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Abstract—Optical machine learning offers advantages in 

terms of power efficiency, scalability and computation speed. 

Recently, an optical machine learning method based on 

Diffractive Deep Neural Networks (D2NNs) has been introduced 

to execute a function as the input light diffracts through passive 

layers, designed by deep learning using a computer. Here we 

introduce improvements to D2NNs by changing the training loss 

function and reducing the impact of vanishing gradients in the 

error back-propagation step. Using five phase-only diffractive 

layers, we numerically achieved a classification accuracy of 

97.18% and 89.13% for optical recognition of handwritten digits 

and fashion products, respectively; using both phase and 

amplitude modulation (complex-valued) at each layer, our 

inference performance improved to 97.81% and 89.32%, 

respectively. Furthermore, we report the integration of D2NNs 

with electronic neural networks to create hybrid-classifiers that 

significantly reduce the number of input pixels into an electronic 

network using an ultra-compact front-end D2NN with a layer-to-

layer distance of a few wavelengths, also reducing the complexity 

of the successive electronic network. Using a 5-layer phase-only 

D2NN jointly-optimized with a single fully-connected electronic 

layer, we achieved a classification accuracy of 98.71% and 

90.04% for the recognition of handwritten digits and fashion 

products, respectively. Moreover, the input to the electronic 

network was compressed by >7.8 times down to 10×10 pixels. 

Beyond creating low-power and high-frame rate machine 

learning platforms, D2NN-based hybrid neural networks will find 

applications in smart optical imager and sensor design.   
 

Index Terms—All-optical neural networks, Deep learning, 

Hybrid neural networks, Optical computing, Optical networks, 

Opto-electronic neural networks 

 

I. INTRODUCTION  
PTICS in machine learning has been widely explored due 

to its unique advantages, encompassing power efficiency, 

speed and scalability[1]–[3]. Some of the earlier work include 

optical implementations of various neural network 

architectures[4]–[10], with a recent resurgence[11]–[22], 
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following the availability of powerful new tools for applying 

deep neural networks[23], [24], which have redefined the 

state-of-the-art for a variety of machine learning tasks. In this 

line of work, we have recently introduced an optical machine 

learning framework, termed as Diffractive Deep Neural 

Network (D
2
NN)[15], where deep learning and error back-

propagation methods are used to design, using a computer, 

diffractive layers that collectively perform a desired task that 

the network is trained for. In this training phase of a D
2
NN, 

the transmission and/or reflection coefficients of the individual 

pixels (i.e., neurons) of each layer are optimized such that as 

the light diffracts from the input plane toward the output 

plane, it computes the task at hand. Once this training phase in 

a computer is complete, these passive layers can be physically 

fabricated and stacked together to form an all-optical network 

that executes the trained function without the use of any 

power, except for the illumination light and the output 

detectors.  

In our previous work, we experimentally demonstrated the 

success of D
2
NN framework at THz part of the 

electromagnetic spectrum and used a standard 3D-printer to 

fabricate and assemble together the designed D
2
NN 

layers[15]. In addition to demonstrating optical classifiers, we 

also demonstrated that the same D
2
NN framework can be used 

to design an imaging system by 3D-engineering of optical 

components using deep learning[15]. In these earlier results, 

we used coherent illumination and encoded the input 

information in phase or amplitude channels of different D
2
NN 

systems. Another important feature of D
2
NNs is that the axial 

spacing between the diffractive layers is very small, e.g., less 

than 50 wavelengths (λ)[15], which makes the entire design 

highly compact and flat.  

Our experimental demonstration of D
2
NNs was based on 

linear materials, without including the equivalent of a 

nonlinear activation function within the optical network; 

however, as detailed in [15], optical nonlinearities can also be 

incorporated into a D
2
NN using non-linear materials including 

e.g., crystals, polymers or semiconductors, to potentially 

improve its inference performance using nonlinear optical 

effects within diffractive layers. For such a nonlinear D
2
NN 

design, resonant nonlinear structures (based on e.g., 

plasmonics or metamaterials) tuned to the illumination 

wavelength could be important to lower the required intensity 

levels. Even using linear optical materials to create a D
2
NN, 

the optical network designed by deep learning shows “depth” 

advantage, i.e., a single diffractive layer does not possess the 

same degrees-of-freedom to achieve the same level of 

Analysis of Diffractive Optical Neural 

Networks and Their Integration with Electronic 

Neural Networks 

O
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classification accuracy, power efficiency and signal contrast at 

the output plane that multiple diffractive layers can 

collectively achieve for a given task. It is true that, for a linear 

diffractive optical network, the entire wave propagation and 

diffraction phenomena that happen between the input and 

output planes can be squeezed into a single matrix operation; 

however, this arbitrary mathematical operation defined by 

multiple learnable diffractive layers cannot be performed in 

general by a single diffractive layer placed between the same 

input and output planes. That is why, multiple diffractive 

layers forming a D
2
NN show the depth advantage, and 

statistically perform better compared to a single diffractive 

layer trained for the same classification task, and achieve 

improved accuracy as also discussed in the supplementary 

materials of [15]. 

Here, we present a detailed analysis of D
2
NN framework, 

covering different parameters of its design space, also 

investigating the advantages of using multiple diffractive 

layers, and provide significant improvements to its inference 

performance by changing the loss function involved in the 

training phase, and reducing the effect of vanishing gradients 

in the error back-propagation step through its layers. To 

provide examples of its improved inference performance, 

using a 5-layer D
2
NN design (Fig. 1), we optimized two 

different classifiers to recognize (1) hand-written digits, 0 

through 9, using the MNIST (Mixed National Institute of 

Standards and Technology) image dataset[25], and (2) various 

fashion products, including t-shirts, trousers, pullovers, 

dresses, coats, sandals, shirts, sneakers, bags, and ankle boots 

(using the Fashion MNIST image dataset[26]). These 5-layer 

phase-only all-optical diffractive networks achieved a 

numerical blind testing accuracy of 97.18% and 89.13% for 

hand-written digit classification and fashion product 

classification, respectively. Using the same D
2
NN design, this 

time with both the phase and the amplitude of each neuron’s 

transmission as learnable parameters (which we refer to as 

complex-valued D
2
NN design), we improved the inference 

performance to 97.81% and 89.32% for hand-written digit 

classification and fashion product classification, respectively. 

We also provide comparative analysis of D
2
NN performance 

as a function of our design parameters, covering the impact of 

the number of layers, layer-to-layer connectivity and loss 

function used in the training phase on the overall classification 

accuracy, output signal contrast and power efficiency of D
2
NN 

framework. 

Furthermore, we report the integration of D
2
NNs with 

electronic neural networks to create hybrid machine learning 

and computer vision systems. Such a hybrid system utilizes a 

D
2
NN at its front-end, before the electronic neural network, 

and if it is jointly optimized (i.e., optical and electronic as a 

monolithic system design), it presents several important 

advantages. This D
2
NN-based hybrid approach can all-

optically compress the needed information by the electronic 

network using a D
2
NN at its front-end, which can then 

significantly reduce the number of pixels (detectors) that 

needs to be digitized for an electronic neural network to act 

on. This would further improve the frame-rate of the entire 

system, also reducing the complexity of the electronic network 

and its power consumption. This D
2
NN-based hybrid design 

concept can potentially create ubiquitous and low-power 

machine learning systems that can be realized using relatively 

simple and compact imagers, with e.g., a few tens to hundreds 

of pixels at the opto-electronic sensor plane, preceded by an 

ultra-compact all-optical diffractive network with a layer-to-

layer distance of a few wavelengths, which presents important 

advantages compared to some other hybrid network 

configurations involving e.g., a 4-f configuration[16] to 

perform a convolution operation before an electronic neural 

network.  

To better highlight these unique opportunities enabled by 

D
2
NN-based hybrid network design, we conducted an analysis 

to reveal that a 5-layer phase-only (or complex-valued) D
2
NN 

that is jointly-optimized with a single fully-connected layer, 

following the optical diffractive layers, achieves a blind 

classification accuracy of 98.71% (or 98.29%) and 90.04% (or 

89.96%) for the recognition of hand-written digits and fashion 

products, respectively. In these results, the input image to the 

electronic network (created by diffraction through the jointly-

optimized front-end D
2
NN) was also compressed by more 

than 7.8 times, down to 10×10 pixels, which confirms that a 

D
2
NN-based hybrid system can perform competitive 

classification performance even using a relatively simple and 

one-layer electronic network that uses significantly reduced 

number of input pixels.  

In addition to potentially enabling ubiquitous, low-power 

and high-frame rate machine learning and computer vision 

platforms, these hybrid neural networks which utilize D
2
NN-

based all-optical processing at its front-end will find other 

applications in the design of compact and ultra-thin optical 

imaging and sensing systems by merging fabricated D
2
NNs 

with opto-electronic sensor arrays. This will create intelligent 

systems benefiting from various CMOS/CCD imager chips 

and focal plane arrays at different parts of the electromagnetic 

spectrum, merging the benefits of all-optical computation with 

simple and low-power electronic neural networks that can 

work with lower dimensional data, all-optically generated at 

the output of a jointly-optimized D
2
NN design. 

II. RESULTS AND DISCUSSION 

A. Mitigating vanishing gradients in optical neural network 

training  

In D
2
NN framework, each neuron has a complex 

transmission coefficient, i.e., 

������ , �� , ��	 = ������ , �� , ��	��
�������� , �� , ��		 , where �  and � 
denote the neuron and diffractive layer number, respectively. 

In [15], ��� and ���  are represented during the network training 

as functions of two latent variables, � and �, defined in the 

following form: 

 ��� = ������������,                                                   (1a) 

     ��� = 2� × ������������,            (1b) 

where, ���������	 = ��
�� !,  is a non-linear, differentiable 

function. In fact, the trainable parameters of a D
2
NN are these 
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latent variables, ��� and ��� , and eq. (1) defines how they are 

related to the physical parameters (��� and ���) of a diffractive 

optical network. Note that in eq. (1), the sigmoid acts on an 

auxiliary variable rather than the information flowing through 

the network. Being a bounded analytical function, sigmoid 

confines the values of ��� and ��� inside the intervals �0,1	 and 

�0,2�	 , respectively. On the other hand, it is known that 

sigmoid function has vanishing gradient problem[27] due to 

its relatively flat tails, and when it is used in the context 

depicted in eq. (1), it can prevent the network to utilize the 

available dynamic range considering both the amplitude and 

phase terms of each neuron. To mitigate these issues, in this 

work we replaced eq. (1) as follows: 

��� = $�%&'()*+
,-./0)123$�%&�()*�4	,          (2a) 

��� = 2� × ��� ,            (2b) 

where ReLU refers to Rectified Linear Unit, and M is the 

number of neurons per layer.  Based on eq. (2), the phase term 

of each neuron, ��� , becomes unbounded, but since the 

��
�������� , �� , ��		  term is periodic (and bounded) with 

respect to ���, the error back-propagation algorithm is able to 

find a solution for the task in hand. The amplitude term, ���, on 

the other hand, is kept within the interval �0,1	 by using an 

explicit normalization step shown in eq. (2).  

To exemplify the impact of this change alone in the training 

of an all-optical D
2
NN design, for a 5-layer, phase-only 

(complex-valued) diffractive optical network with an axial 

distance of 40×λ  between its layers, the classification 

accuracy for Fashion-MNIST dataset increased from reported 

81.13% (86.33%) to 85.40% (86.68%) following the above 

discussed changes in the parameterized formulation of the 

neuron transmission values compared to earlier results in 

[15].We will report further improvements in the inference 

performance of an all-optical D
2
NN after the introduction of 

the loss function related changes into the training phase, which 

is discussed next. 

We should note that although the results of this paper 

follow the formulation in eq. (2), it is also possible to 

parameterize complex modulation terms over the real and 

imaginary parts as in [28] and a formulation based on the 

Wirtinger derivatives can be used for error backpropagation. 

B. Effect of the learning loss function on the performance of 

all-optical diffractive neural networks 

Earlier work on D
2
NNs[15] reports the use of mean squared 

error (MSE) loss. An alternative loss function that can be used 

for the design of a D
2
NN is the cross-entropy loss[29], [30] 

(see the Methods section). Since minimizing the cross-entropy 

loss is equivalent to minimizing the negative log-likelihood 

(or maximizing the likelihood) of an underlying probability 

distribution, it is in general more suitable for classification 

tasks. Note that, cross-entropy acts on probability measures, 

which take values in the interval �0,1	 and the signals coming 

from the detectors (one for each class) at the output layer of a 

D
2
NN are not necessarily in this range; therefore, in the 

training phase, a softmax layer is introduced to be able to use 

the cross-entropy loss. It is important to note that although 

softmax is used during the training process of a D
2
NN, once 

the diffractive design converges and is fixed, the class 

assignment at the output plane of a D
2
NN is still based solely 

on the maximum optical signal detected at the output plane, 

where there is one detector assigned for each class of the input 

data (see Figs. 1(a), 1(f)). 

When we combine D
2
NN training related changes reported 

in the earlier sub-section on the parametrization of neuron 

modulation (eq. (2)), with the cross-entropy loss outlined 

above, a significant improvement in the classification 

performance of an all-optical diffractive neural network is 

achieved. For example, for the case of a 5-layer, phase-only 

D
2
NN with 40×λ  axial distance between the layers, the 

classification accuracy for MNIST dataset increased from 

91.75% to 97.18%, which further increased to 97.81% using 

complex-valued modulation, treating the phase and amplitude 

coefficients of each neuron as learnable parameters. The 

training convergence plots and the confusion matrices 

corresponding to these results are also reported in Figs. 2(a) 

and 2(c), for phase-only and complex-valued modulation 

cases, respectively. Similarly, for Fashion-MNIST dataset, we 

improved the blind testing classification accuracy of a 5-layer 

phase-only (complex-valued) D
2
NN from 81.13% (86.33%) to 

89.13% (89.32%), showing a similar level of advancement as 

in the MNIST results. Figs. 3(a) and 3(c) also report the 

training convergence plots and the confusion matrices for 

these improved Fashion-MNIST inference results, for phase-

only and complex-valued modulation cases, respectively. As a 

comparison point, a fully-electronic deep neural network such 

as ResNet-50[31] (with >25 Million learnable parameters) 

achieves 99.51% and 93.23% for MNIST and Fashion-MNIST 

datasets, respectively, which are superior to our 5-layer all-

optical D
2
NN inference results (i.e., 97.81% and 89.32% for 

MNIST and Fashion-MNIST datasets, respectively), which in 

total used 0.8 million learnable parameters, covering the phase 

and amplitude values of the neurons at 5 successive diffractive 

layers. 

All these results demonstrate that the D
2
NN framework 

using linear optical materials can already achieve a decent 

classification performance, also highlighting the importance of 

future research on the integration of optical nonlinearities into 

the layers of a D
2
NN, using e.g., plasmonics, metamaterials or 

other nonlinear optical materials (see the supplementary 

information of [15]), in order to come closer to the 

performance of state-of-the-art digital deep neural networks. 

C. Performance trade-offs in D
2
NN design 

Despite the significant increase observed in the blind testing 

accuracy of D
2
NNs, the use of softmax-cross-entropy (SCE) 

loss function in the context of all-optical networks also 

presents some trade-offs in terms of practical system 

parameters. MSE loss function operates based on pixel-by-

pixel comparison of a user-designed output distribution with 

the output optical intensity pattern, after the input light 

interacts with the diffractive layers (see e.g., Figs. 1(d) and 

1(i)). On the other hand, SCE loss function is much less 
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restrictive for the spatial distribution or the uniformity of the 

output intensity at a given detector behind the diffractive 

layers (see e.g., Figs. 1(e) and 1(j)); therefore, it presents 

additional degrees-of-freedom and redundancy for the 

diffractive network to improve its inference accuracy for a 

given machine learning task, as reported in the earlier sub-

section.     

This performance improvement with the use of SCE loss 

function in a diffractive neural network design comes at the 

expense of some compromises in terms of the expected 

diffracted power efficiency and signal contrast at the network 

output. To shed more light on this trade-off, we define the 

power efficiency of a D
2
NN as the percentage of the optical 

signal detected at the target label detector	�6%	 corresponding 

to the correct data class with respect to the total optical signal 

at the output plane of the optical network �7	. Fig. 4(b) and 

Fig. 4(e) show the power efficiency comparison as a function 

of the number of diffractive layers (corresponding to 1, 3 and 

5-layer phase-only D
2
NN designs) for MNIST and Fashion-

MNIST datasets, respectively. The power efficiency values in 

these graphs were computed as the ratio of the mean values of 

6%  and 7 for the test samples that were correctly classified by 

the corresponding D
2
NN designs (refer to Figs. 4(a) and 4(d) 

for the classification accuracy of each design). These results 

clearly indicate that increasing the number of diffractive layers 

has significant positive impact on the optical efficiency of a 

D
2
NN, regardless of the loss function choice. The maximum 

efficiency that a 5-layer phase-only D
2
NN design based on the 

SCE loss function can achieve is 1.98% for MNIST and 

0.56% for Fashion-MNIST datasets, which are significantly 

lower compared to the efficiency values that diffractive 

networks designed with MSE loss function can achieve, i.e., 

25.07% for MNIST and 26.00% for Fashion-MNIST datasets 

(see Figs. 4(b) and 4(e)). Stated differently, MSE loss function 

based D
2
NNs are in general significantly more power efficient 

all-optical machine learning systems. 

Next we analyzed the signal contrast of diffractive neural 

networks, which we defined as the difference between the 

optical signal captured by the target detector �6%	 
corresponding to the correct data class and the maximum 

signal detected by the rest of the detectors (i.e., the strongest 

competitor �689	  detector for each test sample), normalized 

with respect to the total optical signal at the output plane �7	. 
The results of our signal contrast analysis are reported in Fig. 

4(c) and Fig. 4(f) for MNIST and Fashion-MNIST datasets, 

respectively, which reveal that D
2
NNs designed with an MSE 

loss function keep a strong margin between the target detector 

�6%	  and the strongest competitor detector (among the rest of 

the detectors) at the output plane of the all-optical network. 

The minimum mean signal contrast value observed for an 

MSE-based D
2
NN design was for a 1-Layer, phase-only 

diffractive design, showing a mean signal contrast of 2.58% 

and 1.37% for MNIST and Fashion-MNIST datasets, 

respectively. Changing the loss function to SCE lowers the 

overall signal contrast of diffractive neural networks as shown 

in Figs. 4(c) and 4(f). 

Comparing the performances of MSE-based and SCE-based 

D
2
NN designs in terms of classification accuracy, power 

efficiency and signal contrast, as depicted in Fig. 4, we 

identify two opposite design strategies in diffractive all-optical 

neural networks. MSE, being a strict loss function acting in 

the physical space (e.g., Figs. 1(d) and 1(i)), promotes high 

signal contrast and power efficiency of the diffractive system, 

while SCE, being much less restrictive in its output light 

distribution (e.g., Figs. 1(e) and 1(j)), enjoys more degrees-of-

freedom to improve its inference performance for getting 

better classification accuracy, at the cost of a reduced overall 

power efficiency and signal contrast at its output plane, which 

increases the systems’ vulnerability for opto-electronic 

detection noise. In addition to the noise at the detectors, 

mechanical misalignment in both the axial and lateral 

directions might cause inference discrepancy between the final 

network model and its physical implementation. One way to 

mitigate this alignment issue is to follow the approach in Ref. 

[15] where the neuron size was chosen to be >3-4 times larger 

than the available fabrication resolution. Recently developed 

micro- and nano-fabrication techniques, such as laser 

lithography based on two-photon polymerization [32], emerge 

as promising candidates towards monolithic fabrication of 

complicated volumetric structures, which might help to 

minimize the alignment challenges in diffractive optical 

networks. Yet, another method of increasing the robustness 

against mechanical fabrication and related alignment errors is 

to model and include these error sources as part of the forward 

model during the numerical design phase, which might create 

diffractive models that are more tolerant of such errors.     

  

D. Advantages of multiple diffractive layers in D
2
NN 

framework 

As demonstrated in Fig. 4, multiple diffractive layers that 

collectively operate within a D
2
NN design present additional 

degrees-of-freedom compared to a single diffractive layer to 

achieve better classification accuracy, as well as improved 

diffraction efficiency and signal contrast at the output plane of 

the network; the latter two are especially important for 

experimental implementations of all-optical diffractive 

networks as they dictate the required illumination power levels 

as well as signal-to-noise ratio related error rates for all-optical 

classification tasks. Stated differently, D
2
NN framework, even 

when it is composed of linear optical materials, shows depth 

advantage because an increase in the number of diffractive 

layers (1) improves its statistical inference accuracy (see Figs. 

4(a) and 4(d)), and (2) improves its overall power efficiency 

and the signal contrast at the correct output detector with 

respect to the detectors assigned to other classes (see Figs. 

4(b), (c), (e), (f)). Therefore, for a given input illumination 

power and detector signal-to-noise ratio, the overall error rate 

of the all-optical network decreases as the number of 

diffractive layers increase. All these highlight the depth 

feature of a D
2
NN. 

This is not in contradiction with the fact that, for an all-

optical D
2
NN that is made of linear optical materials, the 
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entire diffraction phenomenon that happens between the input 

and output planes can be squeezed into a single matrix 

operation (in reality, every material exhibits some volumetric 

and surface nonlinearities, and what we mean here by a linear 

optical material is that these effects are negligible). In fact, 

such an arbitrary mathematical operation defined by multiple 

learnable diffractive layers cannot be performed in general by 

a single diffractive layer placed between the same input and 

output planes; additional optical components/layers would be 

needed to all-optically perform an arbitrary mathematical 

operation that multiple learnable diffractive layers can in 

general perform. Our D
2
NN framework creates a unique 

opportunity to use deep learning principles to design multiple 

diffractive layers, within a very tight layer-to-layer spacing of 

less than 50×λ, that collectively function as an all-optical 

classifier, and this framework will further benefit from 

nonlinear optical materials[15] and resonant optical structures 

to further enhance its inference performance. 

In summary, the “depth” is a feature/property of a neural 

network, which means the network gets in general better at its 

inference and generalization performance with more layers. 

The mathematical origins of the depth feature for standard 

electronic neural networks relate to nonlinear activation 

function of the neurons. But this is not the case for a 

diffractive optical network since it is a different type of a 

network, not following the same architecture or the same 

mathematical formalism of an electronic neural network.  

E. Connectivity in diffractive neural networks 

In a D
2
NN design, the layer-to-layer connectivity of the 

optical network is controlled by several parameters: the axial 

distance between the layers �Δ;	, the illumination wavelength 

(λ), the size of each fabricated neuron and the width of the 

diffractive layers. In our numerical simulations, we used a 

neuron size of approximately 0.53×λ. In addition, the height 

and width of each diffractive layer was set to include 200	 ×
	200 = 40=  neurons per layer. In this arrangement, if the 

axial distance between the successive diffractive layers is set 

to be ~40×λ as in [15], then our D
2
NN design becomes fully-

connected. On the other hand, one can also design a much 

thinner and more compact diffractive network by reducing Δ; 

at the cost of limiting the connectivity between the diffractive 

layers. To evaluate the impact of this reduction in network 

connectivity on the inference performance of a diffractive 

neural network, we tested the performance of our D
2
NN 

framework using Δ; = 4×λ	, i.e., 10-fold thinner compared to 

our earlier discussed diffractive networks. With this partial 

connectivity between the diffractive layers, the blind testing 

accuracy for a 5-layer, phase-only D
2
NN decreased from 

97.18% (Δ; = 40×λ ) to 94.12% (Δ; = 4×λ ) for MNIST 

dataset (see Figs. 2(a) and 2(b), respectively). However, when 

the optical neural network with Δ; = 4×λ was relaxed from 

phase-only modulation constraint to full complex modulation, 

the classification accuracy increased to 96.01% (Fig. 2(d)), 

partially compensating for the lack of full-connectivity. 

Similarly, for Fashion-MNIST dataset, the same compact 

architecture with Δ; = 4×λ  provided accuracy values of 

85.98% and 88.54% for phase-only and complex-valued 

modulation schemes, as shown in Figs. 3(b) and 3(d), 

respectively, demonstrating the vital role of phase and 

amplitude modulation capability for partially-connected, 

thinner and more compact optical networks (see the all-optical 

part of Table A2 in Appendix A).  

F. Integration of diffractive neural networks with electronic 

networks: Performance analysis of D
2
NN-based hybrid 

machine learning systems 

Integration of passive diffractive neural networks with 

electronic neural networks (see e.g., Figs. 5(a) and 5(c)) 

creates some unique opportunities to achieve pervasive and 

low-power machine learning systems that can be realized 

using simple and compact imagers, composed of e.g., a few 

tens to hundreds of pixels per opto-electronic sensor frame. To 

investigate these opportunities, for both MNIST (Table I) and 

Fashion-MNIST (Table II) datasets, we combined our D
2
NN 

framework (as an all-optical front-end, composed of 5 

diffractive layers) with 5 different electronic neural networks 

considering various sensor resolution scenarios as depicted in 

Table III. For the electronic neural networks that we 

considered in this analysis, in terms of complexity and the 

number of trainable parameters, a single fully-connected (FC) 

digital layer and a custom designed 4-layer convolutional 

neural network (CNN) (we refer to it as 2C2F-1 due to the use 

of 2 convolutional layers with a single feature and subsequent 

2 FC layers) represent the lower end of the spectrum (see 

Tables III-IV); on the other hand, LeNet[25], ResNet-50[31] 

and another 4-layer CNN[33] (we refer to it as 2C2F-64 

pointing to the use of 2 convolutional layers, subsequent 2 FC 

layers and 64 high-level features at its second convolutional 

layer) represent some of the well-established and proven deep 

neural networks with more advanced architectures and 

considerably higher number of trainable parameters (see Table 

III). All these digital networks used in our analysis, were 

individually placed after both a fully-connected (Δ; = 40×λ) 

and a partially-connected (Δ; = 4×λ) D
2
NN design and the 

entire hybrid system in each case was jointly optimized at the 

second stage of the hybrid system training procedure detailed 

in the Methods section (see Appendix A, Fig. A1).  

Among the all-optical D
2
NN-based classifiers presented in 

the previous sections, the fully-connected ( Δ; = 40×λ ) 

complex modulation D
2
NN designs have the highest 

classification accuracy values, while the partially-connected 

(Δ; = 4×λ) designs with phase-only restricted modulation are 

at the bottom of the performance curve (see the all-optical 

parts of Tables I and II). Comparing the all-optical 

classification results based on a simple max operation at the 

output detector plane against the first rows of the “Hybrid 

Systems” sub-tables reported in Tables I and II, we can 

conclude that the addition of a single FC layer (using 10 

detectors), jointly-optimized with the optical part, can make 

up for some of the limitations of the D
2
NN optical front-end 

design such as partial connectivity or restrictions on the 

neuron modulation function. 
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The 2
nd

, 3
rd

 and 4
th

 rows of the “Hybrid Systems” sub-tables 

reported in Tables I and II illustrate the classification 

performance of hybrid systems when the interface between the 

optical and electronic networks is a conventional focal plane 

array (such as a CCD or CMOS sensor array). The advantages 

of our D
2
NN framework become more apparent for these 

cases, compared against traditional systems that have a 

conventional imaging optics-based front-end (e.g., a standard 

camera interface) followed by a digital neural network for 

which the classification accuracies are also provided at the 

bottom of Tables I and II. From these comparisons reported in 

Tables I and II, we can deduce that having a jointly-trained 

optical and electronic network improves the inference 

performance of the overall system using low-end electronic 

neural networks as in the cases of a single FC network and 

2C2F-1 network; also see Table III for a comparison of the 

digital neural networks employed in this work in terms of (1) 

the number of trainable parameters, (2) FLOPs, and (3) energy 

consumption. For example, when the 2C2F-1 network is used 

as the digital processing unit following a perfect imaging 

optics, the classification accuracies for MNIST (Fashion-

MNIST) dataset are held as 89.73% (76.83%), 95.50% 

(81.76%) and 97.13% (87.11%) for 10×10, 25×25 and 50×50 

detector arrays, respectively. However, when the same 2C2F-1 

network architecture is enabled to jointly-evolve with e.g., the 

phase-only diffractive layers in a D
2
NN front-end during the 

training phase, blind testing accuracies for MNIST (Fashion-

MNIST) dataset significantly improve to 98.12% (89.55%), 

97.83% (89.87%) and 98.50% (89.42%) for 10×10, 25×25 and 

50 × 50 detector arrays, respectively. The classification 

performance improvement of the jointly-optimized hybrid 

system (diffractive + electronic network) over a perfect 

imager-based simple all-electronic neural network (e.g., 2C2F-

1) is especially significant for 10×10 detectors (i.e., ~8.4% and 

~12.7% for MNIST and Fashion-MNIST datasets, 

respectively). Similar performance gains are also achieved 

when single FC network is jointly-optimized with D
2
NN 

instead of a perfect imaging optics/camera interface, preceding 

the all-electronic network as detailed in Tables I and II. In 

fact, for some cases the classification performance of D
2
NN-

based hybrid systems, e.g. 5-layer, phase-only D
2
NN followed 

by a single FC layer using any of the 10×10, 25×25 and 50×50 

detectors arrays, shows a classification performance on par 

with a perfect imaging system that is followed by a more 

powerful, and energy demanding LeNet architecture (see 

Table III).  

Among the 3 different detector array arrangements that we 

investigated here, 10×10 detectors represent the case where 

the intensity on the opto-electronic sensor plane is severely 

undersampled. Therefore, the case of 10 × 10 detectors 

represents a substantial loss of information for the imaging-

based scenario (note that the original size of the objects in 

both image datasets is 28 × 28). This effect is especially 

apparent in Table II, for Fashion-MNIST, which represents a 

more challenging dataset for object classification task, in 

comparison to MNIST. According to Table II, for a computer 

vision system with a perfect camera interface and imaging 

optics preceding the opto-electronic sensor array, the 

degradation of the classification performance due to spatial 

undersampling varies between 3% to 5% depending on the 

choice of the electronic network. However, jointly-trained 

hybrid systems involving trainable diffractive layers maintain 

their classification performance even with ~7.8 times reduced 

number of input pixels (i.e., 10×10 pixels compared to the raw 

data, 28×28 pixels). For example, the combination of a fully-

connected (40×λ layer-to-layer distance) D
2
NN optical front-

end with 5 phase-only (complex) diffractive layers followed 

by LeNet provides 90.24% (90.24%) classification accuracy 

for fashion products using a 10 × 10 detector array, which 

shows improvement compared to 87.44% accuracy that LeNet 

alone provides following a perfect imaging optics, camera 

interface. A similar trend is observed for all the jointly-

optimized D
2
NN-based hybrid systems, providing 3-5% better 

classification accuracy compared to the performance of all-

electronic neural networks following a perfect imager 

interface with 10×10 detectors. Considering the importance of 

compact, thin and low-power designs, such D
2
NN-based 

hybrid systems with significantly reduced number of opto-

electronic pixels and an ultra-thin all-optical D
2
NN front-end 

with a layer-to-layer distance of a few wavelengths cast a 

highly sought design to extend the applications of jointly-

trained opto-electronic machine learning systems to various 

fields, without sacrificing their performance. 

On the other hand, for designs that involve higher pixel 

counts and more advanced electronic neural networks (with 

higher energy and memory demand), our results reveal that 

D
2
NN based hybrid systems perform worse compared to the 

inference performance of perfect imager-based computer 

vision systems. For example, based on Tables I and II one can 

infer that using ResNet as the electronic neural network of the 

hybrid system with 50x50 pixels, the discrepancy between the 

two approaches (D
2
NN vs. perfect imager based front-end 

choices) is ~0.5% and ~4% for MNIST and Fashion-MNIST 

datasets, respectively, in favor of the perfect imager front-end. 

We believe this inferior performance of the jointly-optimized 

D
2
NN-based hybrid system (when higher pixel counts and 

more advanced electronic networks are utilized) is related to 

sub-optimal convergence of the diffractive layers in the 

presence of a powerful electronic neural network that is by 

and large determining the overall loss of the jointly-optimized 

hybrid network during the training phase. In other words, 

considering the lack of non-linear activation functions within 

the D
2
NN layers, a powerful electronic neural network at the 

back-end hinders the evolution of the optical front-end during 

training phase due to its relatively superior approximation 

capability. Some of the recent efforts in the literature to 

provide a better understanding of the inner workings of 

convolutional neural networks[34]
,
[35] might help us to devise 

more efficient learning schemes to overcome this “shadowing” 

behavior in order to improve the inference performance of our 

jointly-optimized D
2
NN-based hybrid systems. Extending the 

fundamental design principles and methods behind diffractive 

optical networks to operate under spatially and/or temporally 

incoherent illumination is another intriguing research direction 
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stimulated by this work, as most computer vision systems of 

today rely on incoherent ambient light conditions. Finally, the 

flexibility of the D
2
NN framework paves the way for 

broadening our design space in the future to metasurfaces and 

metamaterials through essential modifications in the 

parameterization of the optical modulation functions [36], 

[37].    

III. METHODS 

A. Diffractive neural network architecture 

In our diffractive neural network model, the input plane 

represents the plane of the input object or its data, which can 

also be generated by another optical imaging system or a lens, 

e.g., by projecting an image of the object data. Input objects 

were encoded in amplitude channel (MNIST) or phase channel 

(Fashion-MNIST) of the input plane and were illuminated 

with a uniform plane wave at a wavelength of > to match the 

conditions introduced in [15] for all-optical classification. In 

the hybrid system simulations presented in Tables I and II, on 

the other hand, the objects in both datasets were represented as 

amplitude objects at the input plane, providing a fair 

comparison between the two tables. A hybrid system 

performance comparison table for phase channel encoded 

Fashion-MNIST data is also provided in Table A2 (as part of 

Appendix A), providing a comparison to [15].  

Optical fields at each plane of a diffractive network were 

sampled on a grid with a spacing of ~0.53> in both � and � 

directions. Between two diffractive layers, the free-space 

propagation was calculated using the angular spectrum 

method[15]. Each diffractive layer, with a neuron size of 

0.53>×0.53> , modulated the incident light in phase and/or 

amplitude, where the modulation value was a trainable 

parameter and the modulation method (phase-only or 

complex) was a pre-defined design parameter of the network. 

The number of layers and the axial distance from the input 

plane to the first diffractive layer, between the successive 

diffractive layers, and from the last diffractive layer to the 

detector plane were also pre-defined design parameters of 

each network. At the detector plane, the output field intensity 

was calculated. 

B. Forward propagation model 

The physical model in our diffractive framework does not 

rely on small diffraction angles or the Fresnel approximation 

and is not restricted to far-field analysis (Fraunhofer 

diffraction) [38], [39]. Following the Rayleigh-Sommerfeld 

equation, a single neuron can be considered as the secondary 

source of wave ?����, �, �	, which is given by: 

?����, �, �	 = @A@)
BC ' !

DEB + !
GH+ exp 'GDEBH +                          (3) 

where L = M�� − ��	D + �� − ��	D + �� − ��	D  and 

� = √−1 . Treating the input plane as the 0
th

 layer, then for l
th

 

layer (� ≥ 1), the output field can be modeled as: 

Q����, �, �	 = ?����, �, �	 ∙ ������ , �� , ��	 ∙SQT�A!��� , �� , ��	
T

 

                  = ?����, �, �	 ∙ |V| ∙ �G∆X ,                                 (4) 

where Q����, �, �	 denotes the output of the i
th

 neuron on l
th

 

layer located at ��, �, �	 , the ���  denotes the complex 

modulation, i.e., 

������ , �� , ��	 = ������ , �� , ��	��
�������� , �� , ��		. In eq. (4), |V| 
is the relative amplitude of the secondary wave, and ΔY refers 

to the additional phase delay due to the input wave at each 

neuron, ∑ QT�A!��� , �� , ��	T , and the complex-valued neuron 

modulation function, ������ , �� , ��	.  
C. Training loss function 

To perform classification by means of all-optical diffractive 

networks with minimal post-processing (i.e., using only a 

���  operation), we placed discrete detectors at the output 

plane. The number of detectors	�[	 is equal to the number of 

classes in the target dataset. The geometrical shape, location 

and size of these detectors (6.4> ×6.4> ) were determined 

before each training session. Having set the detectors at the 

output plane, the final loss value �\	 of the diffractive neural 

network is defined through two different loss functions and 

their impact on D
2
NN based classifiers were explored (see the 

Results section). The first loss function was defined using the 

mean squared error (MSE) between the output plane intensity, 

]� !, and the target intensity distribution for the corresponding 

label, ^� !, i.e., 

\ = !
_∑ �]�� ! − ^�� !�D_� ,                                                (5) 

where =  refers to the total number of sampling points 

representing the entire diffraction pattern at the output plane.  

The second loss function used in combination with our all-

optical D
2
NN framework is the cross-entropy. To use the 

cross-entropy loss function, an additional softmax layer is 

introduced and applied on the detected intensities (only during 

the training phase of a diffractive neural network design). 

Since softmax function is not scale invariant[40], the measured 

intensities by D detectors at the output plane are normalized 

such that they lie in the interval (0,10) for each sample. With 

6�  denoting the total optical signal impinging onto the �`a 

detector at the output plane, the normalized intensities, 6�b, can 

be found by, 

6�b = c*
def	{c*} × 10.                                                               (6) 

In parallel, the cross-entropy loss function can be written as 

follows: 

\ = −∑ �� log�
�	l� ,               (7) 

where 
� = �m*n
∑ �m*no*

 and �� 	 refer to the �`a  element in the 

output of the softmax layer, and the �`a element of the ground 

truth label vector, respectively. 

A key difference between the two loss functions is already 

apparent from eq. (5) and eq. (7). While the MSE loss function 

is acting on the entire diffraction signal at the output plane of 

the diffractive network, the softmax-cross-entropy is applied 

to the detected optical signal values ignoring the optical field 

distribution outside of the detectors (one detector is assigned 

per class). This approach based on softmax-cross-entropy loss 

brings additional degrees-of-freedom to the diffractive neural 

network training process, boosting the final classification 
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performance as discussed in the Results section, at the cost of 

reduced diffraction efficiency and signal contrast at the output 

plane. 

For both the imaging optics-based and hybrid (D
2
NN + 

electronic) classification systems presented in Tables I and II, 

the loss functions were also based on softmax-cross-entropy. 

D. Diffractive network training  

All neural networks (optical and/or digital) were simulated 

using Python (v3.6.5) and TensorFlow (v1.10.0, Google Inc.) 

framework. All-optical, hybrid and electronic networks were 

trained for 50 epochs using a desktop computer with a 

GeForce GTX 1080 Ti Graphical Processing Unit, GPU and 

Intel(R) Core (TM) i9-7900X CPU @3.30GHz and 64GB of 

RAM, running Windows 10 operating system (Microsoft).  

Two datasets were used in the training of the presented 

classifiers: MNIST and Fashion-MNIST. Both datasets have 

70,000 objects/images, out of which we selected 55,000 and 

5,000 as training and validation sets, respectively. Remaining 

10,000 were reserved as the test set. During the training phase, 

after each epoch we tested the performance of the current 

model in hand on the 5K validation set and upon completion 

of the 50
th

 epoch, the model with the best performance on 5K 

validation set was selected as the final design of the network 

models. All the numbers reported in this work are blind testing 

accuracy results held by applying these selected models on the 

10K test sets.  

The trainable parameters in a diffractive neural network are 

the modulation values of each layer, which were optimized 

using a back-propagation method by applying the adaptive 

moment estimation optimizer (Adam)[41] with a learning rate 

of 10
-3

. We chose a diffractive layer size of 200×200 neurons 

per layer, which were initialized with � for phase values and 1 

for amplitude values. The training time was approximately 5 

hours for a 5-layer D
2
NN design with the hardware outlined 

above.   

E. D2NN-based hybrid network design and training 

To further explore the potentials of D
2
NN framework, we 

co-trained diffractive network layers together with digital 

neural networks to form hybrid systems. In these systems, the 

detected intensity distributions at the output plane of the 

diffractive network were taken as the input for the digital 

neural network at the back-end of the system.  

To begin with, keeping the optical architecture and the 

detector arrangement at the output plane of the diffractive 

network same as in the all-optical case, a single fully-

connected layer was introduced as an additional component 

(replacing the simplest max operations in an all-optical 

network), which maps the optical signal values coming from 

D individual detectors into a vector of the same size (i.e., the 

number of classes in the dataset). Since there are 10 classes in 

both MNIST and Fashion-MNIST datasets, this simple fully-

connected digital structure brings additional 110 trainable 

variables (i.e., 100 coefficients in the weight matrix and 10 

bias terms) into our hybrid system. 

We have also assessed hybrid configurations that pair 

D
2
NNs with CNNs, a more popular architecture than fully-

connected networks for object classification tasks. In such an 

arrangement, when the optical and electronic parts are directly 

cascaded and jointly-trained, the inference performance of the 

overall hybrid system was observed to stagnate at a local 

minimum (see Appendix A, Tables A1 and A2). As a possible 

solution to this issue, we divided the training of the hybrid 

systems into two stages as shown in Fig. A1. In the first stage, 

the detector array was placed right after the D
2
NN optical 

front-end, which was followed by an additional, virtual optical 

layer, acting as an all-optical classifier (see Fig. A1(a)). We 

emphasize that this additional optical layer is not part of the 

hybrid system at the end; instead it will be replaced by a 

digital neural network in the second stage of our training 

process. The sole purpose of two-stage training arrangement 

used for hybrid systems is to find a better initial condition for 

the D
2
NN that precedes the detector array, which is the 

interface between the fully optical and electronic networks.  

In the second stage of our training process, the already 

trained 5-layer D
2
NN optical front-end (preceding the detector 

array) was cascaded and jointly-trained with a digital neural 

network. It is important to note that the digital neural network 

in this configuration was trained from scratch. This type of 

procedure “resembles” transfer learning, where the additional 

layers (and data) are used to augment the capabilities of a 

trained model[42]. 

Using the above described training strategy, we studied the 

impact of different configurations, by increasing the number 

of detectors forming an opto-electronic detector array, with a 

size of 10×10, 25×25 and 50×50 pixels. Having different pixel 

sizes (see Table III), all the three configurations (10×10, 

25×25 and 50×50 pixels) cover the central region of 

approximately 53.3>×53.3> at the output plane of the D
2
NN. 

Note that each detector configuration represents different 

levels of spatial undersampling applied at the output plane of a 

D
2
NN, with 10×10 pixels corresponding to the most severe 

case. For each detector configuration, the first stage of the 

hybrid system training, shown in Fig. A1(a) as part of 

Appendix A, was carried out for 50 epochs providing the 

initial condition for 5-layer D
2
NN design before the joint-

optimization phase at the second stage. These different initial 

optical front-end designs along with their corresponding 

detector configurations were then combined and jointly-

trained with various digital neural network architectures, 

simulating different hybrid systems (see Fig. A1(b) and Fig 5). 

At the interface of optical and electronic networks, we 

introduced a batch normalization layer applied on the detected 

intensity distributions at the sensor.  

For the digital part, we focused on five different networks 

representing different levels complexity regarding (1) the 

number of trainable parameters, (2) the number of FLOPs in 

the forward model and (3) the energy consumption; see Table 

III. This comparative analysis depicted in Table III on energy 

consumption assumes that 1.5pJ is needed for each multiply-

accumulate (MAC)[43] and based on this assumption, the 4
th

 

column of Table III reports the energy needed for each 
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network configuration to classify an input image. The first one 

of these digital neural networks was selected as a single fully-

connected (FC) network connecting every pixel of detector 

array with each one of the 10 output classes, providing as few 

as 1,000 trainable parameters (see Table III for details). We 

also used the 2C2F-1 network as a custom designed CNN with 

2 convolutional and 2 FC layers with only a single 

filter/feature at each convolutional layer (see Table IV). As 

our 3
rd

 network, we used LeNet[25] which requires a certain 

input size of 32×32 pixels, thus the detector array values were 

resized using bilinear interpolation before being fed into the 

electronic neural network. The fourth network architecture 

that we used in our comparative analysis (i.e., 2C2F-64), as 

described in [33], has 2 convolutional and 2 fully-connected 

layers similar to the second network, but with 32 and 64 

features at the first and second convolutional layers, 

respectively, and has larger FC layers compared to the 2C2F-1 

network. Our last network choice was ResNet-50[31] with 50 

layers, which was only jointly-trained using the 50×50 pixel 

detector configuration, the output of which was resized using 

bilinear interpolation to 224×224 pixels before being fed into 

the network. The loss function of the D
2
NN-based hybrid 

system was calculated by cross-entropy, evaluated at the 

output of the digital neural network.  

As in D
2
NN-based hybrid systems, the objects were 

assumed to be purely amplitude modulating functions for 

perfect imager-based classification systems presented in 

Tables I and II; moreover, the imaging optics or the camera 

system preceding the detector array is assumed to be 

diffraction limited which implies that the resolution of the 

captured intensity at the detector plane is directly limited by 

the pixel pitch of the detector array. The digital network 

architectures and training schemes were kept identical to 

D
2
NN-based hybrid systems to provide a fair comparison. 

Also, worth noting, no data augmentation techniques have 

been used for any of the networks presented in this 

manuscript. 

F. Details of D
2
NN-based hybrid system training procedure 

We introduced a two-stage training pipeline for D
2
NN-

based hybrid classifiers as mentioned in the previous sub-

section. The main reason behind the development of this two-

stage training procedure stems from the unbalanced nature of 

the D
2
NN-based hybrid systems, especially if the electronic 

part of the hybrid system is a powerful deep convolutional 

neural network (CNN) such as ResNet. Being the more 

powerful of the two and the latter in the information 

processing order, deep CNNs adapt and converge faster than 

D
2
NN-based optical front-ends. Therefore, directly cascading 

and jointly-training D
2
NNs with deep CNNs offer a 

suboptimal solution on the classification accuracy of the 

overall hybrid system. In this regard, Tables A1 and A2 (in 

Appendix A) illustrate examples of such a direct training 

approach. Specifically, Table A1 contains blind testing 

accuracy results for amplitude channel encoded handwritten 

digits when D
2
NN-based optical front-end and electronic 

networks were directly cascaded and jointly-trained. Table A2, 

on the other hand, shows the testing accuracy results for 

fashion-products which are encoded in the phase channel at 

the input plane.   

Figure A1 illustrates the two-step training procedure for 

D
2
NN-based hybrid system training, which was used for the 

results reported in Tables I and II. In the first step, we 

introduce the detector array model that is going to be the 

interface between the optical and the electronic networks. An 

additional virtual diffractive layer is placed right after the 

detector plane (see Appendix A, Fig. A1(a)). We model the 

detector array as an intensity sensor (discarding the phase 

information). Implementing such a detector array model with 

an average pooling layer which has strides as large as its 

kernel size on both directions, the detected intensity, 6p, is held 

at the focal plane array. In our simulations, the size of 6p was 

10×10, 25×25 or 50×50, depending on the choice of the 

detector array used in our design. To further propagate this 

information through the virtual 1-Layer optical classifier (Fig. 

A1(a)), 6p is interpolated using the nearest neighbour method 

back to the object size at the input plane. Denoting this 

interpolated intensity as 6p′, the propagated field is given by 

q6p′ (see Fig. A1(a)). It is important to note that the phase 

information at the output plane of the D
2
NN preceding the 

detector array is entirely discarded, thus the virtual classifier 

decides solely based on the measured intensity (or underlying 

amplitude) as it would be the case for an electronic network.  

After training this model for 50 epochs, the layers of the 

diffractive network preceding the detector array are taken as 

the initial condition for the optical part in the second stage of 

our training process (see Fig. A1(b)). Starting from the 

parameters of these diffractive layers, the second stage of our 

training simply involves the simultaneous training of a D
2
NN-

based optical part and an electronic network at the back-end of 

the detector array bridging two modalities as shown in Fig. 

A1(b). In this second part of the training, the detector array 

model is kept identical with the first part and the electronic 

neural network is trained from scratch with optical and 

electronic parts having equal learning rates (10
-3

). 

APPENDIX A 

Appendix A includes Tables A1 and A2 as well as Figure 

A1. 
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Table I.  Blind testing accuracies (reported in percentage) for all-optical (D2NN only), D2NN and perfect imager-based hybrid systems used in 

this work for MNIST dataset. In the D2NN-based hybrid networks reported here, 5 different digital neural networks spanning from a single fully-
connected layer to ResNet-50 were co-trained with a D2NN design, placed before the electronic neural network. All the electronic neural 

networks used ReLU as the nonlinear activation function, and all the D2NN designs were based on spatially and temporally coherent illumination 

and linear optical materials, with 5 diffractive layers. For a discussion on methods to incorporate optical nonlinearities in a diffractive neural 

network, refer to [15]. Yellow and blue colors refer to Δ; = 40×λ and Δ; = 4×λ, respectively. 
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Table II.  Blind testing accuracies (reported in percentage) for all-optical (D2NN only), D2NN and perfect imager-based hybrid systems used in 

this work for Fashion-MNIST dataset. In the D2NN-based hybrid networks reported here, 5 different digital neural networks spanning from a 
single fully-connected layer to ResNet-50 were co-trained with a D2NN design, placed before the electronic neural network. All the electronic 

neural networks used ReLU as the nonlinear activation function, and all the D2NN designs were based on spatially and temporally coherent 

illumination and linear materials, with 5 diffractive layers. For a discussion on methods to incorporate optical nonlinearities in a diffractive neural 

network, refer to [15]. Yellow and blue colors refer to Δ; = 40×λ and Δ; = 4×λ, respectively. For the results reported in the all-optical part of 

this table, Fashion-MNIST objects were encoded in the amplitude channel of the input plane. When they are encoded in the phase channel (as in 

[15]), blind testing accuracies for a 5-Layer, phase-only (complex) D2NN classifier become 89.13% (89.32%) with Δ; = 40×λ and 85.98% 

(88.54%) with Δ; = 4×λ as reported in Table A2, as part of Appendix A. 
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Digital Neural 

Networks 

Trainable 

Parameters 

FLOPs Energy Consumption 

(J/image) 

Detector 

Configuration 

 

Single FC Layer 

1000 2000 1.5×10
-9

 10×10 

6250 12500 9.5×10
-9

 25×25 

25000 50000 3.8×10
-8

 50×50 

 

2C2F-1 

615 3102 2.4×10
-9

 10×10 

825 9048 7.0×10
-9

 25×25 

3345 43248 3.3×10
-8

 50×50 

 

LeNet
25

 60840 1×10
6
 7.5×10

-7
 

10×10 

25×25 

50×50 

 

2C2F-64
33

 
 
 

3.3×10
5
 3.1×10

6
 2.4×10

-6
 10×10 

2.4×10
6
 2.5×10

7
 1.9×10

-5
 25×25 

9.5×10
6
 8.7×10

7
 6.5×10

-5
 50×50 

ResNet[31] 25.5×10
6
 4×10

9
 3×10

-3
 50×50 

Table III.  Comparison of electronic neural networks in terms of the number of trainable parameters, FLOPs and energy consumption; these are 

compared as they are part of the D2NN-based hybrid networks reported in this work. These 5 digital neural networks are using ReLU as the 
nonlinear activation function at each neuron. Energy consumption numbers, given in J/image, illustrates the energy needed by the corresponding 

neural network to classify a single image. It was assumed that 1.5pJ is consumed for each MAC. 
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 Network architecture 

Layer Type Conv layer 1 Conv layer 2 FC layer 1 FC layer 2 

Activation  ReLU  ReLU  ReLU  Softmax 

Detector 

configuration 

kernel Feature 

map 

Stride kernel Feature 

map 

Stride  Number of 

neurons 

Number of 

neurons 

10×10 

6×6 1 

1 

3×3 1 

 1 

30 10 25×25 2 2 

50×50 2 2 

Table IV. Parameters of the custom designed network architecture which we refer to as 2C2F-1. Also see Table III for other details and 
comparison to other electronic neural networks used in this work. 
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Table A1. Blind testing accuracies (reported in percentage) for all-optical (D2NN only), D2NN and perfect imager-based hybrid systems used in 

this work for MNIST dataset. The 2-stage hybrid system training discussed in the Methods section was not used here. Instead, D2NN and 5 
different digital neural networks were jointly-trained at the same time from scratch. All the electronic neural networks used ReLU as the 

nonlinear activation function, and all the D2NN designs were based on spatially and temporally coherent illumination and linear materials, with 5 

diffractive layers. Yellow and blue colors refer to Δ; = 40×λ and Δ; = 4×λ, respectively. 
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Table A2.  Blind testing accuracies (reported in percentage) for all-optical (D2NN only), D2NN and perfect imager-based hybrid systems used in 

this work for Fashion-MNIST dataset. The 2-step hybrid system training discussed in the Methods was not used here. Instead, D2NN and 5 
different digital neural networks were jointly-trained at the same time from scratch. In addition, the objects were encoded in the phase channel (0-

2π) at the input plane, same as in [15]. All the electronic neural networks used ReLU as the nonlinear activation function, and all the D2NN 

designs were based on spatially and temporally coherent illumination and linear materials, with 5 diffractive layers. Yellow and blue colors refer 

to Δ; = 40×λ and Δ; = 4×λ, respectively. 



1077-260X (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTQE.2019.2921376, IEEE Journal
of Selected Topics in Quantum Electronics

List of Figures:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. All-optical D2NN-based classifiers. These D2NN designs were based on spatially and temporally coherent illumination and linear optical 

materials/layers. (a) DDNN setup for the task of classification of handwritten digits (MNIST), where the input information is encoded in the 
amplitude channel of the input plane. (b) Final design of a 5-layer, phase-only classifier for handwritten digits. (c) Amplitude distribution at the 

input plane for a test sample (digit ‘0’). (d-e) Intensity patterns at the output plane for the input in (c); (d) is for MSE-based, and (e) is softmax-

cross-entropy (SCE)-based designs. (f) 	DDNN  setup for the task of classification of fashion products (Fashion-MNIST), where the input 
information is encoded in the phase channel of the input plane. (g) Same as (b), except for fashion product dataset. (h) Phase distribution at the 
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input plane for a test sample. (i-j) Same as (d) and (e) for the input in (h). λ refers to the illumination source wavelength. Input plane represents 

the plane of the input object or its data, which can also be generated by another optical imaging system or a lens, projecting an image of the 
object data onto this plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Convergence plots and confusion matrices for all-optical D2NN-based classification of handwritten digits (MNIST dataset). (a) 

Convergence curve and confusion matrix for a phase-only, fully-connected D2NN �∆;= 40>	 design. (b) Convergence curve and confusion 

matrix for a phase-only, partially-connected D2NN �∆;= 4>	 design. (c) and (d) are counterparts of (a) and (b), respectively, for complex-

modulation D2NN designs, where both the amplitude and phase of each neuron are trainable parameters.  
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Fig. 3. Same as Fig. 2, except the results are for all-optical D2NN-based classification of fashion products (Fashion-MNIST dataset) encoded in 

the phase channel of the input plane following [15]. 

 



1077-260X (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTQE.2019.2921376, IEEE Journal
of Selected Topics in Quantum Electronics

 

 

 

 

 

 

Fig. 4. Classification accuracy, power efficiency and signal contrast comparison of MSE and SCE loss function based all-optical phase-only 

D2NN classifier designs with 1, 3 and 5-layers. (a) Blind testing accuracy, (b) power efficiency and (c) signal contrast analysis of the final design 
of fully-connected, phase-only all-optical classifiers trained for handwritten digits (MNIST). (d-f) are the same as (a-c), only the classified dataset 

is Fashion-MNIST instead.  
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Fig. 5.  D2NN-based hybrid neural networks. (a) The architecture of a hybrid (optical and electronic) classifier. (b) Final design of phase-only 

optical layers (t; = 40×λ	) at the front-end of a hybrid handwritten digit classifier with a 10×10 opto-electronic detector array at the 

bridge/junction between the two modalities (optical vs. electronic). (c) and (d) are same as (a) and (b), except the latter are for Fashion-MNIST 
dataset. Input plane represents the plane of the input object or its data, which can also be generated by another optical imaging system or a lens, 

projecting an image of the object data onto this plane.  
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Fig. A1.  Hybrid system training procedure. (a) The first stage of the hybrid system training. (b) The second stage of the hybrid system training 

starts with the already trained diffractive layers (first 5 layers) from part (a) and an electronic neural network, replacing the operations after 

intensity detection at the sensor. Note that the spherical waves between the consequent layers in (a) and (b) illustrate free space wave propagation.  

 


