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Convolutional neural networks and deep learning can boost 
the capabilities of standard optical microscopes to levels 
comparable to those of some higher-end imaging systems.
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D
eep learning, particularly using con-
volutional neural networks (CNNs), is 
transforming a range of disciplines and 
eclipsing the state of the art achieved by 
earlier machine-learning techniques. In 

machine vision, for example, the deep-learning revolu-
tion has driven new capabilities in autonomous vehicles, 
fault analysis, security applications, entertainment 
and the Industrial Internet of Things. Deep-learning-
enabled breakthroughs in voice recognition and speech 
translation are transforming how we communicate 
with each other and with our devices. And supervised 
deep-learning approaches—in which a system learns to 
classify or otherwise interpret information by analyzing 
“training sets” of labeled data—have found particu-
lar use in biomedicine and medical imaging: disease 
diagnosis through classification of histological images; 
determining tumor margins in cancer cases; cell clas-
sification and counting; screening patients for certain 
eye diseases using optical coherence tomography scans; 
and a host of other areas.

Beyond these mainstream applications related to 
classifying and interpreting microscope images, super-
vised deep learning has created new opportunities to 
reconstruct and improve the quality of the images them-
selves. This article looks at some recent efforts to apply 
state-of-the-art deep-learning approaches to optical 
microscopy, microscopic image reconstruction, and 
image transformation in general. Deep-learning-enabled 
reconstruction and transformation of optical-micros-
copy images acquired with certain imaging systems 
can significantly boost their resolution, field of view 
and depth of field, and can correct for various sources 
of aberrations. As a result, the raw images from rela-
tively low-end microscopy systems can, with the aid 
of deep learning, be transformed to match the images 
expected from a much higher-end system.

Training CNNs with image data
The deep-learning revolution is the result of a “perfect 
storm” that has revolutionized computation generally: 
access to the enormous amounts of data generated by 
digital sensors, imagers and consumer devices, cou-
pled with the availability of powerful yet cost-effective 
hardware and software tools, which make large-scale 
statistical learning based on those data volumes a 
tractable challenge. Using deep learning for recon-
struction or transformation of images finds particularly 
fertile ground in optical microscopy, since, relative to 

photography or macro-scale imaging in general, opti-
cal microscopy provides a highly controlled, repeatable 
platform. That, in turn, can allow the creation of nano-
scopically aligned and labeled image pairs (for example, 
matched pairs showing the same sample viewed in a 
low-resolution or aberrated microscope and a higher-
resolution, diffraction-limited one) that can be rolled 
into sets of images for training the deep-learning system.

Following the collection of the matched pairs of train-
ing data, which typically contain thousands of image 
patches, the data are fed into a model that learns the 
statistical image transformation from an input distribu-
tion (for example, that of the low-resolution microscope) 
to the desired or enhanced output distribution (repre-
sented by the images from the higher-end instrument). 
For deep neural networks, the model architecture com-
monly takes the form of multiple, hierarchical cascaded 
convolutional layers. Each convolutional layer contains 
multiple convolution kernels and bias terms (adjust-
able parameters that can be trained) that act as filters, 
operating on units of the convolutional layer known as 
feature maps, or channels.

The resulting weighted sum from the filtered feature 
map next passes through a nonlinear activation function, 
the output of which is sent to the next convolutional 
layer. This nonlinear function, which can take a number 
of mathematical forms, is at least intuitively analogous 
to the activation functions at the synapses of biological 
neurons, where the decision triggering a neuron firing 
event is made based on whether the “synaptic weight” 
exceeds a particular threshold. The nonlinear nature of 
the activation function helps the network to learn com-
plex transformations and generalize its inference to a 
broader class of functions or tasks. The filtered output 
passes from one layer to another, with each layer learn-
ing a higher level of abstraction.

Generally, increasing the number convolutional 
filters should allow for more complex network models 
and, in principle, for learning more complicated tasks or 
relationships with larger datasets. The price, however, 
is an increase in the training and inference times—as 
well as the possibility of overfitting the model to a par-
ticular set of training data. 

Trained and ready
Training a CNN based on labeled data is fundamen-
tally an optimization problem: the network attempts 
to optimize its output with respect to “gold standard” 
target labels, given a user-defined cost (or loss) function. 
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Supervised deep learning has created new opportunities to 
reconstruct and improve the quality of microscopy images.

For example, one can choose to minimize the energy 
diff erence (such as the mean squared error) between 
the network’s output images and their corresponding 
gold-standard labels (for instance, the image data from 
a higher-end microscope that the neural network is 
trained to mimic).

The infographic below shows a typical training pro-
cedure. For each pair of images, the amount of error is 
calculated through the predefi ned cost function; this error 
is propagated back within the network to update all the 
weights and biases in the direction that minimizes the 
error or the cost. Through this iterative process, known 
as error back-propagation in deep learning, the model 
adjusts its coeffi  cients to satisfy the given target labels 
and minimize cost function constraints.

The process iterates on the available training image 
data to fi ne-tune the model’s inference success. When 
the entire training dataset has been used during these 
iterations, it constitutes an “epoch”; typically tens to 
thousands of epochs are required to complete the 

training phase, depending on the complexity of the 
network and the task that it is charged with. After this 
phase, the network is ready to be blindly evaluated with 
a new “test set” of image data that were not part of the 
original set of training images. 

An exciting aspect of deep-learning-enhanced 
optical microscopy and image transformations is 
that, once the network is trained, the inference is non-
iterative and very fast to compute, without the need 
for parameter search or optimization. In this sense, 
compared with other solutions to inverse problems in 
optics—for example, deconvolution, convex optimiza-
tion or compressive sampling or sensing techniques—a 
trained deep neural network, once optimized, has a 
signifi cant edge in computation speed and inference 
time, even with modest computers and processors. 
That edge is gett ing even greater with the emergence 
of new processor architectures that are specifi cally 
optimized for deep learning, and could ultimately 
let neural networks perform their inference tasks in 

Illustration by Phil Saunders
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real time, even with mobile phones and other low-
end consumer devices.

Training the network can take from a few hours to 
more than a day, depending on the size of the train-
ing data, the available hardware, and the complexity 
of the model, among other things. Once the model 
is trained, however, it remains fixed. Furthermore, 
in a process called transfer learning, a trained neu-
ral network can even be used to “warm start” new 
models, when new data become available or new 
tasks are required. 

Improving bright-field microscopy
While deep learning has been used for a number of 
years to classify and annotate microscopy images, one 
of the first applications of deep learning to enhance 
optical microscopy images was recently demonstrated 
using bright-field microscopy. The training set for the 
effort began with histochemically stained lung tissue 
sections, each one imaged twice: once using a bright-field 
microscope with a 40×/0.95NA objective lens, to obtain 
lower-resolution (LR) images of specimen; and once 
with a 100×/1.4NA oil-immersion objective lens, used to 
obtain the corresponding high-resolution (HR) labels or 
gold-standard images. A deep neural network architec-
ture was then designed to transform LR images (used 

as input) into enhanced images 
matching the HR labels.

Essentially, the network’s goal 
is to predict the pixel values of 
the HR image, given the LR input. 
Therefore, an important step before 
training is to precisely align, or 
register, the LR and HR training 
images with respect to each other; 
this enforces the deep neural net-
work to solely learn the LR-to-HR 
transformation, rather than some 
arbitrary transformation between 
the input and output images related, 
for example, to misalignment. 
Following the accurate alignment 
of the images, the network model 
can be trained with the matched 
LR and HR image pairs.

One key advantage of deep 
learning over other image enhance-
ment or deconvolution methods is 
that no a priori information about 

the image formation process is required. That is, mod-
elling of the point-spread function, spatial and spectral 
aberrations, illumination properties or other physical 
parameters of the imaging system or the object, and 
their impact on the acquired image, do not need to be 
known or estimated. Instead, the neural network uses 
training image data to inherently learn these details in 
its multidimensional solution space. 

After the training step, the network was blindly 
tested on Masson’s Trichrome–stained lung tissue 
sections taken from a different patient. The network 
output, in response to LR input images, super-resolved 
the blurry and distorted features in the input images, 
providing images similar to those acquired with a 
100×/1.4NA objective. The trained network was also 
able to boost image quality for new types of samples 
that were not part of the training data. For example, 
the same model, trained with lung tissue sections, was 
tested on kidney tissue images stained with Masson’s 
Trichrome, and was able to enhance the resolution of 
the imaged specimen. Furthermore, the same deep 
network could super-resolve different tissue types 
that used a different stain (for instance, breast tissue 
sections labeled with Haemotoxylin and Eosin). The 
network even achieved enhanced resolution and data-
driven frequency extrapolation when blindly tested 

Image enhancement
A deep neural network trained only with lung tissue samples to sharpen their 
images (left column) also improved low-resolution images of kidney and breast 
tissue sections (middle columns) and a resolution test target (right column) that 
were never seen by the network during its training.

Low-resolution network inputs

Trained convolutional neural network

High-resolution network outputs
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One key advantage of deep learning over other image 
enhancement methods is that no a priori information about 
the image formation process is required.

on a standard resolution test target—a clear indication 
of the generalizability of the deep-learning approach.

Another interesting feature of this bright-field micros-
copy network is that it extends the inferred image’s 
depth of field. Since the input images are acquired 
using a lower-NA objective lens, the network learns to 
enhance all the spatial features that appear in focus in a 
low-NA image, resulting in an output image with high 
resolution over an extended depth of field. Because the 
input images have a larger field of view compared with 
the higher-NA objective lens that the network is trained 
for, the network output images also exhibit increased 
field of view, further enhancing the imaging through-
put of bright-field microscopy through deep learning.

Laptops and smartphones
Of particular importance is that, even using an ordinary 
laptop computer equipped with a graphics processing 
unit, the network output image can be calculated in less 
than a second, without any iterations or parameter tun-
ing. That suggests the potential of real-time performance 
using more advanced computational resources and 
parallel computing. And, in another 
vein, recent work suggests that deep 
learning could significantly improve 
the imaging performance of mobile-
phone-based microscopes.

The creation of cost-effective 
and portable microscopic imaging 
systems based on mobile devices 
such as smartphones has advanced 
significantly in recent years, with 
potentially profound effects for global 
health and point-of-care diagnos-
tics. Yet mobile microscopy devices 
still fall short of the quality of lab-
oratory-grade microscopes used in 
clinical applications, in part because 
of design constraints imposed by the 
compactness, cost-effectiveness and 
extremely large volume manufactur-
ing of mobile phones.

Recent work suggested the potential of deep learn-
ing to bridge this performance gap. For this goal, as 
with the bright-field microscopy example, thousands 
of aligned image patches obtained by smartphone-
based and benchtop microscopes were used to train 
the network. The resulting trained system was able 
to substantially improve the quality of subsequently 
acquired smartphone images, correcting various 
aberrations, blocking artifacts, and increasing signal-
to-noise ratio and spatial resolution. Once again, the 
results required no numerical or analytical modeling 
of the spatially and spectrally varying aberrations of 
the mobile microscope to set-up an inverse problem 
based on a forward model. (In fact, such a forward 
model is rather complicated to establish for a mobile 
phone-based microscope, as the repeatability of a cost-
effective handheld platform is not high.) Training of a 
deep neural network with image data thus provides 
an elegant solution for statistically learning the trans-
formation between LR or aberrated input images and 
the HR labels, without any physical modeling of the 
image formation process.

Improving smartphone-based microscopy
A trained convolutional neural network enhances smartphone-based microscope 
images of a lung tissue section (top row) and a blood smear (bottom row).
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The same work revealed that the network could 
work with significantly compressed input images. Lossy 
compressed JPEG images with a file size more than 20 
times smaller than their lossless compressed counter-
parts, captured by the same smartphone microscope, 
were used as inputs to the same neural network, with 
very similar inference results, matching the HR labels 
acquired using a benchtop bright-field microscope. This 
ability to handle lossy compressed images could prove 
especially important for point-of-care applications in 
resource-scarce settings that have limited data trans-
mission bandwidth and storage capacity.

Opportunities in holography
In addition to bright-field microscopy, deep learning 
has also been applied to improve other optical micros-
copy modalities, including fluorescence microscopy and 
holographic microscopy. For fluorescence microscopy, 
several recent approaches have focused on accelerat-
ing the image acquisition phase of localization-based 
super-resolution microscopy, using numerical models 
of the imaging system. Another recent approach has 
considered learning of the statistical image transfor-
mation between low-resoution and high-resolution 
datasets, without any prior assumptions on the imaging 
system. Similar to fluorescence microscopy, hologra-
phy exemplifies another unique opportunity, where 
deep-learning-based methods open up data-driven 
alternatives to decades-old analytical or iterative, 

physics-driven microscopic image 
reconstruction techniques.

Holographic microscopy can 
indirectly detect both the ampli-
tude and phase of the light field 
from an object. While coherent 
holographic imaging systems 
offer some unique advantages 
for label-free sample analysis, they 
generally suffer from the “missing 
phase” problem: missing phase 
information at the detector plane 
means that the numerically formed 
object image, unless the phase 
is recovered, will be plagued by 
artifacts such as self-interference 
noise and twin images. The lat-
ter is especially strong for in-line 
holographic microscopy, where 
the object wave and the reference 

wave co-propagate in the same direction.
A number of phase recovery and holographic image 

reconstruction approaches have been developed over 
the years to solve the missing-phase problem. Purely 
algorithmic approaches require prior information on 
the object function, such as its spatial support or spar-
sity representation. Other approaches involve hardware 
modifications of the holographic imaging setup to 
facilitate measurement diversity, and the use of addi-
tional measurements (via, for example, multiple angles 
of illumination, multiple sample-to-sensor distances, 
phase-shifting or other approaches) as physical con-
straints for phase recovery and image reconstruction.

As an alternative, data-driven methods based on 
deep learning can perform holographic image recon-
struction from a single hologram, providing significant 
savings in both hologram acquisition and reconstruc-
tion times. One such deep-learning model was trained 
using numerically back-propagated in-line hologram 
intensities (without phase information) as complex-
valued inputs to the network. The target images—that 
is, the labels in the supervised deep-learning scheme—
were reconstructed by an iterative multi-height phase 
retrieval method that used eight different holographic 
measurements of the same object, taken at different 
sample-to-sensor distances, providing physical mea-
surement diversity for accurate phase retrieval.

After its training, this phase recovery and holo-
graphic image reconstruction network was blindly 

Holographic image reconstruction
Because phase information is missing in a single hologram of a Pap smear (left 
column), the object’s complex-valued image is distorted by the twin-image and 
self-interference artifacts, following the free-space back propagation without 
phase (middle column). The deep network is trained to rapidly reconstruct the true 
object distribution, in both the phase and amplitude channels (right column), non-
iteratively and using a single hologram of the sample.
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The marriage of optical imaging with unsupervised deep 
learning could bring us closer to a thinking microscope.

tested by imaging various samples, including breast 
tissue sections, blood and Papanicolaou (Pap) smears, 
using a single hologram measurement in each case. 
The images reconstructed by deep learning very well 
matched gold-standard images obtained using eight 
holograms of the same sample, processed with the 
iterative multi-height phase retrieval algorithm.  The 
phase recovery neural network successfully learned 
to eliminate self-interference and twin-image-related 
artifacts that are normally superimposed onto the 
phase and amplitude channels of the object’s image.

Despite all of its training data and success in 
holographic reconstructions, the network did not 
learn the actual physics of wave propagation or the 
hologram formation process, as it was not trained 
for it. In fact, some of the out-of-focus objects (such 
as dust particles) that lay outside of the sample plane 
were also cleaned/removed by the neural network, 
although they are physical objects that should appear 
in a physics-driven hologram reconstruction method. 
This means that, instead of providing a solution that 
is compatible with the wave equation, the network 
only learned the image transformation that it was 
statistically trained for.

Another benefit of this deep-learning-based holo-
graphic image reconstruction approach is its rapid 
reconstruction time—at least four times faster than 
iterative reconstruction approaches. More recent work 
suggests that using a similar deep-learning framework 
to perform both autofocusing and phase recovery tasks 
in a single neural network can provide significantly 
larger depth of field in holographic imaging, while also 
dramatically improving the algorithm time-complexity 
of holographic image reconstruction in general. 

A paradigm shift
As the examples above suggest, deep learning has the 
potential to change the nature of optical microscopy 
and image reconstruction methods, by enabling new 
transformations among different modes and modalities 
of microscopic imaging—all driven by image data. We 
believe that deep learning will become an essential com-
ponent of modern optical microscopy, fundamentally 
changing both its hardware and image reconstruction 
methods in a holistic manner.

We also emphasize that the examples presented 
here have involved supervised deep learning, in 
which known data labels are used as feedback to 
train a statistical model. Some experts in deep learn-
ing believe that unsupervised deep learning represents 
a very important aspect of the discipline’s future. 
Unsupervised learning does not rely on label-based 
feedback; instead, the network attempts to infer the 
internal structure of the input data, often through 
some policy of rewards. The emergence of power-
ful systems that utilize unsupervised deep learning 
approaches, still in their infancy, could, we believe, 
ultimately lead to a sort of learning and thinking 
microscope—with unique capabilities that will enable 
applications not possible with today’s optical micros-
copy technologies. OPN
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