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Bright-field holography: cross-modality
deep learning enables snapshot 3D
imaging with bright-field contrast using a
single hologram
Yichen Wu 1,2,3, Yilin Luo1,2,3, Gunvant Chaudhari4, Yair Rivenson1,2,3, Ayfer Calis1,2,3, Kevin de Haan 1,2,3 and
Aydogan Ozcan 1,2,3,4

Abstract
Digital holographic microscopy enables the 3D reconstruction of volumetric samples from a single-snapshot
hologram. However, unlike a conventional bright-field microscopy image, the quality of holographic reconstructions is
compromised by interference fringes as a result of twin images and out-of-plane objects. Here, we demonstrate that
cross-modality deep learning using a generative adversarial network (GAN) can endow holographic images of a
sample volume with bright-field microscopy contrast, combining the volumetric imaging capability of holography
with the speckle- and artifact-free image contrast of incoherent bright-field microscopy. We illustrate the performance
of this “bright-field holography” method through the snapshot imaging of bioaerosols distributed in 3D, matching the
artifact-free image contrast and axial sectioning performance of a high-NA bright-field microscope. This data-driven
deep-learning-based imaging method bridges the contrast gap between coherent and incoherent imaging, and
enables the snapshot 3D imaging of objects with bright-field contrast from a single hologram, benefiting from the
wave-propagation framework of holography.

Digital holographic microscopy encodes the volumetric
information of a sample into a single 2D diffraction
pattern. Thus, digital holographic microscopy enables
the reconstruction of volumetric samples from a
single-hologram measurement without any mechanical
scanning1–6. However, for most practical applications,
holographic images cannot match the speckle- and
artifact-free image contrast of incoherent bright-field
microscopy. Some of these holographic artifacts include
twin-image and self-interference artifacts, which are

related to missing phase information; additional artifacts
appear due to the long coherence length/diameter of
the illumination source, which creates speckle and back-
ground interference from out-of-focus or unwanted
objects in the optical path. Stated differently, since the
point-spread function (PSF) of a coherent imaging system
has nondiminishing ripples along both the lateral and
axial directions, out-of-focus objects will create inter-
ference fringes overlapping with the in-focus objects in
the holographic reconstruction, which degrades the image
contrast when reconstructing volumetric samples. These
issues can be partially mitigated by using different
holographic reconstruction methods and sometimes also
by using additional measurements4,7–14.
Here, we use a deep neural network to perform cross-

modality image transformation from a digitally back-
propagated hologram corresponding to a given depth
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within the sample volume into an image that is equivalent
to a bright-field microscopy image acquired at the same
depth (Fig. 1). Since a single hologram is used to digitally
propagate image information to different sections of the
sample to virtually generate a bright-field equivalent
image of each section, this approach combines the snap-
shot volumetric imaging capability of digital holography
with the speckle- and artifact-free image contrast and
axial sectioning performance of bright-field microscopy.
Following its training, the deep neural network has
learned the statistical image transformation between a
holographic imaging system and an incoherent bright-
field microscope; therefore, we refer to this approach as
“Bright-field Holography”. In some sense, deep learning
brings together the best of both worlds by fusing the
advantages of both the holographic and incoherent
bright-field imaging modalities.
We used a generative adversarial network (GAN)15–17

to perform the holographic to bright-field image trans-
formation (Supplementary Fig. S1). The network’s train-
ing dataset was made up of images from pollen samples
captured on a flat substrate using a sticky coverslip18. The
coverslip was scanned in 3D using a bright-field micro-
scope (Olympus IX83, 20 × 0.75 NA objective lens), and a
stack of 121 images with an axial spacing of 0.5 µm was
captured for each region of interest to constitute the
ground-truth labels. Next, using a lensless holographic
microscope18, in-line holograms were acquired corre-
sponding to the same fields of view (FOVs) scanned with
the bright-field microscope. By progressively applying a
series of image-registration steps from the global coordi-
nates to the local coordinates of each image patch, the
backpropagated holograms at different depths were pre-
cisely matched to the bright-field microscopy ground-

truth image stack in both the lateral and axial directions
(see Supplementary Fig. S2 and the Supplementary
Information for details). These registered pairs of back-
propagated holograms and bright-field microscopy ima-
ges were then cropped into ~6000 patches of 256 × 256
pixels for training.
It should be emphasized that these steps need to be

performed only once for the training of the GAN archi-
tecture, after which the generator network can blindly
take a new hologram that it has never seen before and
infer the corresponding bright-field image at any arbitrary
depth within the sample volume in nearly real time (e.g.,
the inference time for a FOV of ~0.15 mm2 is ~0.1 s using
a single Nvidia 1080 Ti GPU). Figure 2 presents an
example of these blind-testing results for several pollen
mixtures, where the backpropagated holograms are
compromised by twin-image and self-interference arti-
facts, as well as speckle and out-of-focus interference. On
the other hand, the generator network’s output image for
each depth clearly shows improved contrast and is free of
the artifacts and noise features observed in the back-
propagated holograms. These results match well with the
corresponding bright-field images (the ground truth) at
the same sample depths.
In addition, the deep network correctly colorizes the

output images based on the morphological features in the
complex-valued input image, using an input hologram
acquired with a monochrome sensor (Sony IMX219PQ,
1.12-µm pixel size) and narrowband illumination (λ=
850 nm, bandwidth ~1 nm), such that the output matches
the color distribution of the bright-field ground-truth
image. This can be seen in Fig. 2 for the yellow ragweed
pollens and oak tree pollens, as well as the white Bermuda
grass pollens. Furthermore, the root mean square error,

Bright-field microscopeVolumetric sample

Holographic microscope Back-propagated holograms (~ 1 s) Network output (N = 1)

Scanned image stack (N = 101)Mechanical scan (~ 60 s)

Fig. 1 Bright-field holography. High-contrast bright-field imaging of a volumetric sample requires mechanical axial scanning and the acquisition of
many successive images (e.g., N= 101 here spans ± 500 µm in depth). Bright-field holography, enabled by deep learning, fuses the volumetric
imaging capability of holography with the speckle- and artifact-free image contrast of incoherent bright-field microscopy to generate bright-field
equivalent images of a volume from a single hologram (N= 1 image)
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structural similarity index19, and universal image quality
index20 were used to quantitatively demonstrate the close
resemblance of the network inferences to the bright-field
microscopy ground-truth images, as shown in Fig. 2. In
addition, we quantitatively compared the performance of
several variations of this GAN framework, including one
without adversarial loss, one with spectral normalization
added to the discriminator, and one with an
encoder–decoder structure; the results of these compar-
isons revealed that these GAN variations demonstrate
similar inference performance (see Supplementary
Table S1 and Fig. S3 for details).
Although our deep network was trained only with pol-

len mixtures captured on 2D substrates, it can success-
fully perform inference for the volumetric imaging of
samples at different depths. Figure 3a, b illustrates a
pollen mixture captured in 3D in a bulk volume of poly-
dimethylsiloxane (PDMS) with a thickness of ~800 µm. A
single in-line hologram of this sample (Fig. 3c) was cap-
tured and numerically backpropagated to different depths
within the sample volume. By feeding these back-
propagated holographic images into our trained network,
we obtained output images (Fig. 3) that are free of speckle
artifacts and various other interferometric artifacts
observed in holography (e.g., twin images, fringes related
to out-of-focus objects, and self-interference). These
images match the contrast and depth of field (DOF) of
bright-field microscopy images that were mechanically
focused onto the same plane within the 3D sample (also
see Movie 1 for details).
For much denser or spatially connected 3D samples, the

network’s inference process may generate suboptimal
results because our training image data were acquired

from uniform and relatively sparse samples (bioaerosols),
and in the case of a spatially dense or connected sample,
the reference wave in the hologram formation might
become distorted because of the in-line operation,
deviating from a plane wave due to dense scattering and
possible intra-sample occlusion. For applications related
to, e.g., aerosol imaging or cytometry, this phenomenon
does not pose a limitation; for other applications that
require the imaging of denser samples in 3D, the inference
performance of our approach can be improved by training
the network with dense and spatially connected samples.
It is also worth noting that the snapshot volumetric

reconstruction performance presented in this work can-
not be obtained through standard coherent denoising or
phase-recovery methods. To provide an example of this,
in Supplementary Fig. S4, we compare the results of an
object-support-based phase-recovery method7,8 applied to
the same sample hologram that was backpropagated to
different heights. As shown in this figure, the iterative
phase-recovery method indeed improved the contrast-to-
noise ratio (CNR)21 of the backpropagated holographic
images from ~2 to ~3, especially suppressing some of the
twin-image-related artifacts. However, the out-of-focus
fringes created by the 3D object were not adequately
sectioned out and remained as reconstruction artifacts
even after iterative phase recovery. In contrast, the deep
neural network output transformed the defocused
coherent fringes into diminished incoherent blobs,
achieving a high CNR of >15–25, very well matching the
ground-truth images captured by the high-NA bright-field
microscope, as shown in Supplementary Fig. S4.
To further quantify this cross-modality transformation

performance, we imaged samples containing 1-μm
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Fig. 2 Imaging of a pollen mixture captured on a substrate. Each input hologram is shown with a larger FOV to better illustrate the fringes. Each
network output image is quantitatively compared against the corresponding bright-field microscopy ground-truth image using the root mean
square error (RMSE), the structural similarity index (SSIM), and the universal image quality index (UIQI)
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polystyrene beads and trained another GAN following the
same method (see the Supplementary Information for
details). Next, we blindly tested a sample containing 245
individual/isolated microbeads and measured their 3D
PSF distributions before and after GAN inference (Fig. 4).
An example of this comparison is shown in Fig. 4a, where
the backpropagated holograms contain significant inter-
ference artifacts that were removed by the GAN, yielding
images that match the high contrast of the mechanically
scanned bright-field microscopy ground-truth images.
Figure 4b shows the distributions of the lateral and axial
full-width-at-half-maximum (FWHM) values corre-
sponding to the 3D PSFs obtained using these 245
microbeads. Due to the interference artifacts and low
contrast, the FWHM values of the PSFs of the back-
propagated hologram (input) are randomly distributed in
the lateral direction, with a median FWHM of 2.7176 µm.
In contrast, the lateral FWHM values of the PSFs of the
GAN output images are monodisperse, with a median
FWHM of 1.8254 µm, matching that of the scanning
bright-field microscopy ground truth (1.8719 µm). Due to
the longer coherence length, the PSFs of the back-
propagated hologram (input) are longer in the axial
direction, with a median FWHM of 12.9218 µm, com-
pared with the scanning bright-field microscopy ground
truth, with a median FWHM of 9.8003 µm. The network
inference results show a significantly narrower PSF

distribution in the axial direction, with a median FWHM
of 9.7978 µm, very well matching that of the ground truth
obtained with the scanning bright-field microscope
(Fig. 4b). These results and the quantitative agreement
between our network output images and the ground-truth
images obtained with a scanning bright-field microscope
further support the validity of our presented approach.
This deep-learning-enabled cross-modality image

transformation between holography and bright-field ima-
ging can potentially eliminate the need to mechanically
scan a volumetric sample. It benefits from the digital wave-
propagation framework of holography to virtually scan
throughout the sample volume, and each one of these
digitally propagated fields is transformed into bright-field
microscopy equivalent images that exhibit the spatial and
color contrast, as well as the shallow DOF expected from
incoherent microscopy. In this regard, our deep-learning-
enabled hologram transformation network achieves the
best of both worlds by fusing the volumetric digital ima-
ging capability of holography with the speckle- and
artifact-free image contrast of bright-field microscopy.
This capability can be especially useful for the rapid
volumetric imaging of samples flowing within a liquid22.
This approach can also be applied to other holographic
microscopy and/or incoherent microscopy modalities to
establish a statistical image transformation from one mode
of coherent imaging into another incoherent microscopy
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Fig. 3 Use of cross-modality deep learning in bright-field holography to fuse the volumetric imaging capability of holography with the
speckle- and artifact-free image contrast performance of incoherent bright-field microscopy. The pollen sample is dispersed in 3D
throughout a bulk volume of PDMS (thickness ~800 µm). BP: digital backpropagation. Also see Movie 1
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modality. Further highlighting the importance of data-
driven cross-modality image transformations, recent work
has demonstrated various other important applications of
this general framework, including image superresolution23

and label-free virtual staining of pathology samples24.
Different from these earlier contributions, which trans-
form a 2D sample image into another 2D image, this work
enables the inference of a whole 3D sample volume from a
single-snapshot hologram, thus reintroducing coherent
holographic imaging as a powerful alternative to high-NA
bright-field microscopy for the task of high-throughput
volumetric imaging, and therefore represents a unique
contribution to the field of coherent microscopy.

Methods
Digital holographic image acquisition
The holographic images were acquired using a custo-

mized lens-free imaging system (see Supplementary

Fig. S5 for details). The system consisted of a vertical-
cavity surface-emitting laser diode (λ= 850 nm) for illu-
mination, a complementary metal–oxide–semiconductor
image sensor (Sony IMX219PQ, 1.12-µm pixel size), and a
Raspberry Pi 2 for system control. This near-infrared
illumination was chosen to enable the use of all four Bayer
channels of the color image sensor chip to improve the
pixel-size-limited resolution of the hologram that could
be achieved in a single snapshot. The sample was
mounted on a 3D-printed sample holder placed ~500 µm
above the image sensor surface. The illumination source
was placed ~8 cm above the sample plane without any
additional spatial or spectral filter.

Scanning bright-field microscopy image acquisition and
alignment
The bright-field microscopy images were captured by an

inverted scanning microscope (IX83, Olympus Life
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Science) using a 20 × 0.75 NA objective lens (UPLSA-
PO20X, Olympus Life Science). The microscope scanned
each sample at different lateral locations, and at each
location, an image stack of −30 to 30 µm with a 0.5-µm
step size was captured. After the capture of these bright-
field images, the microscopy image stack was aligned
using the ImageJ plugin StackReg25, which corrected the
rigid shift and rotation caused by the inaccuracy of the
microscope scanning stage.

Hologram backpropagation and autofocusing
The raw digital in-line hologram was balanced and

shade corrected by estimating the low-frequency shade of
each Bayer channel using a wavelet transform26. This
corrected hologram was digitally backpropagated to dif-
ferent planes (which matched the corresponding planes in
the bright-field microscopy image stack) using angular-
spectrum-based free-space backpropagation4,27. For this
purpose, 3× padding was used in the angular-spectrum
(Fourier) domain, which effectively interpolated the
hologram pixel size by 3×. To match the heights of the
backpropagated holograms and the corresponding bright-
field microscopy image stacks, the focal planes were
estimated and cross-registered as “zero” height, and the
relative axial propagation distance was determined to
match the axial scanning step size of the bright-field
microscope (0.5 µm). The digital hologram’s focal plane
was estimated using an edge sparsity-based holographic
autofocusing criterion28.

Network and training
The GAN implemented here consisted of a generator

network and a discriminator network, as shown in Sup-
plementary Fig. S1. The generator network employed a
variation of the original U-Net29 design with minor
modifications and additional residual connections30. The
discriminator network was a convolutional neural net-
work with six convolutional blocks and two fully con-
nected (linear) layers. The original training data consisted
of ~6000 image pairs (see Supplementary Table S2 for
details), which were augmented to 30,000 image pairs by
random rotation and flipping of the images. The valida-
tion data were not augmented. In each training iteration,
the generator network was updated six times using the
adaptive moment estimation (Adam) optimizer with a
learning rate of 10−4, whereas the discriminator network
was updated three times with a learning rate of 3 × 10−5.
The validation set was tested every 50 iterations, and the
best network was chosen to be the one with the lowest
mean absolute error loss on the validation set. The net-
work was built using an open-source deep-learning
package, TensorFlow31. The training and inference were
performed on a PC with a six-core 3.6-GHz CPU and 16
GB of RAM using an Nvidia GeForce GTX 1080 Ti GPU.

On average, the training process took ~90 h for ~50,000
iterations (equivalent to ~40 epochs). After training, the
network inference time was ~0.1 s for an image patch of
256 × 256 pixels (see the Supplementary Information for
details).
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