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ABSTRACT: Smartphone-based fluorescence microscopy has
been rapidly developing over the last few years, enabling point-
of-need detection of cells, bacteria, viruses, and biomarkers.
These mobile microscopy devices are cost-effective, field-
portable, and easy to use, and benefit from economies of scale.
Recent developments in smartphone camera technology have
improved their performance, getting closer to that of lab
microscopes. Here, we report the use of DNA origami
nanobeads with predefined numbers of fluorophores to
quantify the sensitivity of a smartphone-based fluorescence
microscope in terms of the minimum number of detectable
molecules per diffraction-limited spot. With the brightness of a
single dye molecule as a reference, we compare the perform-
ance of color and monochrome sensors embedded in state-of-the-art smartphones. Our results show that the monochrome
sensor of a smartphone can achieve better sensitivity, with a detection limit of ∼10 fluorophores per spot. The use of DNA
origami nanobeads to quantify the minimum number of detectable molecules of a sensor is broadly applicable to evaluate the
sensitivity of various optical instruments.

■ INTRODUCTION

To fulfill the demand for point-of-need diagnostic devices in
global healthcare, various portable and miniature optical-
imaging devices have been developed.1−9 Point-of-need
diagnostics requires robust and easy-to-use handling as well
as sensitive and specific detection with cost-effective equip-
ment. Smartphones are appealing for such devices10 as they
benefit from economies of scale, where it is estimated that the
current number of smartphone users is close to a third of the
world’s population,11 surpassing the number of digital camera
users with digital camera sales reducing every year.12 This
massive market drives the development of the smartphone
camera and computing technologies and enables the low-cost
mass production of its components. As an example, the whole
camera system of a state-of-the-art smartphone including the
optical components and image sensor is commercially available

for less than 20 USD. An additional advantage is that
smartphones can not only be used for digital image recording,
processing, and on-the-spot analysis but also for electronic
medical recording and communication. Recently, portable
smartphone-based fluorescence microscopes (SBFMs) enabled
food-allergen testing,13 blood analysis,14 as well as the
detection of single particles,15 cells,14 bacteria,16 and
biomarkers13,17 including proteins18 and nucleic acids.19,20 In
addition, the diagnosis of infectious diseases was demonstrated
in developing countries.21−25 Although SBFMs are relatively
easy to configure to create a low-cost and field-portable
microscope design,10 they exhibit limited detection sensitivity
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compared with laboratory-based fluorescence microscopes,
which can routinely detect single-molecule fluorescence. Such
a high sensitivity is crucial for an early disease detection as
extremely low concentrations of few molecules per milliliter
have to be detected.26 To date, the fluorescence detection limit
of SBFM designs under low-light conditions has not been
comprehensively characterized. Recent studies using SBFMs
revealed that isolated nano-objects with several hundreds to
thousands of fluorophores per diffraction-limited spot could be
detected.15,19 A higher sensitivity, reaching a detection limit of
80 fluorophores per spot, was also achieved using plasmonic
enhancement as a part of the sample substrate.27

In this study, we quantify the detection sensitivity of color
and monochrome sensors embedded in smartphones used as a
part of an SBFM. Comparing the imaging performance of
cameras including parameters such as quantum efficiency, dark
noise, and saturation capacity is usually complex. Under low-
light conditions, we use the minimum number of detectable
molecules as a central parameter to characterize and compare
the sensitivity of SBFMs. Tracing back the number of
detectable molecules per spot has become possible with the
advent of DNA origami brightness reference samples that show
a linear dependence of fluorescence intensity on the number of
fluorophores.28,29 For this purpose, we employed 5 DNA
origami nanobead samples with predefined numbers of
fluorophores ranging from approximately 10 to 74 green
fluorescent dyes (ATTO542) per nanobead. The choice of this
green fluorescent dye is intended to match the spectral range in
which both monochrome and color sensors embedded in
smartphones exhibit the highest detection sensitivity. We
immobilized the samples on glass coverslips with an average
density of less than one structure per diffraction-limited spot
and imaged them using SBFMs. The obtained smartphone
images were compared with the images taken with a specialized
single-molecule wide-field fluorescence microscope (sm-micro-
scope). Finally, the sensitivity was quantified by calculating the
Weber contrast as CW = (I − IB)/IB, with I and IB representing
the fluorescence and background intensities, respectively. Our
results show that, for smartphone camera modules, mono-
chrome sensors outperform color sensors for fluorescence
detection and can reach a detection limit of 10 fluorophores
per diffraction-limited spot with a mean Weber contrast of 0.2.

■ RESULTS
The SBFMs used in this work (Figures 1 and SI1) are based on
a previous design.15 It incorporates only the basic optical
elements to function as a fluorescence microscope: a light
source (532 nm continuous wave (cw)-laser), excitation and
emission filters, two mirrors, two lenses (one for focusing the
excitation beam and another for collecting the fluorescence),
and a smartphone camera as the image detector. The excitation
occurs in a dark-field geometry directing the laser beam at a
45° illumination angle to avoid collection of the directly
transmitted beam by the SBFM (Figure 1b). A bandpass filter
is used to spectrally reject the scattered light from the cw-laser
so that only fluorescence light is detected. Samples are
mounted on an xyz-micrometer stage for focusing and sample
adjustment. We employed two different smartphones for our
SBFM measurements: the LG V10 and the Huawei P10 Plus.
The choice of smartphone was intended to maximize the image
quality in terms of the light captured and resolution. Therefore,
we focused on smartphones with the highest numerical
aperture and biggest sensor. The LG V10 contains a single

back-camera with an aperture of f/1.8 and a color 16 MP
sensor (5312 × 2988 pixel) with a size of 5.96 mm × 3.35 mm
leading to a pixel size of approximately 1.12 μm. The
monochrome camera of the Huawei phone has comparable
specifications, the same aperture of f/1.8 and a 20 MP sensor
(5120 × 3840), with a size of 5.12 mm × 3.840 mm leading to
a pixel size of 1 μm. To ensure that the same regions of the
sample are imaged with different microscopes, grid marks were
used (Figure S2).

Calibration of DNA Origami Nanobeads. The five
different DNA origami nanobead samples (i.e., samples A, B,
C, D, and E, as obtained from GATTAquant GmbH) were
surface immobilized in a flow cell and characterized with a
confocal fluorescence microscope to determine the average
number of fluorophores per nanobead in each sample.
Through a fluorescence intensity comparison with samples,
each containing a single fluorophore, the average numbers of
fluorophores in samples A, B, C, D, and E were measured as 74
± 14, 49 ± 13, 34 ± 7, 16 ± 5, and 10 ± 5, respectively (see
Figure S3). Furthermore, the intensity distributions reveal that
only single fluorescence beads are attached to the surface
(within a diffraction-limited area) with only a small dimer
fraction visible for the nanobeads with a higher loading (Figure
S3).

Color versus Monochrome Image Sensor Perform-
ance. After calibration of the DNA origami nanobeads, we
focused on a comparison of the monochrome and color sensor
performance. Therefore, the same area on sample A (74 dye
molecules) was imaged with both smartphones and an sm-
microscope. The results (Figure 2a−c) show that sample A can
be imaged by all three microscopes as evidenced by the strong
correlation of spots in all images. As expected, the images
obtained with the sm-microscope exhibit fluorescence spots
with a smaller size because of its higher numerical aperture.
Furthermore, images taken with the monochrome sensor show
a higher contrast compared with the color camera (as also
shown by the line intensity profiles across the same spot in

Figure 1. Sketch of our experimental setup for SBFM.
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Figure 2d−f). Weber contrasts for the spots marked in Figure 2
were calculated as 3.37 for (a), 0.15 for (b), and 0.39 for (c). It
is worth mentioning that sample A was first imaged with the
color SBFM, followed by the monochrome SBFM, and finally
with the sm-microscope. Therefore, potential bleaching of
some of the fluorophores of each bead in sample A cannot

account for the worse contrast of the color sensor image. We
suggest that this is mainly caused by differences in the light
collection efficiency of the smartphone camera sensors. The
color sensor is composed of a Bayer filter30 in which out of
four pixels, two have green filters, whereas the remaining two
have a red and a blue filter, respectively, to generate a color

Figure 2. Image comparison between sm-microscope and SBFM. Sample A imaged with (a) the sm-microscope, (b) the LG color SBFM, and (c)
Huawei monochrome SBFM. Scale bar in (a) applies also to images (b) and (c). (d−f) represent a horizontal-line intensity profile of the marked
spots in (a)−(c), respectively.

Figure 3. Images of samples A−E taken with the sm-microscope (a−j) and the monochrome SBFM (k−t). (a−e) and (k−o) reveal a decrease in
brightness as the images are adjusted to the same scale, respectively. For a simplified identification of single nanobeads, images (f)−(j) were
rescaled to the highest brightness value and images (p)−(t) were rescaled for brightness and contrast. Images (k)−(o) were tonal corrected to the
same value for better visibility. The scale bar in (a) is applicable to all images.
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image. In contrast, monochrome sensors have no color filters
and therefore every pixel can collect light in the green spectral
range as opposed to only half the overall number of pixels in a
color sensor. Based on these results, we selected the
monochrome smartphone imager sensor for further SBFM
experiments.
Sensitivity Determination of Monochrome Image

Sensors. Next, we set out to determine the sensitivity limit
of the monochrome SBFM with the fluorescent nanobeads.
First, all the samples (A, B, C, D, and E) were imaged on the
monochrome SBFM (see Figure 3k−o respectively). For
visibility, these images were tonal corrected in Adobe
Photoshop as only jpeg files could be exported from the
smartphone. The same area was later imaged on the sm-
microscope to verify that the detected spots represent single
nanobeads (see Figure 3a−e). These images (Figure 3a−e,k−
o) reveal decreasing brightness from sample A (74
fluorophores) to sample E (10 fluorophores) as they are
adjusted to the same brightness scale, respectively. Samples A
and B (74 and 49 fluorophores, respectively) yield similar
bright and sharp images when imaged with the monochrome
SBFM (Figure 3p,q). In contrast, for sample E (10
fluorophores), beads are barely detectable under the SBFM
(Figure 3o). Samples containing a single fluorophore were also
imaged with the SBFM, but no spots could be identified
(Figure S4). For better identification of spots and to improve
visualization, the images shown in Figure 3a−e were rescaled
with the brightest pixel set to the highest brightness value
resulting in Figure 3f−j. Figure 3k−o were brightness and
contrast adjusted leading to Figure 3p−t.
To compare the image quality, we calculated the Weber

contrast for each spot from the uncorrected SBFM images (see
Materials and Methods). A signal-to-noise ratio analysis based
on the standard deviation of the background signal could not
be performed since images could only be saved in the jpeg
format, which smoothens the background noise significantly.
Figure 4 shows histogram plots of the Weber contrast for each

sample and Gaussian fits to the distributions. The Weber
contrast decreases from values of 0.66 ± 0.17 for the bright
samples to 0.20 ± 0.08 for the 10-dye sample E. As the Weber
contrast exhibits an expected strong power-density dependence
(Figure S5), imperfect alignment with small variations of
excitation intensity contribute to the error in determining the
Weber contrast.

Finally, we estimate the monochrome SBFM detection limit
to be around 10 fluorophores. This assessment is based on the
fact that, for sample E, single spots are barely detectable in
both the original image and the contrast-enhanced image
(Figure 3o,t). In addition, not all spots present on the sm-
microscope image (Figure 3e) can be identified on their SFBM
image counterparts (see circles in Figure S6) although SFBM
imaging was conducted first to rule out any influence of
photobleaching.

■ DISCUSSION

In conclusion, we employed DNA-origami nanobeads with
predefined numbers of independently emitting fluorophores to
quantitatively study the detection limit of SBFMs. Our results
show that state-of-the-art smartphones with monochrome
sensors exhibit a higher sensitivity and are thus better suited
for fluorescence sensing and imaging applications, reaching a
detection limit of ∼10 fluorescent dyes per diffraction-limited
spot. Further developments in smartphone sensors or the
combination with optical antennas will soon bridge the gap to
democratize single-molecule detection with smartphone micro-
scopes.31−35 Using DNA nanobeads, we introduced the
minimal number of detectable molecules as a simple parameter
for precise quantification of SBFMs, paving the way for the
development of diagnostic assays for point-of-need devices that
fully exploit the potential and capabilities of smartphone-based
instrumentations.

■ MATERIALS AND METHODS

Sample Preparation. Custom-built fluorescence beads
(samples A, B, C, D, and E) functionalized with a decreasing
number of ATTO542 fluorescent dye molecules were
purchased from GATTAquant GmbH (Hiltpoltstein, Ger-
many). Folding of DNA origami pillars incorporating a single
ATTO542 fluorophore is described elsewhere.36 Samples were
prepared as simple flow cells from a cover slide and a
microscope slide (see Figure S2). The different fluorescence
beads were surface immobilized via bovine serum albumin−
biotin−neutravidin as described previously,36 and the flow cells
were sealed for imaging in the upright position. For the
correlation of the SBFM imaging with the sm-microscope
imaging, a grid was hand-drawn onto the coverslip of the
specimen.

Smartphone-Based Fluorescence Microscopy. The
532 nm cw-laser (CW532 04 Series, Roithner Lasertechnik
GmbH, Vienna, Austria) employed for the dark-field excitation
in the SBFM setup has a measured mean output power of 64.5
mW. It was cleaned up (HC Laser Clean-up MaxLine 532/2,
AHF Analysentechnik, Tübingen, Germany). For alignment
and power-dependent measurements, the laser beam was
attenuated using neutral density filters (Figure 1). A bifocal
lens ( f = 30 cm) was utilized to focus the laser beam in a 45°
angle onto the sample. For this lens, we estimate an
illumination area of around 1 mm2, leading to a power density
of the order of 100 kW/m2, which might vary with every new
adjustment. A lens ( f = 2.6 mm, LS-40166, UCTronics,
Nanjing, Jiangsu, China) mounted on the smartphone holder
collected the fluorescence, which was further cleaned by
spectral filtering (582/75 nm BrightLine, Semrock Inc,
Rochester, New York). The smartphones used in our
experiments were the Huawei P10 Plus (Huawei Technologies,
Shenzhen, China) and the LG V10 (LG Electronics, Seoul,

Figure 4. Distribution of the Weber contrast values (CW) for samples
A−E. Gaussian fitting yields the mean Weber contrast with its
standard deviation.
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Republic of Korea). For camera comparison, parameters for
image recording were set to ISO 800, shutter speed ts = 1/4 s,
infinite manual focus, and no brightness correction together
with 8× and 10× zoom for the LG V10 and Huawei P10 Plus,
respectively. Under these conditions, we imaged a commercial
grid (Thorlabs Grid Distortion Target, 3″ × 1″) to determine
that each pixel corresponds to dimensions of 81 nm (LG) and
64 nm (Huawei) in Figures 2 and 3, respectively. For further
measurements with the Huawei P10, the ISO was decreased to
ISO 400 and the shutter speed to ts = 1/15 s. The Huawei P10
Plus does not support RAW-capture, and so JPG images were
recorded. Line profiles were plotted with the ImageJ software.
Tonal correction (levels) as well as contrast and brightness
enhancement were performed using Adobe Photoshop (CS5.5,
Adobe Systems Software Ireland Limited, Dublin, Republic of
Ireland).
Single-Molecule Sensitive Wide-Field Fluorescence

Microscopy. For image capturing with the single-molecule
sensitive wide-field super-resolution microscope (SR GSD,
Leica Microsystems, Wetzlar, Germany) in the TIRF mode, a
penetration depth of 179 nm, an exposure time of tex = 100 ms,
and an electron multiplying gain of 50 were employed. For
samples A to D, an excitation power of 10% was employed,
whereas for sample E, the excitation power was increased to
15%. Brightness scales were adjusted using the associated
software.
Confocal Microscopy. The intensity distributions were

obtained through confocal microscope measurements as
described elsewhere.37 Laser intensities were adjusted with
ND filters to avoid saturation effects. Intensities were obtained
from scan images and compared with origami pillars
incorporating a single ATTO542 fluorophore.36 Relative
intensity distributions were plotted and fitted with a Gaussian
function (Figure S3).
Determination of the Weber Contrast. The Weber

contrast is defined as CW = (I − IB)/IB, with I and IB
representing the fluorescence and background intensities,
respectively. It was determined using the ImageJ software as
follows: First, the offset of the smartphone camera was
determined from a dark image and subtracted from all intensity
values. For every detected spot, the integrated intensity I
within a circle with a diameter of 50 px was calculated. For
background subtraction, the integrated intensity of an outer
circle around the first one with a diameter of 70 px was
calculated. The intensity of the inner circle was subtracted
from the intensity of the outer circle, yielding the background
intensity IB. Spots where circles interlaced with other spots or
where circles were not positioned concentrically with respect
to the spot were not taken into account.
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