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ABSTRACT | In recent years, deep learning has been shown

to be one of the leading machine learning techniques for a

wide variety of inference tasks. In addition to its mainstream

applications, such as classification, it has created transforma-

tive opportunities for image reconstruction and enhancement

in optical microscopy. Some of these emerging applications

of deep learning range from image transformations between

microscopic imaging systems to adding new capabilities to

existing imaging techniques, as well as solving various inverse

problems based on microscopy image data. Deep learning is

helping us move toward data-driven instrument designs that

blend microscopy and computing to achieve what neither can

do alone. This article provides an overview of some of the

recent work using deep neural networks to advance compu-

tational microscopy and sensing systems, also covering their

current and future biomedical applications.

Manuscript received April 22, 2019; revised September 21, 2019; accepted
October 22, 2019. This work was supported by the Koc Group, NSF, and HHMI.
(Corresponding author: Aydogan Ozcan.)

K. de Haan, Y. Rivenson, and Y. Wu are with the Electrical and Computer
Engineering Department, University of California at Los Angeles, Los Angeles, CA
90095 USA, with the Bioengineering Department, University of California at Los
Angeles, Los Angeles, CA 90095 USA, and also with the California NanoSystems
Institute (CNSI), University of California at Los Angeles, Los Angeles, CA
90095 USA (e-mail: kdehaan@ucla.edu).

A. Ozcan is with the Electrical and Computer Engineering Department,
University of California at Los Angeles, Los Angeles, CA 90095 USA, with the
Bioengineering Department, University of California at Los Angeles, CA
90095 USA, with the California NanoSystems Institute (CNSI), University of
California at Los Angeles, Los Angeles, CA 90095 USA, and also with the
Department of Surgery, David Geffen School of Medicine, University of California
at Los Angeles, Los Angeles, CA 90095 USA (e-mail: ozcan@ucla.edu).

Digital Object Identifier 10.1109/JPROC.2019.2949575

KEYWORDS | Biomedical imaging; deep learning.

I. I N T R O D U C T I O N
Deep learning is a set of machine learning techniques that
use multilayered neural networks to automatically analyze
signals or data. These deep neural networks consist of
several layers of artificial neurons, each of them typically
incorporates a nonlinear operation (or activation func-
tion), which altogether can approximate an arbitrary func-
tion [1]. Deep networks have proven to be very effective
for a wide variety of tasks ranging from natural language
processing [2] to image classification [3]–[6] and playing
games, such as Go [7], among others. Neural networks
were first proposed in the 1940s [8] and have continu-
ally been developed for decades. Several types of deep
networks, such as long short-term memory (LSTM) [9]
and convolutional neural networks (CNNs) [10], have
been developed over decades of research. Partially due
to their shift-invariance property, CNNs have been par-
ticularly effective at processing, transforming, and clas-
sifying images. CNNs first began to be used for tasks,
such as reading documents, in the 1980s and 1990s [11].
However, recently, a “perfect storm” of optimized software
[12]–[16], hardware (e.g., increased GPU power), and
data availability has allowed deep learning (specifically
CNNs) to be used as a recipe to tackle complex problems
in many fields of research, most notably in computer
vision. Many of these problems have included the task of
image classification that is frequently used in various fields
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Fig. 1. Deep-learning-powered optical microscopy. (a) Typical workflow in constructing a neural network to perform a microscopic image

reconstruction or image enhancement task. (b) Typical training flow of a neural network, using bright-field microscopy image

super-resolution as an example. Modified from [53].

[17]–[19] and is one of the most fundamental problems in
machine vision.

Beyond classification, deep learning presents many
interesting opportunities to solve classical inverse prob-
lems in imaging, such as deblurring, super-resolution,
denoising, and pixel super-resolution (or geometrical
super-resolution). Inverse problems in imaging have a
long and rich history, covering various ideas that are
related to deep learning. These range from example-
based super-resolution and dictionary learning techniques
[20]–[23] to deconvolution methods [24]–[28] that
require accurate knowledge about the image degradation
model. Deep learning has also generated expansive liter-
ature in problems that are classically not categorized as
inverse problems, such as style transfer [29] and image-to-
image transformation [30], among others.

In this article, we will focus on deep neural net-
works’ transformative power to solve inverse problems in
microscopy using image data. Microscopy provides unique
opportunities for using supervised deep learning to solve
inverse problems in imaging. Unlike many other com-
puter vision tasks, in microscopy, variables such as the
physical properties of illumination, light-sample interac-
tion, sample preparation, and positioning are fully under
the user’s control. These controllable degrees of free-
dom give the user the means to generate high-quality
and experimentally obtained data that can be used to
train a deep neural network without the need for any
assumptions regarding the image formation or degrada-
tion model. Therefore, the gold-standard image data can
often be experimentally generated rather than simulated.

Learning from experimentally generated data has many
advantages when compared to using simulations or simpli-
fying assumptions, as in many cases creating an accurate
forward model is not tractable.

In order to solve a microscopy-related inverse problem
using deep learning, a neural network must be trained
using a set of matching input and ground truth (or gold
standard) images. Fig. 1 summarizes the basic workflow
used to train a neural network to solve an inverse problem
in optical microscopy.

In this article, we first discuss the implementation
strategies for using deep networks in microscopic image
reconstruction and enhancement, the data that are needed
to train the network, and preprocessing procedures inte-
gral to the training process. We then discuss exam-
ples of inverse problems in microscopy that can be
solved using deep learning. This article is broken up
into the following sections. Section II introduces some
of the main inverse problems in microscopic imag-
ing. Section III discusses how deep networks can be
used to solve inverse imaging problems. Section IV dis-
cusses microscopic imaging data generation and pre-
processing. Section V demonstrates how to train a deep
network using experimentally obtained image data to
perform cross-modality microscopic image transformations
through a working example. Section VI demonstrates deep
learning-based super-resolution from a single image,
where the transformations are between the images
acquired by the same microscope. Section VII demon-
strates deep learning-based transformations between dif-
ferent types of microscopes, and Section VIII discusses
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implementations of deep networks where the gold-
standard labels are computationally generated from a sin-
gle input or a plurality of inputs. Section IX demonstrates
some of the recently emerging biomedical applications
for deep learning-enabled cross-modality image transfor-
mations in which deep networks learn to algorithmically
create a physical transformation, e.g., for virtual staining
of label-free tissue samples. Section X demonstrates new
imaging capabilities that have been enabled by deep learn-
ing. Finally, we conclude this article in Section XI and
discuss some of the strengths and weaknesses of these
emerging techniques as well as possible future directions.

II. B R I E F O V E R V I E W O F I N V E R S E
P R O B L E M S I N O P T I C A L M I C R O S C O P Y
While a number of imaging modalities will be discussed in
this review, it will mainly focus upon the following three.
The first of these modalities is bright-field microscopy [31],
where white light illumination is modulated by the light-
sample interaction and is collected by an objective lens.
The second is fluorescence microscopy [32], which uses
an illumination source to excite the fluorophores in the
sample being imaged. The emitted photons from a flu-
orescent molecule have lower energy compared to the
excitation photons, and by using a spectral filter to remove
the excitation light, a high contrast fluorescence image of
the sample can be acquired. This technique is often used
to image samples that are specifically labeled with fluo-
rescent markers. The third form of microscopy commonly
referenced in this article is digital holographic microscopy
[33]–[36]. Holographic microscopy is typically imple-
mented by illuminating the sample with coherent (or
partially coherent) light and uses, e.g., a transmission
geometry to create an interference pattern of the sample’s
transmission function. This, in turn, is reconstructed to
extract both the phase and the amplitude information of
the object. The phase information channel is related to the
optical-path length of the light passing through the sample,
whereas the amplitude information channel is related to
the absorption and scattering properties of the sample.

For a microscopic imaging system, the discrete imaging
forward model, which sets the stage for an inverse imaging
problem, can be written as

g = Hf + n (1)

where f ∈ RN×1 and g ∈ RM×1 are the object and
measurement information, respectively (f and g repre-
sent the lexicographical arrangement of a 2-D/3-D signal,
which can be complex valued as in the case of coher-
ent microscopy), n is an additive noise term (which can
be signal dependent), and H is the mapping operator
between the object space and the image/measurement
space (which can also be nonlinear). For standard inverse
imaging problems, one would like to obtain the optimal

object approximation, f̂ , which satisfies the constraints
imposed by (1). In the literature, various optimization
techniques have been used for this task [37]–[39]. How-
ever, most of these approaches require accurate knowledge
of H and often some a priori information about the object
(e.g., a sparsity constraint [40]).

Microscopic imaging, in general, shares a number of
inverse problems that are in common with other com-
puter vision tasks while also presenting its own unique
challenges. One of the most well-known of these inverse
problems is deconvolution or deblurring

g = h∗f + n (2)

where h is a low-pass filter and ∗ is the spatial convolution
operation. In optical microscopy, the finite aperture of the
objective lens limits the extent of the spatial frequencies,
which, in many cases, can be estimated as a low-pass filter
operator with a Gaussian kernel. Equation (2) assumes a
shift-invariant imaging operator; however, in practice, the
blurring operator is often shift variant for many micro-
scopic imaging systems due to factors, such as aberrations,
introduced by various optical components as well as the
mismatch of the sample refractive indices and the optical
medium (including the objective lens). This changes the
point spread function (blurring kernel) throughout the
field of view (FOV). In that case, (1) should be used
instead of (2). However, an accurate estimate of H would
be tedious and practically impossible to acquire as it also
depends on the object properties, which are, by definition,
unknown for an unknown object.

Classically, the smallest feature that can be resolved by
an imaging system is given by [41]

d =
λ

2NA
(3)

where λ is the illumination wavelength and NA is the
numerical aperture of the imaging system, which defines
the ability of the lens to gather diffracted object light
from a fixed distance. In addition to the limits imposed
by an objective lens and its NA, microscopy resolution
is fundamentally limited by the wavelength of the light
itself. This diffraction limit is approximately λ/2 [41],
which restricts modern optical microscopy techniques to
have a resolution of ∼200–300 nm unless super-resolution
methods are employed to beat the diffraction limit of light.
For example, optical, computational, and statistical tech-
niques have been developed to break the diffraction limit
and achieve super-resolution in fluorescence microscopy
[42]–[46]. These super-resolution techniques have sig-
nificantly expanded the usage of optical microscopes in
various fields, such as biology by enabling discoveries at
the nanoscale. However, some of these fluorescence super-
resolution techniques require specialized and expensive
equipment, with relatively high-power illumination and a
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large number of image exposures. This can be potentially
harmful for live cell imaging and other applications where
phototoxicity is a concern [47], [48].

Another inverse problem of interest in optical
microscopy is dealiasing or pixel-super-resolution.
Following the notation in (1), we can define

g = SHf + n (4)

where S is the decimation operator that maps from RN →
RM (where M < N). While such pixelation-related prob-
lems can be addressed by using higher magnification objec-
tive lenses, this also comes with a significant tradeoff in
imaging FOV, which generally scales down with the square
of the magnification. Therefore, the pixel-super-resolution
inverse problem is of broad interest for wide-field imag-
ing applications using low magnification systems, such as
lensfree microscopic imaging, where the image resolution
is often pixel size limited [35].

In some cases, the image formation model can also be
described by a nonlinear relationship (H) between the
object and its image, such as

g = H ′(f) + n. (5)

An interesting example of this nonlinear relationship is
the mapping from a label-free image of a sample to an
image of the same sample following a physical or chemical
labeling process taken using a different imaging modal-
ity [49]–[52]. In the following, we will demonstrate the
effectiveness of data-driven deep networks in solving such
nonlinear inverse problems in imaging.

III. D E E P L E A R N I N G A S A F R A M E -
W O R K T O S O LV E I N V E R S E P R O B L E M S
I N O P T I C A L M I C R O S C O P Y
Here, we provide a brief overview of how deep networks
can be used to estimate f̂ for a given measurement g

by learning a statistical image transformation. A primary
example of this technique being used in optical microscopy
has been for spatial resolution enhancement using deep
learning [53]. Single-image super-resolution or image
enhancement is, in general, an ill-posed problem. How-
ever, deep learning has been shown to be able to leverage
large amounts of well-registered image data to learn sta-
tistical transformations through high levels of abstractions
in order to improve upon conventional super-resolution
and image-enhancement algorithms and achieve superior
results [54]. In addition to super-resolution, solutions to
other inverse problems in microscopic imaging, such as
virtual staining [49] and holographic image reconstruc-
tion [55], [56], have also been tackled using deep learning.

Deep neural networks typically learn to solve inverse
imaging problems through supervised learning. Supervised
learning utilizes “gold-standard” labels that are known in

advance and are matched to corresponding input images.
These networks are used in a feed-forward fashion, where
they are given an input image (to be improved) that
passes information from one neural network layer to the
next. Feed-forward networks can be made up of several
different types of layers, and all of them operate using
the same basic principles, where weights, biases, and other
trainable parameters are trained using error backpropaga-
tion [57]. Once the network has been fully trained, these
variables are fixed, and any test image can be inferred
by the network in a single feed-forward step, without the
need for any iterations. This stands in contrast to many
other solutions to inverse problems in microscopy, where
hyperparameters need to be carefully hand-tuned, often
through an iterative process to achieve optimal conver-
gence. By performing the desired transformation in a single
feedforward manner, deep networks, in general, outper-
form traditional iterative methods in terms of inference
speed [55], [58]–[60]. Furthermore, as the parameters are
fixed after the training phase, modifications or adjustments
are not needed each time it is applied to a new image,
increasing its overall usability. Finally, deep neural net-
works, being data driven, can solve inverse problems for
which numerical formulation of a forward model is very
difficult or even intractable [61]–[63].

A. Basic Elements of a Neural Network

Several types of layers are used by neural networks.
These include fully connected layers that have a con-
nection between each neuron in two consecutive layers:
pooling layers, which find, e.g., the maximum or average
of adjacent tensor values; and convolutional layers, which
provide limited and spatially invariant connectivity across
successive layers. Modern deep networks that perform
image transformations are typically fully convolutional
networks. Using convolutional layers is advantageous as
it brings shift-invariance [1], which is of particular use for
microscopy applications. As weights and biases are shared,
they are applied in the same manner regardless of the
sample location. Therefore, due to this parameter sharing,
any shift to the input also shifts the output in the same
manner. Using only convolutional layers also allows for
scaling of the network, where the testing can be performed
on images of different sizes. Another desirable property of
deep CNNs along with other types of neural networks is
that the convolutional layers can create hierarchical data
representations rather than relying upon hand-engineered
features [64]. Each convolutional layer generates feature
maps based on the previous layer. These feature maps
are used to extract and preserve important information
regarding the input object and are stored as separate
channels in a tensor; the general operation of that can be
described as

vi,j
α,β = bα,β +

�
r

P−1�
p=0

Q−1�
q=0

wp,q
α,β,rv

i+p,j+q
α−1,r (6)

4 PROCEEDINGS OF THE IEEE



de Haan et al.: Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy

where vi,j
α,β represents the value of the pixel at coordinate

i, j in feature map β of convolutional layer α. P and Q

represent the size of the convolutional kernel (e.g., 3 × 3),
wp,q

α,β,r is the value of the convolution kernel at position p, q,
and bα,β is a trainable bias parameter. Finally, r represents
the feature maps in layer α − 1.

After a given network layer, a nonlinear activation
function is typically used. While a number of nonlinear
functions have been used in the literature, variants of the
rectified linear unit (ReLU) have become among the most
popular functions [65]. It is described as

ReLU(x) =

�
x, for x > 0

0, otherwise.
(7)

ReLU is typically used because it is easy to calculate and
helps to mitigate the vanishing gradient problem [66],
which fosters highly efficient training of deep neural net-
works [1], [65], [67].

B. Neural Network Architecture

A variety of deep neural network architectures have
been developed, but there are a few general network
types that are among the most commonly used and have
been repeatedly shown to be effective. Regardless of which
general network architecture is used, several parameters of
the network need to be fine-tuned. For example, network
size can be changed by varying both the number of layers
making up the network as well as the number of channels
in each layer of the network. Tuning of these parameters is
required to ensure that the network can extract and learn
any important features while not being so complicated that
it overtrains [68], [69]. Another important consideration
when choosing the network architecture and filter sizes
is to make sure that the effective receptive field (i.e., the
region of the input space that affects a particular unit
of the network) is sufficient to contain all the required
information [70]. In fact, an active area of research is
the development of environments that support automatic
and optimal tuning of these hyperparameters of a neural
network [71]–[73].

Two of the most popular network architectures for
image transformations that have been shown to generate
state-of-the-art results are U-net [19], [74] and ResNet [6].
The U-net architecture was originally proposed to per-
form biological image segmentation and has been broadly
applied to image transformation applications since then.
This network uses a series of convolutional blocks and skip
connections to allow the network to be deeper without
having issues related to vanishing gradients. It is made
up of a series of downsampling blocks, which use convo-
lutional layers to process the images, and pooling layers
to downsample the images. The downsampling blocks are
followed by an equal number of upsampling blocks that
use convolutions to upsample the images until they reach
the original image size. Between each pair of same-sized

upsampling and downsampling blocks, a skip connection
is used to pass data. This structure allows the network
to learn features at different spatial/size levels, and the
downsampling allows it to have a large receptive field
if needed. ResNet [6], on the other hand, consists of a
series of convolutional blocks that maintain the image
size, with a residual connection passing the data past the
block. Similar to U-net, the residual connections allow the
network to have many layers and learn features without
having vanishing gradient related issues, making it easier
and more effective to train.

C. Loss (Cost) Function

During the training process, the deep network attempts
to predict the gold-standard label images from the input
images of the training data set by minimizing a cost/loss
function. This cost function can be user-defined and is
often based on per-pixel differences between the output
and ground truth images, such as the mean absolute differ-
ence (L1-norm) and mean-squared error (L2-norm). Some
of the cost functions can also penalize structural losses,
such as the structural-similarity index (SSIM) [75], or can
be custom-designed complex functions that are generated
by training another network either offline (e.g., perceptual
loss) or online, such as a generative adversarial network
(GAN) [76], which can adaptively learn the optimal loss
function based on the training image data. The GAN
framework has played an important role in some of the
recent applications of deep learning for optical microscopy
and will be explained in greater detail in Section III-D.

D. Generative Adversarial Networks

GANs can be used to improve the overall loss func-
tion and allow the network to create realistic-looking
images without requiring any specific feature engineer-
ing [76]. They were designed to create artificial images
that match the feature distribution of a target data set.
GANs use two distinct networks. The first network (known
as the generator, G) is used to generate images using
an input (x), while the second network (known as the
discriminator, D) attempts to discriminate between the
generated images [G(x)] and the ground truth images (z).
The discriminator network adds loss to the generator that
can be described by the following equation:

lgenerator = [1 − D(G(x))]2 (8)

where D(G(x)) = 0 means that the discriminator can
successfully spot a generated image from the ground truth
image. This loss function drives the generator to learn how
to “trick” the discriminator to classify its outputs as ground
truth. On the other hand, the discriminator loss can be
described by the following equation:

ldiscriminator = D(G(x))2 + (1 − D(z))2. (9)
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This loss function is used to teach the discriminator to
learn how to distinguish between the generated images
and the ground truth label images. For image transforma-
tions, GANs typically work best when used in conjunction
with either L1, L2, or perceptual loss. These terms help to
regularize the GAN performance if a known gold-standard
image data set is available. As an example, for the use
of an Lp-norm term, the generator’s loss function can be
expanded to

lgenerator_total = [1 − D(G(x))]2 + τ × Lp{G(x), z} (10)

where τ is a regularization constant used to balance the
relative importance of the generator loss (8) within the
total loss function. When using a loss function as in (10),
the GAN portion of the loss is used to force the generator
to create realistic images, while the second portion of the
loss is, in general, used to ensure that the transformation
for each pixel is correct and that the GAN is regular-
ized/constrained by the input/output relationship. By bal-
ancing the relative importance of these loss functions,
together they can train a generator network that performs
the desired image transformation in optical microscopy.

IV. C R E AT I N G M I C R O S C O P I C I M A G E
D ATA S E T S F O R T R A I N I N G D E E P
N E U R A L N E T W O R K M O D E L S
While there is a massive amount of biomedical imaging
data being created every day, unfortunately, much of it is
not labeled suitably to be used for deep learning-based
image enhancement or transformations. Since supervised
learning requires gold-standard labels, the generation of
high-quality data sets to train the deep network is very
important. CNNs have proven to generalize very well, but
they are much more effective when trained on a data set
that is designed specifically for the test data set that it
will be used for. For example, when a neural network is
trained using one specific microscopy system and applied
to another, it will be able to make use of the learned prop-
erties that are shared between the two systems. However,
it will not learn any properties that are not part of the
training data set. This can be mitigated by performing
calibration experiments with the new microscopy system
of interest and using, e.g., transfer learning [54], [77].

A. Microscopic Image Registration for
Training Data

The training image data sets can be created in a few
different ways. Most commonly, the gold-standard label
and input images are imaged separately (by, e.g., dif-
ferent optical microscopy hardware) and then accurately
matched to each other; alternatively, the label images
can be acquired using a ground truth microscope, and
matching input images can be digitally generated using
numerical degradation (following, e.g., a physical model).

Following the notation of (1), in this data set preparation
mode, we acquire f and then simulate g̃ = H̃f + n, where
H̃ represents the approximate forward (sensing) model
and g̃ is the approximation of the measured corresponding
image, which will be used as input for the deep network
training phase. Simulated data sets are typically much eas-
ier to create, but the efficacy of the network performance
depends upon the accuracy of the forward/sensing models,
which, in some cases, is a challenge to obtain beyond
a simplified approximation. On the other hand, if both
input (f) and ground truth images (g) are experimentally
obtained, they must be accurately matched to each other,
as the goal of the enhancement network is to predict the
output pixel values based on the input pixels. This image
registration for the preparation of the training data is a
one-time effort and can be done in different stages, which
will be detailed in the following.

A third method that can be used to generate train-
ing image data is to computationally reconstruct gold-
standard label images. A good example of this is the use
of a multiframe pixel super-resolution algorithm, where
a high-resolution image is synthesized from a set of low-
resolution images that are shifted with respect to each
other. In this case, we can train a deep network to learn the
transformation between a single low-resolution image and
the computationally generated high-resolution image that
is pixel super-resolved. Additional examples (other than
pixel super-resolution) of this method based on training
image data generation will be presented in Section VIII.

When both the gold-standard labels and the input
images are experimentally acquired, there are three main
types of coregistration techniques that are used to spatially
match these images to each other: 1) coregistration based
on intensity (such as the intensity difference or inten-
sity cross-correlation); 2) coregistration based on fea-
tures (such as the Euclidean distance between extracted
shapes) [78]; and 3) deep learning-based registration
[79], [80]. Of the algorithmic registration methods, inten-
sity registration typically works well when the two sets
of images are of the same optical modality or of similar
modalities. On the other hand, feature-based registration
methods can be more general while being less effective at
the subpixel level.

Image registration can be further divided into either
rigid or nonrigid transformations [81], [82]. Rigid trans-
formations are only capable of rotation and translation,
while nonrigid transformations allow the registered images
to be deformed. Nonrigid registration allows accurate
matching, but distortion can occur if there are differences
between the input and ground truth label images. One way
to improve the quality of the registration is to use a deep
neural network to perform a “soft” form of the desired
data transformation and use this network’s output image
as the target of the registration algorithm [49]. While the
network will not produce an ideal image, it can create
intermediate images, which can be used for intensity-
based cross-registration. This process can be repeated as

6 PROCEEDINGS OF THE IEEE



de Haan et al.: Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy

needed, improving the transformation network and, there-
fore, the overall registration accuracy, iteratively.

Depending on how the data were acquired, a combi-
nation of registration steps may be needed. There can
be a large variation between the images, especially when
captured using different microscopy modalities. There-
fore, a unique workflow should be tailored for a given
application of interest [50], [51], [61]; only a general
overview of image coregistration is presented here, but one
specific method for integrating image coregistration into
the training workflow is demonstrated as an example in
Section V.

It is important to note that image transformation net-
works, such as CycleGANs [83], do not require the input
and ground truth images to be coregistered and still have
been shown to create highly realistic images. However,
without input-ground truth registration, there is a pos-
sibility for artifacts, which might be detrimental to vari-
ous biomedical applications, particularity for clinical use
as the outputs need to be highly consistent to ensure
accurate diagnoses.

B. Quality and Size of the Training Image Data

Poor-quality data can have a dramatic negative effect on
the performance of the deep network. With training image
data set that is either not relevant or improperly labeled,
the error-backpropagation will not have a correct gradient
to follow and the network will be trained inaccurately.
Even small inconsistencies in the training image data set
can cause issues. This is particularly evident when training
a GAN as the discriminator loss can collapse, rendering it
completely ineffective.

Limited image data can also be a constraint for applica-
tions of deep neural networks in optical microscopy. This
can be exacerbated for certain microscopy applications
where either samples or images are rare and/or challeng-
ing to obtain. While deep learning has been shown to be
highly effective on small data sets [84], a neural network
will generalize better when the training data set is large
enough that the network can learn the entire sample space
from it. Depending on the sample variation, the required
training data size for the examples given in this article can
range from a few thousand image patches to hundreds of
thousands of patches or more. For example, if the network
is being trained on a portion of a sample and being tested
on the rest, a small data set can potentially be used. On the
other hand, if the network needs to generalize across a
diverse set of samples, significantly more image data is
typically required. If the network is large and the size of
the training data is limited, the network can also overfit
to the training data set and not generalize well to test
data sets.

One popular method for improving the performance
of neural networks with limited training data is transfer
learning [77], [85], [86]. This process typically involves
training a network on a large data set that has similar

features to the data set that the network will be used.
Following this training, the last few layers of the network
can be retrained using the smaller data set of interest.
These retrained layers allow the network to learn the trans-
formations for the specific data set, while the intermediate
layers do not need to be retrained as they are simply used
to extract common features, which can, in some cases,
be generalized from one data set to the next.

Another method to help reduce issues and artifacts
related to limited training data is to augment the image
data set using techniques, such as image rotation, flipping,
shifting, and distortion [87]. However, this is often not
enough to overcome the generalization challenge entirely.
It will help prevent a network from overfitting, but the
network will still not have any new information about
the features that were not well represented in the original
training data set.

C. Image Data Normalization

Normalization of both the input image data and the
ground truth labels can significantly improve the con-
sistency of the network inference. Most deep networks
are highly nonlinear, meaning that small differences at
the input images can cause relatively large differences
at the network output. Therefore, any variations in the
illumination source intensity or the exposure time of the
microscopy system need to be normalized during the train-
ing and testing phases.

V. D E E P L E A R N I N G A S A F R A M E W O R K
T O S O LV E I N V E R S E P R O B L E M S I N
O P T I C A L M I C R O S C O P Y
As a working example, in this section, we will explain how
to train a network that can transform images taken by
a cost-effective smartphone-based microscope into images
equivalent to those taken by a high-quality benchtop
microscope. While this example will detail a specific
transformation, this approach is broadly applicable to
other cross-modality image transformation or enhance-
ment applications.

Before the neural network can be trained, an image
data set needs to be created. For the transformation from
cellphone to benchtop microscopy images, this training
data set will consist of inputs made up of the cellphone
images and the gold-standard label images of the same
samples taken by the benchtop microscope. For proper
training of the network, it is vital that these images are
accurately registered, especially since, in this transforma-
tion, the network’s task is to predict pixel values in the
ground truth image based on the values of the input pixels.
For this image transformation, the training images need
to first have the corresponding FOVs matched. This can
be done by first digitally stitching the microscope images
together into a single large image of the sample and then
using a coarse correlation-based registration to find and
crop out the area corresponding to each cellphone image.
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Fig. 2. Example of the elastic coregistration between smartphone and benchtop microscope images. Modified from [61].

Next, an elastic registration [88] can be used to ensure that
a subpixel-level coregistration is achieved (see Fig. 2).

Elastic registration is preferred in this example, as
cellphone-based microscopes will likely have significant
aberrations due to inexpensive camera lenses (in compar-
ison to those used in benchtop microscopes), in which a
rigid registration will be unable to account for. As both
sets of images are captured in the bright-field mode,
an intensity-based registration algorithm can be used to
achieve a high degree of registration accuracy between the
input and label images.

Once the image data have been coregistered
(e.g., Fig. 2), it must be normalized and split into
separate training and validation sets (the testing data set
does not require accurate coregistration). Following this,
the network can be created using an architecture that fits
the image data set. As discussed in Section III-B, there are
several popular architectures that have been proven to
be highly effective, with U-net and ResNet architectures
being among the most popular. Along with the network
architecture, the loss function for the network training
also needs to be chosen. For this image transformation,
a GAN that uses a U-net as the generator and a VGGNet
style network as the discriminator can be chosen (see
Fig. 3). The depth and the number of channels within
each of these networks depend upon the size of the image
data set, as it must be large enough to learn the feature
space but not so large that it overstrains. As detailed in
Section III-D, in addition to the GAN loss, an L1 loss can
be added to ensure that the color and intensity of each
pixel are accurately inferred.

Typically, the lowest pixel-based validation loss (in this
case, L1) is used as the inference model, and the network
training can be stopped when this loss begins to increase
as it indicates that the network is overtraining. However,
if the transformation of certain features is more important
than others, it can be beneficial to compare/quantify how
these features behave for different models. These different
training stopping conditions can also regularize the deep
network [89]. Once the network has been fully trained
and the final model has been chosen based on a vali-
dation loss, it can be used to blindly enhance the new

images taken by the smartphone microscope. The image
enhancement results that can be obtained using the train-
ing methods outlined in this section will be exemplified in
Section VII.

VI. S I N G L E - I M A G E S U P E R-R E S O L U -
T I O N I N M I C R O S C O P Y U S I N G D E E P
L E A R N I N G
The working example in Section V is just one example of
how an inverse problem in microscopic imaging can be
solved using deep learning. In this current section and the
upcoming ones, a wide variety of such inverse problems
will be discussed.

We first examine one of the most widely needed image
transformations in microscopy— the conversion of a low-
resolution image into a higher resolution image, where
both the input and ground truth (higher resolution image)
are taken by the same microscope. A training image data
set for a network that performs this transformation can be
created by, e.g., scanning the same samples with a low-
and high-NA objective lens. Following the data acquisition
step, the deep network is trained to perform statistical
transformation acting on the low-resolution input images
to match the corresponding high-resolution labels.

For microscopy applications, this form of super-
resolution is far reaching as it allows for larger FOVs
to be measured per acquired image, which can be par-
ticularly useful for high-throughput, time-lapse imaging.
In other words, low-NA objective lenses can image a much
larger FOV, as illustrated in Fig. 4(a); thus, the technique
improves over the native space-bandwidth product of an
objective lens [41]. This super-resolution image enhance-
ment has been demonstrated for fluorescence, bright field,
and coherent (holographic) imaging systems, as illustrated
in Fig. 4(b)–(d), respectively.

In theory, the missing spatial frequencies (although not
detected) in a microscopic image can be extrapolated
based on the measured (or a priori known) spatial frequen-
cies of an object [90], using, for example, the principle of
analytical continuation [91]. However, in practice, the suc-
cess of such frequency extrapolation methods is fundamen-
tally related to the imaging system’s signal-to-noise ratio
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Fig. 3. Diagram of example network structures used in GAN. Each upblock and downblock are made up of two convolutional layers with a

kernel size of 3 × 3 and followed by ReLU or leaky ReLU activation layers. The downblocks reduce the size of each channel by a factor of two

in each dimension and double the number of channels, while the upblocks increase the size and reduce the number of channels by a factor of

four. Images were taken from [61].

(SNR) [90]. While deep networks for deconvolution do
not explicitly include any analytical continuation models,
the deep network learns to efficiently separate the noise
from the signal structures, which effectively improves the
frequency extrapolation capability of the network; stated
differently, noise features in images are much harder to
generalize by a trained network compared to the actual
features of the imaged objects. In cases where the feature
space of the model (e.g., the number of weights and biases)
is much larger than the number of training examples,
the network may begin to overfit to noise as well, reducing
the overall effectiveness of the network. One of the ways to
avoid this problem is to use AutoML framework [92], [93],
which learns to automatically optimize the model during
the training process.

Another interesting effect of the deep learning-based
image enhancement is the extended depth of field (DOF).
Just as in photography, the DOF is defined by the dis-
tance from the nearest object plane in focus to that of
the farthest plane simultaneously in focus [94]. In order
to understand the extended DOF (EDOF) effect of deep
networks, we must recall that the DOF imaged by a
microscope is proportional to λ/NA2. In other words, for
low-NA objective lenses, the DOF will be significantly
extended in comparison to the shallower DOF of high-
NA lenses. When the deep network learns to enhance

the resolution of the images that are acquired using a
low-NA objective lens, it does that by enhancing all the
spatial details within the DOF. This effect has been val-
idated for both bright field [53], [61] and fluorescence
microscopy [54], by comparing the deep network output
image to an algorithmically generated EDOF image from
a z-scan (depth scan) of the sample using a high-NA
objective lens. A demonstration of this EDOF effect can
also be seen in Fig. 5. This effect has the potential to
further increase the throughput of the imaging system,
as the features that are out of focus for a high-NA objective
can remain in focus with high resolution at the deep
network output.

Interestingly, in many cases, the deep networks were
also able to generalize to types of samples that were not
part of the training set. For example, super-resolution
of bright-field microscopy images that were trained with
one tissue type and tested on another type of tissue
was successful [53]. Similarly, in fluorescence microscopy,
a network trained to super-resolve images of mitochondria
was also able to super-resolve blood vessels and actin in
different tissue types [54].

For most microscopic image enhancement techniques,
the goal is to solve a deconvolution/deblurring prob-
lem, which can often be estimated as a convolution
with a Gaussian kernel [95]. For this form of simple
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Fig. 4. Super-resolution and image quality enhancement using deep learning. (a) Fluorescence microscopy image captured with a 20×
objective lens and 10× FOV marked. (b) Zoomed-in region of (a) showing a network perform super-resolution of a 10×/0.4 NA input image.

Images were taken from [54]. (c) Super-resolution of a bright-field microscope image. Images were taken from [53]. Input image is taken

using a 40×/0.95 NA microscope objective. (d) Super-resolution of an image created using digital holographic microscopy [59]. Input is

imaged using a 4×/0.13 NA microscope objective. Images were taken from [59]. (e) Super-resolution of an SEM image. Images were taken

from [95]. Input is imaged using 10 000× magnification.

deconvolution, it is possible to train the deep network
using simulated image data [96], i.e., we can assume an
accurate knowledge about the blurring kernel and simulate
the low-resolution data from the high-resolution images to
create the training image set. However, in most practical
cases, this estimation will not yield satisfactory results.
A more accurate model can be a shift-variant convolution,

where different parts of the image FOV correspond to
different convolution kernels; in fact, this spatial variance
depends on the imaging system as well as the sample
preparation itself. When trained using experimentally gen-
erated input image data and labels, neural networks are
capable of learning to perform this shift variant decon-
volution [54] (see Fig. 6). If simulated data were to

Fig. 5. Demonstration of the EDOF using deep learning. (a) Output of the network in response to a low-resolution image. (b) Reference

image taken at a single focal depth of the microscope with a higher numerical aperture objective (higher resolution and shallower DOF).

(c) EDOF image created using 34 images from different focal depths (with a step size of 300 nm) taken using the same high numerical

aperture objective. Images were taken from [54].
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Fig. 6. Examples of the spatially varying point spread functions (blurring kernels) that are learned by the network for different regions of

interest (ROIs). (a) Network output image. (b)–(d) Demonstrations of the PSF for various marked ROIs created using a deconvolution

between the network input and output. (e)–(g) Demonstrations of the PSF for these ROIs created using a deconvolution between the network

input and ground truth image. The network input for these images is generated using a confocal microscope, while the ground truth images

are captured using a STED microscope. This demonstrates that the network is capable of learning to deconvolve spatially variant PSFs from

image data only. Images were taken from [54].

be used to train the network, it would be unable to
learn such spatial variations unless an accurate account
of how the point spread function varies over the FOV is
available/known.

In addition to light microscopy, similar techniques have
also been applied to enhance images acquired by a scan-
ning electron microscope (SEM) [97] [see Fig. 4(e)]. SEM
imaging is not limited by the wavelength of electrons
but instead by aberrations and pixel size of the imaging
system [see (4)]. For the latter, dealiasing through deep
learning can be used to perform pixel super-resolution of
electron microscopy images. One of the main advantages
of using this approach to enhance SEM images is to reduce
the electron beam’s radiation, as it can be damaging to
materials that are soft or poor conductors, such as bio-
logical tissue. This is because a high electron density is
required at high magnifications since each pixel must be
exposed to a certain number of electrons to ensure an
adequate SNR. By using computational super-resolution
in conjunction with imaging the sample at a lower mag-
nification, the beam dwell time and, therefore, electron
exposure of each unit area can be reduced without a
reduction in SNR. Therefore, charging and electron beam
damage can be reduced. SEM can also be expensive and

slow to image large areas at the nanoscale level, which
could be improved using the same method.

VII. T R A N S F O R M AT I O N S B E T W E E N
M I C R O S C O P Y S Y S T E M S
While enhancing the input images to match higher
resolution images that are natively taken using the
same microscopy platform can increase the imaging
system’s throughput, another interesting avenue is to
learn a statistical transformation between two different
microscopic imaging modalities. Learning these cross-
modality transformations where the ground truth image
set is made up of images taken by a different microscope
allows the network to achieve results that are not possible
using standard forward model-based inverse problem solu-
tions (see Fig. 7). Using this deep learning-based approach,
cost-effective or simpler microscopes can take the same
quality of measurements as the gold-standard microscopes,
helping to democratize microscopy-related research and
innovation. Several examples of this exciting opportunity
will be discussed in this section.

A prime example of a system that could benefit from
image enhancement is mobile phone microscopy. The
general procedure for training a deep neural network
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Fig. 7. Transforming images between different microscopy

modalities. (a) Cellphone-based microscope image transformed into

a benchtop microscope equivalent image. Images were taken from

[61]. (b) Confocal microscope image transformed into a STED

equivalent image. Images were taken from [54]. (c) Lensless digital

holographic microscope (DHM) image transformed into a benchtop

bright-field microscope image. Images were taken from [106].

using experimentally obtained image data was discussed in
Section V; in this section, we will provide examples of the
image enhancement that one can obtain in mobile phone
microscopy using deep learning.

Mobile phone-based imaging has emerged as an
alternative to traditional benchtop microscopes for various
applications targeting low-resource settings, ranging from
imaging blood smears to providing a quantitative readout
for various diagnostic assays [98]–[101]. Mobile phone
microscopes typically have low-NA lenses; furthermore,
due to the portable nature of these microscopes and the
demand to keep the device cost-effective and lightweight,
the design constraints dictate a compromise on the
optical components that are used in mobile phone-based
microscopes. In addition, the pixel size of a CMOS image
sensor used in a mobile phone is much smaller than that
of a typical CCD-based microscope camera, which also
results in a lower SNR. Thus, mobile microscopes often
produce relatively noisy images that are spectrally and
spatially aberrated.

Recently, deep learning has been demonstrated to bridge
this gap between mobile microscopes and their benchtop
diffraction-limited counterparts [61]. Since the images
taken by mobile microscopes can show fluctuations due
to, e.g., sample misalignment, illumination nonuniformi-
ties, or diminishing battery power, input images need to
be either normalized or be trained to learn the distribu-
tion of such fluctuations. If trained correctly, the network
can learn how to mitigate these aberrations and create

an image with similar quality to a benchtop microscope
image from a low-cost, portable microscope, as illustrated
in Fig. 7(a). This example demonstrates the power of the
data-driven image enhancement, as a numerical modeling
of the image formation process or the forward model,
in this case, was intractable, due to aberrations, noise, and
mechanical instability of the sample scanning module in
the smartphone microscope (all in comparison to a high-
end benchtop microscope).

As another example, cross-modality image transforma-
tions can be used to enhance the resolution of a microscopy
modality beyond the diffraction limit. Some examples of
this have been demonstrated by transforming diffraction-
limited confocal microscopy images into stimulated emis-
sion depletion (STED) microscopy equivalent images [see
Fig. 7(b)] [102] as well as by transforming total internal
reflection fluorescence (TIRF) microscopy images [103]
into TIRF-based structured illumination microscopy (TIRF-
SIM) equivalent images [54], [104]. In both cases,
the ground truth images used to train the neural net-
work were obtained using a super-resolution microscopic
imaging modality (STED and SIM, respectively) reveal-
ing fine features beyond the classical limit of diffraction.
These transformations create images that match the corre-
sponding images obtained with these advanced microscopy
techniques, without the requirement of the extensive and
expensive setups nor exposing the samples to increased
doses of radiation causing adverse photobleaching and
phototoxicity effects [47]. Computational super-resolution
through such a cross-modality transformation also elimi-
nates some of the required hardware, such as additional
lasers, filters, and specialized fluorophores, which are often
used for these techniques [105].

In addition to the lateral super-resolution and con-
trast enhancement shown earlier, deep networks perform-
ing cross-modality transformations can also be used to
enhance the axial sectioning ability of the imaging system.
For example, a deep neural network has been trained
to take a single numerically backpropagated (refocused)
hologram and output an image that is equivalent to
a bright-field microscope image of the matching FOV,
as demonstrated in Fig. 7(c) [106]. By performing this
transformation, holographic images can match the corre-
sponding images of the same samples imaged by a high-
NA bright-field microscope, which allows the holographic
imaging system to obtain the colorization and sectioning
ability of a high-NA bright-field microscope while also
eliminating coherence-related artifacts, such as speckle,
twin image, and self-interference distortions. Since holo-
graphic images can be numerically backpropagated to
different depths and focused upon different portions of
the image, these different depths can be transformed
into distinct bright-field equivalent images imaged at the
desired sample depth. Using a series of consecutive depths
that are digitally probed, a 3-D bright-field equivalent
image can be created using an acquired hologram, which
makes it ideal for applications where high-throughput
imaging and screening of samples are needed. One such
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Fig. 8. Various image processing tasks performed by deep neural networks. Orange lines with arrows refer to the operation of each neural

network (connecting the input image to its output). (a) In-line holography phase recovery. Input is a backpropagated (numerically refocused)

hologram (missing the phase recovery step), and the ground truth is a phase recovered image. Images were taken from [55]. (b) In-line

holographic phase recovery under low-light conditions. Input is a backpropagated hologram with significant noise, and the ground truth is a

digital representation of the same image with high SNR. Reprinted with permission from Goy et al. [119]. Copyright Optical Society of

America 2018. (c) Pixel super-resolution. Input is an image reconstruction from pixel-size limited low-resolution holograms, and the ground

truth is a reconstruction from higher resolution pixel super-resolved holograms. Images were taken from [59]. (d) Artificial neural network

accelerated PALM (ANNA-PALM). The input is an incomplete PALM image with fewer localizations, and the ground truth is a complete PALM

image with more localizations. Reprinted with permission from Macmillan Publishers Ltd. from Ouyang et al. [60]. (e) Deep-STORM. Input is a

simulated set of stochastic blinking frames, and the ground truth is a simulated reconstructed super-resolved image. Reprinted with

permission from Nehme et al. [95]. Copyright Optical Society of America 2018. The neural network bypasses these complicated algorithms

and saves both the number of required measurements and the computation time (marked by the yellow arrows, see Table I for details). In all

cases, the output image is calculated by the trained network using the corresponding input (following the orange lines). DH: digital

holography.

application is the label-free imaging flow cytometer, where
the throughput can be substantially expanded using cross-
modality transformation-based image reconstructions that
permit larger channel heights and samples volumes to be
screened rapidly [107].

VIII. P H Y S I C A L M O D E L-B A S E D I M A G E
R E C O N S T R U C T I O N U S I N G
D E E P L E A R N I N G
Sections V–VII have demonstrated deep networks that
were trained with optically acquired inputs and image
labels. However, for many imaging modalities, it is dif-
ficult or sometimes impossible to directly acquire input-
ground truth image pairs, and instead, we rely on numer-
ical tools to generate training data sets. Some examples
of deep learning-based reconstruction methods that either
used numerical tools or physics-based reconstruction
methods to generate their gold-standard data or degraded
their gold-standard data to generate simulated input data
can be seen in Fig. 8.

Phase recovery and reconstruction of holographic
images are the applications where this form of image
transformations can be particularly useful [55]. The
ground truth holographic images rely on coherent illumi-
nation to create a quantitative phase microscopy image
of the specimen, which signifies the optical-path delay
through the sample. In the optical part of the spectrum,
optoelectronic sensors can only detect the intensity of the
optical beam. Therefore, the classical way to obtain the
object’s field is to utilize an interference [108] between
the object’s wave and a reference wave (a) [108], that is

g = |a + L{f}|2 = |a| + |L{f}|2 + a(L{f})∗ + a∗L{f}
(11)

where g is the intensity of the detected interference pat-
tern. The image information is encoded in the expression
a∗L{f}, where L is a linear operator (e.g., free space
propagation operator [41]) that relates the wavefield f

that is scattered off the object to the wavefield impinging
on the optoelectronic sensor plane. The other terms in
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this expression distort this image information and should
ideally be removed in order to accurately reveal the object’s
image. One method to achieve this is to use off-axis
holography [41], [109], with the tradeoff of reducing
the space-bandwidth product of the imaging system. In
an alternative holography approach (in-line holography),
the scattered object field and the reference wave propa-
gate along the same direction. In fact, as a result of its
hardware simplicity, in-line holography is often preferred
for various applications, especially for field measurements
[110], [111]. Therefore, many methods have been devel-
oped to solve the “missing phase” problem and numeri-
cally remove the distortion terms from (11) using physical
constraints [35]. This usually requires multiple hologram
measurements to be made at, e.g., multiple sample-to-
sensor distances, multiple angles of illumination, or mul-
tiple illumination wavelengths [112]–[115]. The need for
this measurement diversity introduces constraints on the
imaging hardware and its design and necessitates com-
putationally intensive algorithms to accurately recover
the signal.

As shown in Fig. 8(a), this hologram reconstruction
process can be simplified by recovering both the phase
and amplitude images of an object with only a single holo-
gram measurement by using a deep neural network [55].
This makes both the imaging and reconstruction processes
significantly faster than the iterative phase recovery-based
methods [116], [117] that were used to generate the gold-
standard images for the training phase. The problem of
recovering the object’s complex-valued image can be bet-
ter constrained by performing free-space backpropagation
(L−1), which can be easily obtained by an autofocusing
algorithm [118]. Thus, we can transform (11) into another
form

gL = a∗f + n(f) (12)

where gL = L−1{g} and n(f) is the object-dependent
noise [resulting from the remaining terms embedded
in (11)]. This means that an alternative way of looking at
holographic image reconstruction is to treat it as a sample-
dependent denoising problem, for which the deep network
is trained for using pairs of input–output images. This
initial condition created by L−1{g} operation is used to
remove input ambiguities and foster high accuracy object
recovery, even for highly connected samples, such as tissue
slides [55], as demonstrated in Fig. 8(a). It is interesting
to note that the network also learns to reject out-of-focus
particles even though they were physically located in the
imaging path. This is very beneficial as the network learns
to reject objects that are part of the hologram formation
but not in the sample plane/volume. One application of
this technique that made use of this feature is a portable
imaging flow cytometer [107], where deep neural net-
works enabled reconstruction of holographic images taken
by the cytometer for high-throughput testing of water
samples in real time using a GPU-equipped laptop.

In addition to reconstructing these holograms, deep
learning has been shown to improve the phase retrieval

when the images are taken in low-light situations
[119], [120]. In this case, a deep neural network can
significantly reduce speckle noise and, therefore, improve
the SNR of the reconstructed image, as demonstrated
in Fig. 8(b).

Enhancing images that have their resolution limited
by the detector’s pixel size is not common in lens-based
microscopic imaging since it is quite easy to add magni-
fication in the light collection path (typically at the cost
of a reduced FOV). However, it is one of the limiting
factors in lensless holographic microscopy as the FOV is as
large as the sensor size (typically dozens of mm2), which
enables high-throughput imaging. To get around this pixel-
size limited resolution in lensless holographic microscopy,
different super-resolution techniques have been applied
[35], [36], [121], most of them are based on subpixel shift
integration. Deep learning has also been demonstrated to
efficiently enhance the resolution of lensless microscopy
systems using significantly fewer images compared to
these earlier pixel super-resolution methods, which fur-
ther increases the throughput of these lensless systems
and relaxes some of their hardware design constraints
[see Fig. 8(c)] [59].

Beyond holography, deep learning has been shown to be
also effective at reconstructing single-molecule localization
images. Techniques such as photoactivated localization
microscopy (PALM) [45] and stochastic optical reconstruc-
tion microscopy (STORM) [46] are able to accurately
determine the positions of individual molecules within a
sample. These techniques work by taking many images in
which only a random subset of the sample’s fluorophores
can be emissive in each frame. If these molecules are
sufficiently sparse and enough photons per molecule are
collected, the centroid of each molecule can be fit to deter-
mine its location. When thousands of these images are
taken together, they can be used to reconstruct a full image
of the sample. However, since many images are needed,
the imaging process is usually time consuming. By using
deep learning, both PALM [referred to as ANNA-PALM,
demonstrated in Fig. 8(d)] [60] and STORM [referred to
as Deep-STORM, demonstrated in Fig. 8(e)] [95] tech-
niques can be performed significantly faster without com-
promising spatial resolution. Both of these techniques were
trained using a set of simulated ground truth image data.

Similar to the above-mentioned examples, the Fourier
ptychographic microscopy images have also been recon-
structed using deep neural networks. Using deep learning,
the main benefits of the Fourier phytographic microscopy
were achieved (extending the space-bandwidth product of
a microscope objective lens) while reducing the number
of images required for the reconstruction by sixfold and
decreasing the processing time by 50-fold [122]. This
enabled the reconstruction of large-scale spatial and tem-
poral information quickly, which is important for imaging
of live cells.

A summary of some of these deep learning-powered
reconstruction methods and the time that is saved for
both imaging and inference are presented in Table 1.
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Table 1 Data (Number of Measurements) and Runtime (Computation) Efficiency Improvement Enabled by Image Processing Algorithm Abstraction

by Deep Neural Networks

Table 1 indicates that for many reconstruction methods,
inference through the neural network is significantly faster
than the traditional reconstruction algorithms and much
fewer data are required.

IX. I N S I L I C O L A B E L I N G U S I N G
D E E P L E A R N I N G
In addition to improving the quality of images, deep learn-
ing can also perform many other image transformations,
including virtually replicating physical changes made to a
sample using, e.g., specific sample preparation processes.
In this research direction, one of the most interesting appli-
cations for deep learning is the replacement of labeling
techniques that are used to add contrast to tissue samples,
which, otherwise, have almost no interpretable contrast in
many biomedical applications.

Virtual staining of histological tissue sections used to
diagnose various diseases is one such method [123]. Tissue
sections are either frozen or embedded in paraffin and
then sectioned into thin (typically 2–5 μm) slices that
are mounted onto microscope slides and imaged after a
staining/labeling process. They use the cellular and sub-
cellular chemical environments to bind chromophores or
fluorophores that, in turn, introduce exogenous contrast
to different tissue constituents. This process is time con-
suming, which delays any diagnosis and may result in
anxiety for the patient, puts financial stress on the health
care system, requires trained staff and chemical reagents,
and does not support tissue preservation for advanced
molecular analysis. For most cases, the tissue section is
imaged using a standard bright-field microscope following
its histological staining (see Fig. 9).

Over the last few decades, researchers have designed
new imaging methods to introduce contrast to these tissue
sections. These techniques use rapid labeling or no labeling

at all, where the latter uses endogenous contrast agents
that are naturally embedded in the tissue section. Follow-
ing that, linearized numerical approximations have been
used to map the obtained contrast distribution to a virtual
image of the hematoxylin and eosin (H&E) stain, which is
a standard stain used in diagnosis, specifically for cancer
screening and tumor margin estimation [124], [125].

Recently, deep learning has been demonstrated to
be an effective virtual staining method. The success of
this virtual staining has been illustrated using several
different microscopy modalities as input images [49],
[51], [126], [127]. Rivenson et al. [49] demonstrated the
efficacy of the deep learning-based staining using images
of a single autofluorescence channel of an unstained tissue
and that the technique can be applied to several different
tissue types and stains (Masson’s Trichrome and Jones
stain in addition to the standard H&E). Furthermore, this
study was able to validate the technique using a panel of
pathologists who determined that the quality of the virtual
stain was equivalent to that of a histologically stained
slide and that diagnoses could be made accurately using a
virtually stained slide. Examples of these virtually stained
whole slide images can be seen in Fig. 9(d) and (e).
It was also demonstrated that additional excitation chan-
nels or imaging modalities can also be used to increase
the staining quality, in cases where some of the tissue
constituents do not provide meaningful contrast at a
single band [49], [127]. These techniques can also be
used with other contrasts introducing imaging techniques,
such as optical coherence tomography (OCT) [128],
[129], quantitative phase imaging [51], the Raman
microscopy [130], [131], as well as other rapid staining
methods [124], [132], [133].

Deep learning can even improve upon the quality
of physical stains; for example, neural networks cre-
ate more consistent staining than standard histochemical
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Fig. 9. Transforming microscopy images between different contrast mechanisms. (a) Label-free autofluorescence image to histologically

stained bright-field equivalent image. Images were taken from [49]. (b) Label-free quantitative phase image to histologically stained

bright-field equivalent image. Images were taken from [51]. (c) Label-free phase-contrast image z-stack (covering 13 axial steps) to a

fluorescently labeled image. Reprinted with permission from Christiansen et al. [52]. (d) and (e) Examples of whole slide image

transformations that have been virtually stained with Masson’s Trichrome using a deep neural network. Histologically stained versions of the

same samples, imaged under bright-field microscopy, are also provided for comparison.

staining, which exhibits lab-to-lab and technician-to-
technician variations. An example of this stain qual-
ity normalization or standardization can be seen in
Fig. 9(d) and (e). This feature of deep learning-based
virtual staining can increase the diagnostic accuracy of
downstream analysis of histological images inspected by
humans and/or machines [134].

Another in silico labeling technique that deep learn-
ing has successfully reproduced is the prediction of flu-
orescently tagged labels using unlabeled images [52].
An example of this is shown in Fig. 9(c), where Chris-
tiansen et al. [52] acquired different forms of transmission
light microscopy images, such as bright field and phase
contrast, forming an axial image stack used as input to a
deep neural network to segment the images based on the
expected fluorescence tags. By performing these transfor-
mations, they were able to detect specific markers without
needing to go through the potentially lengthy and costly
process of external cell labeling.

X. D E E P L E A R N I N G E N A B L E S N E W
I M A G I N G M O D A L I T I E S
Deep learning can also be used to add new capabilities
to microscopic imaging techniques, achieving results that
cannot be directly obtained through current instrumen-
tation or physics-based forward models or assumptions.
An example of this can be found in holographic imaging,

where the DOF can be significantly increased using deep
learning [58]. Using this method, different object features
within the DOF can be refocused, all in parallel, with a
single feed-forward pass through a trained network to get a
result that cannot be obtained using standard holographic
reconstruction methods (see Fig. 10).

Stated differently, in this case, there is no equivalent
ground truth image that can be used as a label since this
effect cannot be achieved using traditional holographic
reconstruction methods or algorithms. In addition to the
benefits of the increased DOF, parallelization makes the
holographic reconstruction significantly faster as well as
robust to any change in focus; computational complexity
of the reconstruction is also drastically simplified since
autofocusing and phase recovery steps are merged into the
same computational step, and all the parts of the sample
volume are brought into focus simultaneously, i.e., without
the need for a separate autofocusing step for different
regions of interest (see Fig. 10). All these properties have
already made the algorithm useful for applications, such
as particle aggregation-based sensing of viruses [135]
and automatic detection/counting of bioaerosols [136],
in which a trained network was used to improve both the
quality of the autofocusing and phase recovery.

In one of the earlier works that applied neural networks
to microscopic imaging [137], it was shown that a network
can perform 3-D tomographic inference from a set of
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Fig. 10. Holographic imaging of aerosols using deep learning with EDOF (HIDEF). (a) Workflow for the HIDEF network. A raw hologram is

backpropagated and input into the HIDEF network. (b) Same FOV reconstructed using multiheight phase recovery. Modified from [58].

Copyright Optical Society of America 2018.

2-D projections. This is a classic problem in optical imag-
ing and has some differences from standard tomographic
reconstruction techniques used in, e.g., computed tomog-
raphy (CT). In many cases, however, when performing
tomographic reconstructions in the optical regime, any
scattering feature in the sample is often approximated
to introduce only a single scattering event; stated differ-
ently, different parts of the sample volume are assumed
to have the same illumination pattern, independent of the
object. This simplification allows us to get an analytical
solution based on the first Born approximation [138] and
then apply standard filtered backprojection (FBP) tech-
niques for 3-D image reconstruction. By using a neural
network, this approximation is no longer necessary as
the network is constructed to learn the refractive indices
of the specimen as bias terms, and the weights of the
network were fixed and given by a numerical expres-
sion of the free space propagation between the different
specimen planes.

These recent results and others [62] show how deep
networks enable novel image reconstruction and transfor-
mation methods that are not possible with current imaging
models or instrumentation. Some of these networks defy
classical inverse problem solutions and reduce the need for
inaccurate model approximations that have been made for
the sake of making the numerical inversion tractable.

XI. C O N C L U S I O N
In this article, we discussed a variety of ways that deep
learning has been used to transform and reconstruct bio-
medical images in optical microscopy. These techniques
can be used with various systems and optical modalities to
either improve, reconstruct, or transform images and have

the potential to revolutionize the way that microscopic
imaging is done for medical and clinical applications.
Systems that perform image super-resolution can reduce
the cost of imaging systems and enable new samples to be
characterized. Other techniques, such as virtual staining,
can be used to improve the speed and accuracy of diag-
noses using histopathology.

Microscopy is an ideal field to apply deep learning,
as experimental data sets are typically obtained under
highly controlled conditions. The user is often a trained
technician/professional who can ensure that the sample is
prepared correctly and that the variables, such as the illu-
mination intensity and focus, are well tuned. Microscopy
instruments are also highly repeatable in terms of illumi-
nation light properties and sample positioning, which is
controlled with precise 3-D stages. This is a stark contrast
to many consumer applications of deep learning involving
macroscale imaging using cameras, where the imaging
systems are used by untrained operators in highly diverse,
uncontrolled, or poor imaging conditions.

However, there are also limitations to these emerg-
ing deep learning-based microscopy approaches presented
here. Most notably, it can be challenging to create a
matching data set to train these networks if the sample
is dynamic and rapidly changing because a coregistered
training data set cannot be created easily. Even for static
samples, data set creation can be time consuming or expen-
sive when a sample-specific data set is required. The
performance of these networks also depends on the qual-
ity and breadth of the data used during the training
phase. As such, the methods described here cannot be per-
formed in a reliable manner without this high-quality data
being available.
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While the majority of the work to date has been per-
formed to improve existing imaging modalities, computa-
tional microscopy is no longer limited to imaging systems
that rely on constraints, such as the ability to numerically
formulate a sensing model [62]. Instead, deep learning
can be used to transform and analyze the images, without
the need for forward model approximations. For example,
even though physical models for reconstructing images
that have passed through a multimode fiber exist only
for specific and restrictive cases, the actual transformation
and its reversal can be learned through image data and
deep learning [63]. Such an imaging system that is able
to reconstruct the images that passed through a fiber
optic cable has the potential to be used as a thin, flexible
endoscope [139].

One of the most interesting directions for the use of
big data in computational imaging is to codesign the
sensing system along with the inference algorithm. Deep
learning-inspired imaging instrumentation can be used to

engineer new types of optics for specific tasks, such as
imaging or classification [140]. Alternatively, it could be
used to design optical components and imaging tactics
with an optical front end and an algorithmic back end
[141]. This could be used to resolve the optimally encoded
[142]–[145] patterns for image reconstruction or the
extraction of a meaningful metric [141], [146]. This
kind of holistic design is considered as the holy grail
of computational imaging. We believe that in the future,
new optical architectures and deep networks might fully
unlock the potentials of task-specific microscopy and help
us design low-cost and/or high-throughput imaging and
sensing modalities. Along these lines, one of the more
interesting directions is to create a “thinking” imaging
system [147], which can decide what measurement should
be taken next, based on previous data rather than a priori
design. This has been recently shown for an unsupervised
MRI sensing [148], and similar ideas will likely find their
way to microscopic imaging.
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