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Microscopic imaging of tissue samples is a fundamental tool 
that is used for the diagnosis of various diseases and is the 
workhorse of pathology and biological sciences. The clini-

cally established gold standard image of a tissue section is the result 
of a laborious process that includes the tissue specimen being forma-
lin-fixed and paraffin-embedded (FFPE), sectioned into thin slices 
(typically around 2–10 µm), labelled and stained, mounted on a glass 
slide and microscopically imaged using, for example, a bright-field 
microscope. All of these steps use multiple reagents and introduce 
irreversible effects on the tissue. There have been recent efforts to 
change this workflow using different imaging modalities. One line 
of work imaged fresh, non-paraffin-embedded tissue samples using 
nonlinear microscopy methods based on, for example, two-photon 
fluorescence, second-harmonic generation1, third-harmonic gen-
eration2 and Raman scattering3–5. Another study used a controllable 
super-continuum source6 to acquire multi-modal images for the 
chemical analysis of fresh tissue samples. These methods require 
the use of ultrafast lasers or super-continuum sources, which might 
not be readily available in most settings and require relatively long 
scanning times owing to weaker optical signals. Other microscopy 
methods for imaging unsectioned tissue samples have recently 
emerged, that use ultraviolet light excitation on stained samples7,8, 
or take advantage of the autofluorescence emission of biological  
tissue at short wavelengths9. In fact, there are unique opportunities 
to use autofluorescence for imaging tissue samples by making use of 
the fluorescent light emitted from endogenous fluorophores. It has 
been demonstrated that such endogenous fluorescence signatures 
carry useful information that can be mapped to the functional and 
structural properties of a biological specimen, and have therefore 
been used extensively for diagnostics and research purposes9–11. 
One of the main focus areas of these efforts has been the spectro-
scopic investigation of the relationship between different biological  

molecules and their structural properties under different condi-
tions. Some of these well-characterized biological constituents 
include vitamins (for example, vitamin A, riboflavin and thiamin), 
collagen, coenzymes and fatty acids10.

Although some of the techniques described above have unique 
capabilities to discriminate between, for example, cell types and 
sub-cellular components in tissue samples using various contrast 
mechanisms, pathologists and tumour-classification software pack-
ages12 are, in general, trained for examining histologically stained 
tissue samples to make diagnostic decisions. Partially motivated by 
this, some of the above-mentioned techniques were also augmented 
to create pseudo-haematoxylin and eosin (H&E) images1,13. These 
techniques were based on a linear approximation that relates the flu-
orescence intensity of an image to the dye concentration per tissue 
volume by using empirically determined constants that represent 
the mean spectral response of various dyes embedded in the tissue. 
These methods also used exogenous staining to enhance the fluores-
cence signal contrast to create virtual H&E images of tissue samples.

In this study, we demonstrate deep-learning-based virtual his-
tology staining using autofluorescence of unstained tissue that 
was imaged with a wide-field fluorescence microscope through 
a standard near-ultraviolet light excitation and emission filter set 
(see Methods). Virtual staining is performed on a single autoflu-
orescence image of the sample using a deep convolutional neural 
network (CNN), which is trained using the concept of generative 
adversarial networks (GAN)14 to match the bright-field microscopic 
images of tissue samples after they are labelled with a certain histol-
ogy stain (Figs. 1, 2 and Supplementary Fig. 1). Therefore, using a 
CNN, we replace the histological staining and bright-field imaging 
steps with the output of the trained neural net, which is fed with 
the autofluorescence image of the unstained tissue. The network 
inference is fast—taking, for example, 1.9 s mm−2 using a desktop  
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computer for a tissue section scanned using a ×20 objective lens—
and can be substantially improved by using ever-evolving comput-
ing hardware with parallelization capabilities.

We demonstrated this deep-learning-based virtual histology  
staining method by imaging label-free human tissue samples, 
including salivary gland, thyroid, kidney, liver and lung. The net-
work output created equivalent images that were well matched to 
the images of the same samples that were labelled with three dif-
ferent stains, that is, H&E (salivary gland and thyroid), Jones stain 
(kidney) and Masson’s trichrome (liver and lung). Furthermore, the 
staining efficacy of our approach for whole-slide images (WSIs), 
corresponding to some of these samples, was blindly evaluated by a 
group of pathologists. The pathologists were able to recognize histo-
pathological features in images generated with our virtual staining 
technique, and achieved a high degree of agreement with the histo-
logically stained images of the same samples (see the blind evalua-
tion of the staining efficacy, as part of the Results).

As the input image of the network is captured by a conventional 
fluorescence microscope with a standard filter set, this approach 
has transformative potential to use unstained tissue samples for 
pathology and histology applications, entirely bypassing the his-
tological staining process, saving time and expenditure. As an 
example, for the histology stains that we learned to virtually stain 
in this work, each staining procedure of a tissue section takes on 
average around 45 min (H&E) and 2–3 h (Masson’s trichrome and 
Jones stain), with an estimated cost, including labour, of US$2–5 
(H&E)15,16 and more than US$16–35 (Masson’s trichrome and 
Jones stain)16,17. Furthermore, some of these histological staining 
processes involve time-sensitive steps that require the expert to  
monitor the process under a microscope, which makes the entire 
process not only lengthy and relatively costly, but also laborious.  

The presented method bypasses all these staining steps, and also 
allows for the preservation of unlabelled tissue sections for later 
analysis, such as micro-marking of subregions of interest on the 
unstained tissue specimen that can be used for more advanced 
immunohistochemical and molecular analysis to facilitate—for 
example, customized therapies18,19. In addition, this deep-learning-
based virtual histology staining approach can be broadly applied to 
other excitation wavelengths or fluorescence filter sets, as well as to 
other microscopy modalities (such as nonlinear microscopy) that 
utilize additional endogenous or exogenous contrast mechanisms1–8. 
In our experiments, we used sectioned and fixed tissue samples to 
provide meaningful comparisons to the results of the standard his-
tological staining process. However, this approach is potentially 
applicable for use with non-fixed, unsectioned tissue samples, which 
could make it suitable for use in surgery rooms, or at the site of a 
biopsy for rapid diagnosis or telepathology applications. Beyond its 
clinical applications, this method could broadly benefit the histol-
ogy field and its applications in life-science research and education.

Results
Virtual staining of tissue samples. We demonstrated the presented 
method using different combinations of tissue sections and stains. 
After training a deep CNN (see Methods), we blindly tested its 
inference by feeding it with autofluorescence images of label-free 
tissue sections that did not overlap with the images used in the 
training or validation sets. Figure 3 summarizes our results for a 
salivary gland tissue section, which was virtually stained to match 
H&E-stained bright-field images of the same sample. These results 
show that the CNN is capable of transforming an autofluorescence 
image of a label-free tissue section into a bright-field equivalent 
image, showing the correct colour scheme that is expected from 
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Fig. 1 | Deep-learning-based virtual histology staining using autofluorescence of unstained tissue. The schematic outlines the steps in the standard (top) 
and virtual (bottom) staining techniques. After training using a GAN, the neural network (orange box) rapidly outputs a virtually stained tissue image 
(H&E in this case), in response to the input of an autofluorescence image of an unstained tissue section, bypassing the standard histological staining 
procedure (grey boxes).
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an H&E-stained tissue sample. Evaluation of Fig. 3c,d shows that 
the H&E-stained images demonstrate a small island of infiltrating 
tumour cells within subcutaneous fibro-adipose tissue. Note that 
the nuclear detail—including distinction of nucleoli (arrow) and 
chromatin texture—is clearly displayed in both panels. Similarly, in 
Fig. 3g,h, the H&E-stained images demonstrate infiltrating squa-
mous cell carcinoma. The desmoplastic reaction with oedematous 
myxoid change (indicated by an asterisk) in the adjacent stroma is 
clearly identifiable in both stains.

Next, we trained our deep network to virtually stain other tis-
sue types with two different ‘special’ stains, that is, the Jones stain  
(kidney) and the Masson’s trichrome stain (liver and lung). Figures 3 
and 4 summarize our results for deep-learning-based virtual staining 
of these tissue sections, which match very well with the bright-field 
images of the same samples that were captured after the histologi-
cal staining process. These results illustrate that the deep network 
can infer staining patterns of different types of histology staining 
method used for different tissue types, from a single autofluores-
cence image of a label-free specimen. In an example of renal cell car-
cinoma (Fig. 3k,o), the virtual Jones silver stain captures the black 
staining of extracellular collagen and maintains the visual integrity 
of the H&E counterstain. The virtual Masson’s trichrome staining 

of liver tissue samples in Fig. 4c correctly reveals the histological 
features that correspond to hepatocytes, sinusoidal spaces, collagen 
and fat droplets; this is consistent with the histologic appearance 
in the bright-field images of the same tissue samples, which were 
captured after histological staining (Fig. 4d). Similarly, virtual stain-
ing of the lung tissue samples shown in Fig. 4c reveals consistently 
stained histological features that correspond to vessels, collagen  
and alveolar spaces as they appear in the bright-field images after 
histological staining (Fig. 4d).

We further compared our virtual staining approach to standard 
histological staining methods used to diagnose multiple types of 
condition in various types of FFPE or frozen tissue section. The 
results are summarized in Supplementary Table 1. The analysis of 
15 tissue sections by four board-certified pathologists (who were 
not aware of our virtual staining technique) demonstrated 100% 
non-major discordance, which is defined as no clinically significant 
differences in diagnosis among professional observers. The ‘time 
to diagnosis’ varied considerably among observers, ranging from 
an average of 10 s per image for observer 2 to 276 s per image for 
observer 3. However, the intra-observer variability was very minor 
and tended towards a shorter time to diagnosis with our virtual 
stained slides for all observers except observer 2, who spent equal 
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Fig. 2 | Virtual staining GAN architecture. Schematic of the CNN operation. The generator section is used to virtually stain the images. It comprises four 
‘down blocks’, each of which are made up of three convolutional layers that are each followed by an average pooling layer of stride two. The down section 
is followed by four ‘up blocks’, which each contain three convolutional layers and are bilinearly upsampled by a factor of two. Skip connections are used 
to pass data between layers of the same level. The discriminator comprises five down blocks, each of which has two convolutional layers; the second 
convolutional layer has a stride of two, to reduce the tensor size. The down block reduces the size of the images while increasing the number of channels 
and is followed by two fully connected layers. The variable n represents the number of pixels on the lateral dimensions of each image patch that passes 
through the network. During the training, a 256 × 256 pixel patch is used; however, during the testing phase larger images can be inferred, as a result of the 
convolutional nature of the network.
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time—that is, around 10 s per image—for virtual and histologically 
stained slides. These results indicate that there is very similar diag-
nostic utility between the two image modalities.

Blind evaluation of staining efficacy for WSIs. After evaluating 
the differences in tissue section and staining methods, we tested the 
ability of our virtual staining approach in the specialized staining 
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Fig. 3 | Virtual staining results match the H&E- and Jones-stained images. a–h, Salivary gland tissue samples that are unstained, or either virtually or 
histologically stained. a,b,e,f, Autofluorescence images of unstained salivary gland tissue sections used as input into the neural network. c,g, Images 
showing virtual H&E staining of salivary gland tissue. d,h, Bright-field images of the salivary gland tissue sections after the histological staining process. 
Evaluation of both c and d demonstrates a small island of infiltrating tumour cells within subcutaneous fibro-adipose tissue. Note that the nuclear 
detail, including distinction of nucleoli (red arrows) and chromatin texture, is clearly displayed in both panels. Similarly, in g and h, the virtual and 
histological H&E-stained images demonstrate infiltrating squamous cell carcinoma. The desmoplastic reaction with oedematous myxoid change (marked 
by asterisks) in the adjacent stroma is clearly identifiable. i–p, Kidney tissue samples that are unstained, or either virtually or histologically stained. 
i,j,m,n, Autofluorescence images of unstained kidney tissue sections; j and n show the network input. k,o, Images showing virtual Jones staining of 
autofluorescence kidney tissue sections. l,p, Bright-field images of the same kidney tissue sections after histological staining. Green arrows indicate the 
staining of individual samples.
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histology workflow. We imaged the autofluorescence distribution of 
15 label-free samples of liver tissue sections and 13 label-free tissue  
sections of kidney, using a ×20/0.75 numerical aperture (NA) objec-
tive lens. All liver and kidney tissue sections were obtained from 
different patients and included both small biopsies and larger resec-
tions. All tissue sections were obtained from FFPE tissues that 
were not coverslipped, as indicated in our virtual staining protocol. 
After autofluorescence scanning, the tissue sections were histologi-
cally stained with Masson’s trichrome (4 µm liver tissue sections) 

and Jones stain (2 µm kidney tissue sections). We then divided  
the WSIs into training and test sets. For the liver slides cohort, 
seven WSIs were used to train the virtual staining algorithm and 
eight WSIs were used for blind testing. For the kidney slides cohort,  
six WSIs were used to train the algorithm and seven WSIs were used 
for testing. Three board-certified pathologists were blinded to the 
staining techniques for each WSI and were asked to apply a grade 
from 1 to 4 for the quality of the different stains: 4, perfect; 3, very 
good; 2, acceptable; 1, unacceptable. Moreover, three additional 
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Fig. 4 | Virtual staining results match the Masson’s trichrome stain for liver and lung tissue sections. a–d, Liver and lung tissue samples that are 
unstained (a,b), or either virtually (c) or histologically stained (d) with Masson’s trichrome. a,b, Autofluorescence images of unstained liver tissue sections 
and unstained lung tissue sections. Only the raw images in b were used as input to the trained neural network. c, Virtual Masson’s trichrome staining 
results (network output) for the same liver and lung tissue samples. d, Bright-field images of the same liver and lung tissue sections, after the histological 
staining process. Green arrows indicate the virtual staining of individual samples by the neural network.
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board-certified pathologists applied the same score scale (1–4) for 
specific features for liver samples only: nuclear detail, cytoplasmic 
detail and extracellular fibrosis. These results are summarized in 
Table 1 (liver) and Supplementary Table 2 (kidney).

Our data indicate that the pathologists were able to recognize 
histopathological features using both staining techniques and with a 
high degree of agreement between the techniques, without a clearly 
preferred staining technique (virtual versus histological).

Staining standardization. Staining standardization could be an 
interesting by-product of our virtual staining approach. In other 
words, the deep network converges to a ‘common stain’ colourization20  
scheme—which can be observed in Fig. 5—that compares WSIs of 
histologically and virtually stained liver tissue sections. The varia-
tion in the histologically stained liver tissue sections is higher than 
that of the virtually stained tissue images (Fig. 5). The colouriza-
tion of the virtual stain is solely the result of its training (that is, 
the gold standard histological staining used during the training 
phase) and can be further adjusted to the preferences of patholo-
gists, by retraining the network with a new stain colourization. 
Such ‘improved’ training can be created from scratch or acceler-
ated through transfer learning21. This potential staining standard-
ization, using deep learning, could remedy the negative effects 
of human-to-human variations at different stages of the sample 
preparation22, create a common ground among different clinical 
laboratories, enhance the diagnostic workflow for clinicians and 
assist in the development of new algorithms, such as automatic  
tissue metastasis detection12 or grading of different types of cancer.

Transfer learning to other tissue–stain combinations. Using the 
concept of transfer learning21, the training procedure for new tissue 
and/or stain types can converge much faster, while also reaching 
an improved performance—that is, a better local minimum in the 
training cost/loss function (see Methods). This means that a pre-
learnt CNN model, from a different tissue–stain combination, can 
be used to initialize the deep network to statistically learn virtual 
staining of a new combination. Figure 6 demonstrates the favourable  

attributes of such an approach: a new deep neural network was 
trained to virtually stain the autofluorescence images of unstained 
thyroid tissue sections, and it was initialized using the weights and 
biases of another network that was previously trained for H&E  
virtual staining of the salivary gland. The evolution of the loss 
metric as a function of the number of iterations used in the train-
ing phase clearly demonstrates that the new thyroid deep network 
rapidly converges to a lower minimum in comparison to the same 
network architecture, which was trained from scratch using ran-
dom initialization. Figure 6 also compares the output images of this  
thyroid network at different stages of its learning process, which  
further illustrates the impact of transfer learning to rapidly adapt 
our approach to new tissue–stain combinations. The network output 
images, after the training phase with, for example, ≥6,000 iterations, 
reveal that cell nuclei show irregular contours, nuclear grooves and 
chromatin pallor, which are suggestive of papillary thyroid carci-
noma; cells also show mild to moderate amounts of eosinophilic 
granular cytoplasm and the fibrovascular core at the network output 
image shows an increased number of inflammatory cells, including 
lymphocytes and plasma cells.

Discussion
We demonstrated the ability to virtually stain label-free tissue  
sections, using a supervised deep-learning technique that uses a 
single autofluorescence image of the sample as input, captured by 
a standard fluorescence microscope and filter set. This statistical 
learning-based method has the potential to restructure the clinical 
workflow in histopathology, and can benefit from various imaging 
modalities, such as fluorescence microscopy, nonlinear micros-
copy, holographic microscopy and optical coherence tomography23. 
It has the potential to provide a digital alternative to the standard 
practice of histological staining of tissue samples. We used fixed, 
unstained tissue samples to provide a meaningful comparison to 
histologically stained tissue samples, which is essential to train the 
neural network as well as to blindly test the performance of the 
network output against the clinically approved method. However, 
the presented deep-learning-based approach is broadly applicable 

Table 1 | Blind evaluation of virtual and histological Masson’s trichrome staining in liver sections

Tissue 
number

Pathologist 1 Pathologist 2 Pathologist 3 Average

ND CD EF SQ ND CD EF SQ ND CD EF SQ ND CD EF SQ

1 (HS) 3 2 1 1 4 4 3 4 1 1 1 3 2.67 2.33 1.67 2.67

1 (VS) 3 3 3 3 3 3 2 3 2 2 3 3 2.67 2.67 2.67 3.00
2 (HS) 3 2 4 4 4 4 3 4 1 2 2 2 2.67 2.67 3.00 3.33
2 (VS) 3 3 4 4 4 3 3 3 2 2 3 3 3.00 2.67 3.33 3.33
3 (HS) 3 3 2 2 3 3 4 3 1 1 1 1 2.33 2.33 2.33 2.00
3 (VS) 3 2 1 1 3 3 1 4 1 1 1 1 2.33 2.00 1.00 2.00
4 (HS) 3 2 4 4 3 4 4 4 1 2 1 2 2.33 2.67 3.00 3.33

4 (VS) 3 3 4 4 4 3 4 4 2 2 3 3 3.00 2.67 3.67 3.67
5 (HS) 3 3 4 4 3 3 2 1 1 3 2 2 2.33 3.00 2.67 2.33

5 (VS) 3 2 3 3 3 3 4 2 2 1 3 3 2.67 2.00 3.33 2.67
6 (HS) 3 2 3 3 4 4 4 3 2 2 2 2 3.00 2.67 3.00 2.67
6 (VS) 3 3 4 3 4 3 4 3 1 1 1 1 2.67 2.33 3.00 2.33

7 (HS) 3 3 4 4 3 4 4 3 2 1 2 2 2.67 2.67 3.33 3.00
7 (VS) 3 2 3 3 4 4 4 3 2 2 3 3 3.00 2.67 3.33 3.00
8 (HS) 3 3 4 4 4 4 4 3 1 1 1 1 2.67 2.67 3.00 2.67

8 (VS) 3 2 4 4 4 3 4 4 2 2 3 2 3.00 2.33 3.67 3.33

Liver tissue was stained with Masson’s trichrome and scored for nuclear detail (ND), cytoplasmic detail (CD), extracellular fibrosis (EF) and overall stain (SQ). The winner (and tied) average scores are in 
bold. HS, histologically stained sections; VS, virtually stained sections.
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to unsectioned, fresh tissue samples without the use of any labels 
or stains. After training, the deep network can be used to virtually 
stain the images of label-free fresh tissue samples, acquired using, 
for example, ultraviolet light or deep-ultraviolet light excitation, or 
even nonlinear microscopy modalities. Raman microscopy in par-
ticular can provide very rich label-free biochemical signatures that 
can further enhance the effectiveness of the virtual staining that the 
neural network learns.

The proposed method can be combined with other excitation 
wavelengths and/or imaging modalities to enhance its inference 
performance for different tissue constituents. For example, we 
attempted to detect melanin on a skin tissue section using virtual 
H&E staining. However, melanin was not clearly identified in the 
output of the network, as it presents a weak autofluorescence sig-
nal at DAPI excitation and emission wavelengths24 measured in our 
system. One potential method to increase the autofluorescence of 
melanin is to image the samples while they are in an oxidizing solu-
tion25. As a more practical alternative, here we used an additional 
autofluorescence channel, originating from, for example, Cy5 filter 
(excitation 628 nm and emission 692 nm) such that the melanin sig-
nal could be enhanced and accurately inferred in our virtual-stain-
ing approach. By training the network using both the DAPI and Cy5 
autofluorescence channels, the deep network was able to success-
fully determine where melanin occurs in the sample, as illustrated in 
Fig. 7. By contrast, when only the DAPI channel was used (Fig. 7a),  
the network was unable to determine the areas that contained 
melanin. In other words, the additional autofluorescence infor-
mation from the Cy5 channel was used by the network to distin-
guish melanin from the background tissue. We note that the results 
shown in Fig. 7 were acquired using a lower-resolution objective 
lens (×10/0.45 NA) for the Cy5 channel, to supplement the high-
resolution DAPI scan (×20/0.75 NA), because we hypothesized that 
most of the necessary information is found in the high-resolution 
DAPI scan and the additional information (for example, the pres-

ence of melanin) can be encoded with the lower-resolution scan. We 
think that other label-free imaging techniques and/or fluorescence 
channels could be combined to further enhance the inference of dif-
ferent tissue constituents using the presented deep-learning-based 
approach, which we leave for future research.

An important part of the training process involves matching 
autofluorescence images of label-free tissue samples and their 
corresponding bright-field images after the histological staining 
process. Note that during the staining process and related steps, 
some tissue constituents can be lost or deformed in a way that will 
mislead the loss/cost function in the training phase (an example of 
this is illustrated in Supplementary Fig. 2). However, this is only a 
training- and validation-related challenge and does not, in prac-
tice, pose any limitations for a well-trained neural network in the 
virtual staining of label-free tissue samples. To ensure the quality 
of the training and validation phases and minimize the impact of 
this challenge on the network’s performance, we apply a multi-
stage registration process—from global to local registration—in 
which one of the steps involves training a deep network for the 
task of enabling high-accuracy local registration. At the end of this 
initial registration, we set a threshold for an acceptable correla-
tion value between the two sets of images (that is, before and after 
the histological staining process) and eliminate the non-matching 
image pairs from our training and validation set to make sure that 
the network learns the real signal, not the perturbations to the 
tissue morphology due to the histological staining process. This 
threshold is tuned for each specific tissue, depending on the corre-
lation between the input and label images. For example, if there is a 
large misalignment between the input and target images of the reg-
istration network, the correlation will be low due to this misalign-
ment. Therefore, an estimated threshold was initially used during 
the training to make sure that, for example, misaligned or warped 
images were not used in the training phase. On visual inspection, 
if it became clear that improperly registered images were making it 
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output images of a thyroid tissue section at different stages of the learning process, that is, after 500 iterations, 3,000 iterations, 6,000 iterations and 
10,500 iterations (left) and a bright-field image of the same thyroid section stained with H&E. The images are compared to each other to better illustrate 
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Fig. 7 | Melanin inference using multiple autofluorescence channels. a, Virtually stained skin tissue sample, using the DAPI channel only. b,c, The same 
tissue sample, virtually stained using both the DAPI and Cy5 channels (b), clearly revealing the melanin (dark-brown) features that are shown in the 
corresponding histologically stained image (c).
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past the threshold, the threshold would be raised accordingly. On 
the other hand, if the threshold excluded too many images it would 
be lowered as appropriate. However, in our training phase for each 
tissue–stain model, the addition of poor data is not healthy for the 
network. The elimination of some training images was therefore 
not a major concern if there was any doubt regarding the image 
quality or alignment when visually inspected. As this only involves 
our training, it is a one-time effort, and we chose to be conserva-
tive in our training process to obtain the best blind-testing model 
for optimized generalization.

Above, we described a methodology to mitigate some of the 
training challenges that result from the random loss of some tissue 
features after the histological staining process. In fact, this highlights 
another motivation to skip the laborious and costly procedures that 
are involved in histological staining; it will be easier to preserve the 
local tissue histology in a label-free method, without the need for 
an expert to handle some of the delicate procedures of the staining 
process, which sometimes also requires the tissue to be observed 
under a microscope.

The training phase of our deep neural network takes a con-
siderable amount of time (for example, approximately 13 h for 
the salivary gland network) using a desktop personal computer. 
However, this entire process could be substantially accelerated 
by using dedicated hardware, based on graphics processing units 
(GPUs). Furthermore, as already emphasized in Fig. 6, transfer 
learning provides a warm start to the training phase of a new 
tissue–stain combination, making the entire process substan-
tially faster. Unlike other colour reconstruction or virtual stain-
ing approaches13, once the deep network has been trained, the 
virtual staining of a new sample is performed in a single, non-
iterative manner that does not require a trial-and-error approach 
or any parameter tuning to achieve the optimal result. Based on 
its feed-forward and non-iterative architecture, the deep-neural 
network rapidly outputs a virtually stained image in, for example, 
1.9 s mm–2 using a dual-GPU desktop computer, for unstained tis-
sue slides scanned using a ×20 objective lens. With further GPU-
based acceleration and machine-learning-optimized processors, 
our approach has the potential to achieve real-time performance, 
which might especially be useful in the operating room or for  
in vivo imaging applications.

The virtual staining procedure that is implemented in this work 
is based on training separate CNNs for each tissue–stain combina-
tion. If the CNN is fed with the autofluorescence images of a differ-
ent tissue–stain combination, it may not perform as desired (see, 
for example, Supplementary Fig. 3). This, however, is not a limita-
tion, because for histology applications, the tissue and stain type are 
predetermined for each sample of interest and, therefore, a specific 
CNN selection for creating a virtually stained image from an auto-
fluorescence image of the unlabelled sample does not require any 
additional information or resources. A more general CNN model 
can be trained for multiple tissue–stain combinations by, for exam-
ple, increasing the number of trained parameters in the model26, at 
the cost of a possible increase in the training and inference times. 
Using a similar strategy, another avenue to explore in future work is 
the potential of our approach to perform multiple virtual stains on 
the same unlabelled tissue type.

It is important to note that, like in any other imaging method 
that is based on automatic sample scanning, parts of the sample 
field of view (FOV) can be compromised owing to artefacts in the 
sample preparation process, such as dust or other particles that lie 
on top of the sample, in addition to tissue folding and cracks, among 
other artefacts. In Supplementary Fig. 4, we present examples of 
such artefacts, which result in aberrations in our virtual staining. 
Further development of auto-focusing algorithms that can learn to 
reject such artefacts during the imaging stage could minimize their 
occurrence in the final image.

As a next step, a wide-scale, randomized, clinical study would be 
needed to validate the diagnostic accuracy of the network output 
images against the clinical gold standard, which will be important 
to better understand potential biases in the output images of the 
network. A substantial advantage of the approach presented here is 
that it is quite flexible; it can accommodate feedback to statistically 
mend its performance if a diagnostic failure is detected through a 
clinical comparison, by penalizing such failures as they are caught. 
This iterative training and transfer learning cycle, based on clinical 
evaluations of the performance of the network output, will help us 
to optimize the robustness and clinical impact of our approach. In 
this sense, the process bears resemblance to the design phase of a 
histological stain, where—through trial and error—the stain is opti-
mized to provide desired contrast to specific histological features.

Our virtual-staining approach could also be used for microguid-
ing molecular analysis at the unstained-tissue level, by locally iden-
tifying regions of interest on the basis of virtual staining, and by 
using this information to guide subsequent analysis of the tissue, 
for example, microimmunohistochemistry or sequencing18. This 
type of virtual microguidance on an unlabelled tissue sample might 
facilitate the high-throughput identification of disease subtypes and 
the development of customized therapies for patients27.

We would also like to note that although we demonstrated the 
virtual-staining method on the basis of a contrast mechanism that 
originates from tissue autofluorescence with a single excitation 
band, other contrast-generating methods to virtually stain label-
free tissue samples could be explored, including, for example, mul-
tiple excitation and emission wavelengths, as well as other imaging 
modalities such as polarization imaging, quantitative phase micros-
copy, optical coherence tomography and perhaps combinations of 
these modalities.

Methods
Sample preparation. The FFPE tissue sections (2 μm thick) were deparaffinized 
using xylene and mounted on a standard glass slide using Cytoseal (Thermo-Fisher 
Scientific); a coverslip was then placed (Fisherfinest, 24x50-1, Fisher Scientific). 
Following the initial autofluorescence imaging process (using a DAPI excitation 
and emission filter set) of the unlabelled tissue sample, the slide was put into xylene 
for approximately 48 h or until the coverslip could be removed without damaging 
the tissue. Once the coverslip was removed, the slide was dipped (approximately 
30 dips) in absolute alcohol, 95% alcohol and then washed in deionized water for 
around 1 min. This step was followed by the corresponding staining procedures for 
H&E, Masson’s trichrome or Jones stains. This tissue-processing path is only used 
for the training and validation of the approach and is not needed after the network 
has been trained. To test our method, we used different tissue–stain combinations: 
the salivary gland and thyroid tissue sections were stained with H&E, kidney tissue 
sections were stained with Jones stain, and the liver and lung tissue sections were 
stained with Masson’s trichrome. For the WSI staining efficacy evaluation study, 
the liver tissue sections were 4 µm thick and the kidney tissue sections were 2 µm 
thick. In the WSI study, the FFPE tissue sections were not coverslipped during the 
autofluorescence imaging stage. Following autofluorescence imaging, the tissue 
samples were histologically stained as described above (Masson’s trichrome for 
the liver and Jones for the kidney tissue sections). The unstained frozen samples 
were prepared by embedding the tissue section in O.C.T. (Tissue-Tek, Sakura 
Finetek) and dipped in 2-methylbutane with dry ice. The frozen section was then 
cut into 4-µm-thick sections and put in a freezer until it was imaged. Following the 
imaging process, the tissue section was washed with 70% alcohol, H&E stained and 
coverslipped. The samples were obtained from the Translational Pathology Core 
Laboratory and were prepared by the Histology Laboratory at UCLA. The kidney 
tissue sections of diabetic and non-diabetic patients were obtained under IRB 
18-001029 (UCLA). All the tissue sections were obtained after the deidentification 
of patient-related information, and were prepared from existing (that is, archived) 
specimens. Therefore, this work did not interfere with standard practices of care or 
sample-collection procedures; the original tissue specimens were archived before 
this work, and were not collected specifically for our research.

Data acquisition. The label-free tissue-autofluorescence images were captured 
using a conventional fluorescence microscope (IX83, Olympus) equipped with 
a motorized stage. The image acquisition process was controlled by MetaMorph 
microscope automation software (Molecular Devices). The unstained tissue 
samples were excited with near ultraviolet light and imaged using a DAPI filter 
cube (OSFI3-DAPI-5060C, excitation wavelength 377 nm/50 nm bandwidth, 
emission wavelength 447 nm/60 nm bandwidth) with a ×40/0.95 NA objective lens 
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(Olympus UPLSAPO 40X2/0.95 NA, working distance (WD) 0.18) or ×20/0.75 NA 
objective lens (Olympus UPLSAPO 20X/0.75 NA, WD 0.65). For melanin 
inference, we also acquired autofluorescence images of the samples using a Cy5 
filter cube (CY5-4040C-OFX, excitation wavelength 628 nm/40 nm bandwidth, 
emission wavelength 692 nm/40 nm bandwidth) with a ×10/0.4 NA objective lens 
(Olympus UPLSAPO 10X2). Each autofluorescence image was captured with a 
scientific CMOS sensor (ORCA-flash4.0 v. 2, Hamamatsu Photonics) with an 
exposure time of around 50–500 ms for the DAPI channel and approximately 3 s 
for the Cy5 channel (due to its lower NA). The bright-field images that were used 
for training and validation were acquired using a slide scanner microscope  
(Aperio AT, Leica Biosystems) with a ×20/0.75 NA objective (Plan Apo), equipped 
with a ×2 magnification adaptor.

Image pre-processing and alignment. As our deep neural network aims to learn 
a statistical transformation between an autofluorescence image of an unstained 
tissue and a bright-field image of the same tissue sample after histological 
staining, it is of critical importance to accurately match the FOV of the input 
and target images. An overall scheme describing the global and local image 
registration process is shown in Supplementary Fig. 5, which was implemented 
in MATLAB (MathWorks). The first step in this process was to find candidate 
features for matching unstained autofluorescence images and stained bright-
field images. For this, each autofluorescence image (2,048 × 2,048 pixels) was 
downsampled to match the effective pixel size of the bright-field microscope 
images. This resulted in a 1,351 × 1,351-pixel unstained autofluorescent tissue 
image, which was contrast-enhanced by saturating the bottom 1% and the 
top 1% of all the pixel values, and contrast-reversed to better represent the 
colour map of the greyscale-converted WSI (see Supplementary Fig. 5). Then, 
a normalized correlation-score matrix was calculated by correlating each of 
the 1,351 × 1,351-pixel patches with the corresponding patch of the same size, 
extracted from the whole-slide grey-scale image. The entry in this matrix with 
the highest score represents the most likely matched FOV between the two 
imaging modalities. Using this information (which defines a pair of coordinates), 
we cropped the matched FOV of the original whole-slide bright-field image to 
create target images. After this FOV-matching procedure, the autofluorescence 
and bright-field microscope images were coarsely matched. However, they were 
still not accurately registered at the individual-pixel level, owing to the slight 
mismatch in the sample placement during the two different microscopic imaging 
experiments (autofluorescence, followed by bright-field), which randomly causes 
a slight rotation angle (for example, around 1–2°) between the input and target 
images of the same sample.

The second part of our input-target matching process involves a global-
registration step28 that corrects for this slight rotation angle between the 
autofluorescence and bright-field images. This was done by extracting feature 
vectors (descriptors) and their corresponding locations from the image pairs, and 
matching the features using the extracted descriptors29. Then, a transformation 
matrix that corresponds to the matched pairs was found using the M-estimator 
sample consensus algorithm30, which is a variant of the random sample consensus 
(RANSAC) algorithm31. Finally, the angle-corrected image was obtained by 
applying this transformation matrix to the original bright-field microscope image 
patch. After the application of this rotation, the images were further cropped by 
100 pixels (50 pixels on each side) to accommodate for undefined pixel values at 
the image borders, due to the rotation angle correction.

Next, a neural network was used to learn the transformation between the 
roughly matched images. This network used the same structure as the network 
described below and in Fig. 2. A low number of iterations was used so that the 
network only learns colour mapping, and not any spatial transformations between 
the input and label images. The autofluorescence images were passed through 
this network and used to perform local feature registration, using an elastic 
image registration algorithm. This algorithm matches the local features of both 
sets of images (autofluorescence versus bright-field) by hierarchically matching 
the corresponding blocks from large to small (see Supplementary Fig. 5). The 
calculated transformation map from this step was then applied to each bright-field 
image patch32.

At the end of these registration steps, the autofluorescence image patches and 
their corresponding bright-field tissue image patches were accurately matched 
to each other and were used as input and label pairs for the deep neural network 
training phase, allowing the network to solely focus on, and learn the problem of, 
virtual histological staining.

For the images obtained with a ×20 objective lens that were used for generating 
Table 1 and Supplementary Table 2, a similar process was used. Instead of 
downsampling the autofluorescence images, the bright-field microscope images 
were downsampled to 75.85% of their original size so that they matched the 
lower magnification images. Furthermore, to create WSIs using these ×20 images, 
additional shading correction and normalization techniques were applied. Before 
being fed into the network, each FOV was normalized by subtracting the mean 
value across the entire slide and dividing it by the standard deviation between pixel 
values. This normalizes the network input within each slide and between slides. 
Finally, shading correction was applied to each image to account for the lower 
relative intensity measured at the edges of each FOV.

Deep neural network architecture, training and validation. In this study, we 
used a GAN14 architecture to learn the transformation from a label-free unstained 
autofluorescence input image to the corresponding bright-field image of the 
histologically stained sample. A standard CNN-based training algorithm learns to 
minimize the loss/cost function between the network’s output and the target label. 
Thus, the choice of this loss function is a critical component of the deep network 
design. For instance, simply choosing an ℓ −norm2  (mean squared error) penalty 
as a cost function will tend to generate blurry results33,34, because the network 
averages a weighted probability of all the plausible results; therefore, additional 
regularization terms35 are generally needed to guide the network to preserve the 
desired sharp sample features in the network’s output. GANs avoid this problem 
by learning a criterion that aims to accurately classify whether the deep network’s 
output image is real or fake (that is, correct in its virtual staining or wrong). As a 
result, output images that are inconsistent with the desired labels are not tolerated, 
which makes the loss function adaptive to the data and the desired task at hand. 
To achieve this goal, the GAN training procedure involves the training of two 
different networks, as shown in Fig. 2 and Supplementary Fig. 1. First, a generator 
network, which in our case aims to learn the statistical transformation between 
the unstained autofluorescence input images and the corresponding bright-field 
images of the same samples, after the histological staining process; and second, 
a discriminator network that learns how to discriminate between a true bright-
field image of a stained tissue section and the generator network’s output image. 
Ultimately, the desired result of this training process is a generator that transforms 
an unstained autofluorescence input image into an image that is indistinguishable 
from the stained bright-field image of the same sample. For this task, we defined 
the loss functions of the generator and discriminator as such:
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+ × + × −
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z z

z D z
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where D refers to the discriminator network output, zlabel denotes the bright-field 
image of the histologically stained tissue and zoutput denotes the output of the 
generator network. The generator loss function balances the pixel-wise mean-
squared error (MSE) of the generator network output image with respect to its 
label, the total variation (TV) operator of the output image and the discriminator 
network prediction of the output image, using regularization parameters (λ and α) 
that are empirically set to different values, which accommodates for approximately 
2% and 20% of the pixel-wise MSE loss and the combined generator loss (ℓgenerator), 
respectively. The TV operator of an image z is defined as:
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where p and q are pixel indices. On the basis of equation (1), the discriminator 
attempts to minimize the output loss, while maximizing the probability of correctly 
classifying the real label (that is, the bright-field image of the histologically stained 
tissue). Ideally, the discriminator network would aim to achieve D(zlabel) = 1 and 
D(zoutput) = 0, but if the generator is successfully trained by the GAN, D(zoutput) 
would ideally converge to 0.5.

The deep neural network architecture of the generator follows the design of 
U-net36, and is detailed in Fig. 2. The U-net architecture is well-suited for our 
application, because it is capable of learning features at different scales without 
increasing the depth of the network. Each level of the U-net downsamples the 
input and learns the features that act on a larger scale than that of the previous 
layer. This allows the network to infer small features within each cell as well as the 
overall structure of the tissue samples. An input image is processed by the network 
in a multiscale fashion, using downsampling and upsampling paths, helping 
the network to learn the virtual staining task at various different scales. The 
downsampling path consists of four individual steps, with each step containing one 
residual block37, each of which maps a feature map xk into feature map xk + 1:
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where CONV{.} is the convolution operator that includes the bias terms, k1, k2 
and k3 denote the serial numbers of the convolution layers, and LReLU[.] is the 
nonlinear activation function (that is, a leaky rectified linear unit) that we used 
throughout the entire network, defined as:
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When training the networks for WSIs, an additional batch-normalization layer 
was added before each LReLU activation to allow for faster training and improve 
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its stability. This addition particularly improved sections of the tissue where the 
contrast in the autofluorescence images was particularly low. The number of 
input channels for each level in the downsampling path was set to: 1, 64, 128, 256, 
while the number of the output channels in the downsampling path was set to: 
64, 128, 256, 512. To avoid the dimension mismatch for each block35, we zero-
padded xk to match the number of the channels in xk + 1 The connection between 
each downsampling level was a 2 × 2 average pooling layer with a stride of 2 pixels 
that downsampled the feature maps by a factor of 4 (twofold in each direction). 
Following the output of the fourth downsampling block, another convolutional 
layer maintained the number of the feature maps at 512, before connecting it to the 
upsampling path. The upsampling path consisted of four, symmetrical, upsampling 
steps, with each step containing one convolutional block. The convolutional block 
operation, which maps feature map yk into feature map yk + 1, is given by:

=+

+

y

x y

LReLU[CONV

{LReLU[CONV {LReLU[CONV {CONCAT( , US{ })}]}]}]
(5)k k

k k k k

1

1

6

5 4

where CONCAT(.) is the concatenation between two feature maps that merges the 
number of channels, US{.} is the upsampling operator, and k4, k5 and k6, denote the 
serial numbers of the convolution layers. Similar to the downsampling path, batch 
normalization was added for the WSI training phase. The number of the input 
channels for each level in the upsampling path was set to 1,024, 512, 256, 128 and 
the number of the output channels for each level in the upsampling path was set to 
256, 128, 64, 32. The last layer is a convolutional layer mapping 32 channels into 
three channels, represented by the YCbCr colour map38. Both the generator and the 
discriminator networks were trained with a patch size of 256 × 256 pixels.

The discriminator network, summarized in Fig. 2, receives three input channels 
that correspond to the YCbCr colour space of an input image. This input is then 
transformed into a 64-channel representation using a convolutional layer, which is 
followed by 5 blocks of the following operator:

=+z zLReLU[CONV {LReLU[CONV { }]}] (6)k k k k1 2 1

where k1 and k2 denote the serial numbers of the convolutional layer. The number 
of channels for each layer was 3, 64, 64, 128, 128, 256, 256, 512, 512, 1,024, 1,024, 
2,048. The next layer was an average pooling layer with a filter size that was equal to 
the patch size (256 × 256), which results in a vector with 2,048 entries. The output 
of this average pooling layer was then fed into two fully connected layers with the 
following structure:

=+z zFC[LReLU[FC{ }]] (7)k k1

where FC is the fully connected layer, with learnable weights and biases. The 
first fully connected layer outputs a vector with 2,048 entries, while the second 
one outputs a scalar value. This scalar value was used as an input into a sigmoid 
activation function D(z) = 1/(1 + exp(−z)) that calculates the probability (between 
0 and 1) of the discriminator network input to be real (genuine) or fake, that is, 
ideally D(zlabel) = 1

The convolution kernels throughout the GAN were set to be 3 × 3. These 
kernels were randomly initialized by using a truncated normal distribution39 
with a standard deviation of 0.05 and a mean of 0; all of the network biases were 
initialized as 0. The learnable parameters were updated through the training stage 
of the deep network using an adaptive moment estimation (Adam) optimizer40 
with a learning rate of 1 × 10−4 for the generator network and 1 × 10−5 for the 
discriminator network. Also, for each iteration of the discriminator, there were 
four iterations of the generator network, to avoid training stagnation following a 
potential overfit of the discriminator network to the labels. We used a batch size of 
10 in our training.

Once all of the FOVs had passed through the network, the WSIs were stitched 
together using the Fiji41 Grid/Collection stitching plugin42. This plugin calculates 
the exact overlap between each tile and linearly blends them into a single large 
image. Overall, the inference and stitching took approximately 5 min cm−2 and 
30 s cm−2, respectively, and can be substantially improved using hardware and 
software advancements. Before being shown to the pathologists, sections that were 
out of focus or had major aberrations (due to, for example, dust particles) in either 
the autofluorescence or bright-field images were cropped out. Finally, the images 
were exported to the Zoomify43 format (designed to enable viewing of large images 
using a standard web browser) and uploaded to the GIGAmacro website44 for easy 
access and viewing by the pathologists. We used six board-certified pathologists: 
four of them for the study in Supplementary Table 1, three for the study in Table 1 
and three for the study in Supplementary Table 2, assigned according to expertise.

Implementation details. The other implementation details, including the number 
of trained patches, the number of epochs and the training times, are shown in 
Supplementary Table 3. The virtual staining network was implemented using 
Python version 3.5.0. The GAN was implemented using TensorFlow version 1.4.0. 
Other Python libraries used were os, time, tqdm, the Python Imaging Library 
(PIL), SciPy, glob, ops, sys and numpy. We implemented the software on a desktop 
computer with a Core i7-7700K CPU at 4.2 GHz (Intel) and 64 GB of RAM, 

running a Windows 10 operating system (Microsoft). Network training and testing 
were performed using dual GeForce GTX 1080Ti GPUs (NVidia).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
The deep-learning models used in this work employ standard libraries and scripts 
that are publicly available in TensorFlow. The trained network models for Masson’s 
trichrome stain (liver) and Jones stain (kidney), alongside sample test-image data 
are available through a Fiji-based plugin at https://github.com/whd0121/ImageJ-
VirtualStain (Fiji can be downloaded at: https://imagej.net/Fiji/Downloads). 
The Fiji Grid/Collection stitching plugin was used to perform FOVs stitching. 
The inference (testing) software has been adapted to Fiji. MATLAB was used for 
the shading correction as well as the registration steps (coarse matching, global 
registration and local registration). Python based on the TensorFlow library was 
used to implement both the initial CNN used for image registration as well as the 
CNN used to produce the final virtually stained images. Our custom training codes 
are proprietary (and managed by the UCLA Office of Intellectual Property) and are 
not publicly available.

Data availability
The authors declare that all data supporting the results in this study are available 
within the paper and the Supplementary Information.
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Supplementary Fig. S1. Training process of the virtual staining neural network using a GAN. 
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Supplementary Fig. S2. Structural changes caused during the histological staining process. (a) 

The autofluorescence image of an unstained liver tissue section (contrast enhanced). (b) Following the 

histological staining procedure, morphological changes are introduced as shown in this bright-field image 

of the same sample. 
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Supplementary Fig. S3. Cross testing of the networks that were trained for specific tissue-stain 

combinations. Autofluorescence images of unstained salivary gland and thyroid tissue sections are 

shown in (a) and (e), respectively. (b) Result of cross-testing the salivary gland autofluorescence image 

on a network which was trained to virtually H&E stain thyroid tissue. (c) Result of cross-testing the 

salivary gland autofluorescence image on a network which was trained to virtually H&E stain salivary 

gland tissue. (d) The bright-field image of the same salivary gland tissue, after the histological staining 

(H&E). (e-g) are the same as in (a-c) except for an unstained thyroid tissue as the network input. (h) The 

bright-field image of the same thyroid tissue after the histological staining (H&E). Note the higher fidelity 

between the staining techniques when the virtual stain was matched with the appropriate training. The 

arrows point to subtle differences in the evaluation of small nuclei between the virtual staining techniques. 

In all areas, the histologically stained slide is more closely aligned to the virtual staining method trained 

on the same tissue type. 
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Supplementary Fig. S4. Examples of virtual staining aberrations. Sample preparation related issues, 

such as highly fluorescent dust particles as shown in panels (a), (e) and (g), or focusing errors (c) that 

randomly occur during the microscope scanning procedure, lead to incorrect inference.  
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Supplementary Fig. S5. Autofluorescence and bright-field image registration. The field-of-view 

matching and registration process of the autofluorescence images of unstained tissue samples with 

respect to the bright-field images of the same samples, after the histological staining process, is 

illustrated. 
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Serial 
number 

Tissue, 
fixation, 

type of stain 

Pathologist 
# 

Histochemically 
/ Virtually 
stained 

Diagnosis Time to 
diagnose 

1 Ovary, 
Frozen 
section, 
H&E 

1 VS Adenocarcinoma 30 sec 

2 VS Borderline serous tumor 15 sec 

3 HS Mucinous adenocarcinoma 10 min 

4 HS Adenocarcinoma, endometrioid  2 min 

2 Ovary, 
Frozen 
section, 
H&E 

1 VS Benign ovary 10 sec 

2 VS Benign ovary 10 sec 

3 HS Normal ovary with corpus luteal 
cyst 

15 min 

4 HS Normal 1 min 

3 Salivary 
Gland, 

FFPE, H&E 

1 VS Benign salivary glands with mild 
chronic inflammation 

10 sec 

2 VS Benign parotid tissue 5 sec 

3 HS Normal salivary gland 1 min 

4 HS No histopathologic abnormality 1 min 

4 Salivary 
Gland, 
Frozen 
section, 
H&E 

1 HS Pleomorphic adenoma 5 sec 

2 HS Pleomorphic adenoma 5 sec 

3 VS Pleomorphic adenoma 3 min 

4 VS Pleomorphic adenoma 2 sec 

5 Salivary 
Gland, 

FFPE, H&E  

1 HS Mucoepidermoid carcinoma, low 
grade 

5 sec 

2 HS Salivary duct carcinoma 5 sec 

3 VS Mucoepidermoid carcinoma 10 min 

4 VS Mucoepidermoid Carcinoma 10 sec 

6 Breast, 
FFPE, H&E 

1 VS Invasive ductal carcinoma and 
DCIS 

15 sec 

2 VS Ductal carcinoma 10 sec 

3 HS Invasive ductal carcinoma with 
DCIS 

2 min 

4 HS Invasive carcinoma 1 minute 

7 Skin, FFPE, 
H&E 

1 HS Malignant melanoma 30 sec 

2 HS melanoma 30 sec 

3 VS Melanoma 5 min 

4 VS Melanoma 1 min 

8 Prostate, 
FFPE, H&E 

1 HS Prostatic adenocarcinoma 3+4 1 min 

2 HS Prostatic adenocarcinoma 4+3 5 sec 

3 VS Prostatic adenocarcinoma, 
Gleason pattern 3+4 

5 min 

4 VS HG-PIN with cribiforming vs 
carcinoma  

5 min 

9 Liver, 
FFPE, 

Masson’s 
trichrome 

1 VS Benign liver with mild steatosis 10 sec 

2 VS Benign liver with steatosis 5 sec 

3 HS Hepatosteatosis, predominantly 
macrovesicular 

3 min 

4 HS Minimal steatosis, no fibrosis  5 min 

10 Liver, 
FFPE, 

Masson’s 
trichrome 

1 HS Benign liver with bridging fibrosis 10 sec 

2 HS Benign liver, bridging fibrosis 5 sec 

3 VS Moderate cirrhosis 1 min 

4 VS Mild portal inflammation, focal 
bridging fibrosis (Stage 2-3)  

5 minutes 
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11 Salivary 
Gland, 

FFPE, H&E  

1 VS Carcinoma 5 sec 

2 VS Intraductal ca 20 sec 

3 HS Poorly differentiated carcinoma 1 min 

4 HS Low-grade salivary gland 
neoplasm 

1 minute 

12 Salivary 
Gland, 

FFPE, H&E   

1 HS Adenocarcinoma 5 sec 

2 HS Salivary duct carcinoma 5 sec 

3 VS Salivary duct carcinoma 2 min 

4 VS Low-grade salivary gland 
neoplasm 

1 minute 

13 Thyroid, 
FFPE, H&E  

1 VS Papillary thyroid carcinoma, tall 
cell type 

10 sec 

2 VS Papillary thyroid ca, tall cell 20 sec 

3 HS Papillary thyroid carcinoma, tall 
cell variant 

5 min 

4 HS PTC 10 sec 

14 Thyroid, 
FFPE, H&E  

1 HS Papillary thyroid carcinoma 5 sec 

2 HS Medullary ca 5 sec 

3 VS Papillary thyroid carcinoma, 
oncocytic variant 

7 min 

4 VS PTC 10 sec 

15 Thyroid, 
FFPE, H&E  

1 VS Papillary thyroid carcinoma 5 sec 

2 VS Papillary thyroid ca 5 sec 

3 HS Papillary thyroid carcinoma 1 min 

4 HS PTC 10 sec 

 

Supplementary Table 1. Pathology validation study of virtual vs. histochemical staining. HS: 

histological staining; VS: virtual staining. 
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Tissue # 
Pathologist 1 Pathologist 2 Pathologist 3 Average 

ND CD SQ ND CD SQ ND CD SQ ND CD SQ 

1 – HS 3 3 3 2 2 4 2 2 2 2.33 2.33 3.00 

1 - VS 2 3 3 3 3 4 3 3 3 2.67 3.00 3.33 

2 – HS 2 4 4 3 3 2 1 1 2 2.00 2.67 2.67 

2 - VS 2 3 4 3 3 3 1 2 3 2.00 2.67 3.33 

3 – HS 2 3 3 3 3 2 2 3 4 2.33 3.00 3.00 

3 - VS 2 3 3 3 3 3 1 2 3 2.00 2.67 3.00 

4 – HS 3 3 3 2 2 2 1 2 3 2.00 2.33 2.67 

4 - VS 3 3 3 2 2 3 1 2 2 2.00 2.33 2.67 

5 – HS 3 3 2 3 3 1 3 3 3 3.00 3.00 2.00 

5 - VS 3 3 2 4 3 4 3 3 4 3.33 3.00 3.33 

6 – HS 2 3 3 3 3 1 2 2 2 2.33 2.67 2.00 

6 - VS 2 2 3 2 2 2 2 2 2 2.00 2.00 2.33 

7 – HS 3 3 2 3 2 2 3 3 3 3.00 2.67 2.33 

7 - VS 3 3 2 4 3 1 3 2 3 3.33 2.67 2.00 

Supplementary Table 2. Blind evaluation of virtual and histological Jones staining of kidney tissue 

sections. Evaluation of nuclear detail (ND), cytoplasmic detail (CD) and overall stain quality (SQ) score. 4 

= perfect, 3 = very good, 2 = acceptable, 1 = unacceptable. The winner (and tied) average scores are 

bolded. HS: histological staining; VS: virtual staining. 
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Virtual staining network 
# of training 
patches 

# of epochs Training time (hours) 

Salivary gland (H&E) 2768 26 13.046 

Thyroid (H&E) 8336 8 12.445 

Thyroid (H&E, transfer learning) 8336 4 7.107 

Liver (Masson’s Trichrome) 3840 26 18.384 

Lung (Masson’s Trichrome) 9162 10 16.602 

Kidney (Jones stain) 4905 8 7.16 

Liver (Masson’s Trichrome, WSI) 211475 3 39.64 

Kidney (Jones stain, WSI) 59344 14 57.05 

Ovary 1 4738 84 37.21 

Ovary 2 11123 14 37.41 

Salivary Gland - 1 4417 65 24.61 

Salivary Gland – 2 2652 90 23.9 

Salivary Gland – 3 13262 24 30.58 

Breast 67188 4 24.85 

Skin 2566 124 27.02 

Skin (DAPI+CY5) 2566 124 29.62 

Prostate 677 472 30.27 

Supplementary Table 3. Training details for different tissue/stain combinations.  
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