.
If the mobile, cost-effective, and multimodal imaging and

sensing technologies discussed in this Perspective could reach
the consumer and, for example, enter the home, researchers
would have opportunities to track an individual’s microbiome
state continuously (e.g., through skin, saliva, fecal matter, etc.)
and to understand host−microbiome interactions. In addition,
the soil, air, ocean, and freshwater microbiomes can similarly be
monitored for human health and/or environmental health
analysis. Ultimately, this information, together with the outlined
framework, can be used to define and to quantify “healthy or
normal” statistically, and to maintain its metric through
controlled and informed dosing of drugs, nutrition, and other
microbiome-based interventions.
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