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We demonstrate that a deep neural network can be trained to virtually refocus a two-dimensional fluorescence image onto
user-defined three-dimensional (3D) surfaces within the sample. Using this method, termed Deep-Z, we imaged the neuronal
activity of a Caenorhabditis elegans worm in 3D using a time sequence of fluorescence images acquired at a single focal plane,
digitally increasing the depth-of-field by 20-fold without any axial scanning, additional hardware or a trade-off of imaging reso-
lution and speed. Furthermore, we demonstrate that this approach can correct for sample drift, tilt and other aberrations, all
digitally performed after the acquisition of a single fluorescence image. This framework also cross-connects different imaging
modalities to each other, enabling 3D refocusing of a single wide-field fluorescence image to match confocal microscopy images
acquired at different sample planes. Deep-Z has the potential to improve volumetric imaging speed while reducing challenges
relating to sample drift, aberration and defocusing that are associated with standard 3D fluorescence microscopy.

important in various fields including, for example, biology,

life sciences and engineering, and still remains a challenge
in microscopy research. 3D fluorescence information is usually
acquired through scanning an excitation source through the sam-
ple volume to obtain images at multiple planes, forming the basis
of volumetric imaging in confocal', two-photon?’, light-sheet’~
and various super-resolution®'' microscopy techniques. However,
scanning can limit the imaging speed and throughput, potentially
introducing phototoxicity and photobleaching, even with optimized
scanning strategies’ or point-spread-function (PSF) engineering™'“.
3D fluorescence information of a specimen can also be acquired
using non-scanning microscopy methods that simultaneously map
the axial information onto a two-dimensional (2D) image, such as
fluorescence light-field microscopy'*-'%, Fresnel correlation holog-
raphy'*-?! and others****. However, these non-scanning 3D fluores-
cence microscopy approaches require relatively time-consuming
iterative algorithms to solve the inverse problem for reconstructing
a new image, and use customized optical components and hard-
ware, which increase the complexity of the setup.

There are emerging approaches that use deep learning to solve
inverse problems in fluorescence microscopy”, for example, to
enhance the lateral*—' and axial®'-** resolution using artificial neu-
ral networks trained with image data. Such deep-learning-based
image reconstruction and enhancement methods take a relatively
long time to train; however, this training process is a one-time effort,
and after it is complete, each new sample of interest can be rapidly
reconstructed through a single forward pass through the trained
network, without the need for any iterations or hyperparameter
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tuning, which in general forms an important advantage of deep-
learning-based solutions to inverse imaging problems™.

Here we introduce a digital image refocusing framework in
fluorescence microscopy by training a deep neural network using
microscopic image data, enabling 3D imaging of fluorescent sam-
ples using a single 2D wide-field image, without the need for any
mechanical scanning, additional hardware or parameter estimation.
This framework rapidly refocuses a 2D fluorescence image onto
user-defined 3D surfaces (such as tilted planes, curved surfaces and
others), and can be used to digitally correct for various aberrations
caused by the sample and/or the optical system. We term this deep-
learning-based approach Deep-Z, and use it to computationally
refocus a single 2D wide-field fluorescence image onto 3D surfaces
within the sample, without sacrificing the imaging speed, resolution
or field of view (FOV) of a standard microscope.

In Deep-Z, an input 2D fluorescence image is first appended
with a user-defined digital propagation matrix (DPM) that repre-
sents, pixel-by-pixel, the axial distance of the target surface from
the plane of the input image (Fig. 1). Deep-Z is trained using a
conditional generative adversarial neural network (GAN)*** with
accurately matched pairs of (1) various fluorescence images axially
focused at different depths and appended with different DPMs, and
(2) the corresponding fluorescence images (that is, the ground-truth
labels) captured at the correct (target) focus plane defined by the
corresponding DPM. Through this training process that only uses
experimental image data, the generator network of the GAN learns
to interpret the values of each DPM pixel as an axial refocusing dis-
tance, and outputs an equivalent fluorescence image that is digitally
refocused within the sample to the 3D surface defined by the user.
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Fig. 1| Refocusing of fluorescence images using Deep-Z. a, Steps involved in using the Deep-Z network. By appending a DPM to a single fluorescence
image (left) and passing it through a trained Deep-Z network, refocused images at different planes can be virtually obtained. The PSF generated by Deep-Z
(middle) and mechanical scanning (right) are shown for comparison. Color scale indicates intensity. b, Lateral FWHM histograms for 461 individual
isolated fluorescence nanobeads (300 nm) distributed over ~500 x 500 um?, measured using Deep-Z inference (n=1 captured image) and images
obtained using mechanical axial scanning (n=41 captured images) match each other very well. ¢, As in b, except using the axial FWHM measurements for
the same dataset, revealing a very good match between Deep-Z inference results and the axial mechanical scanning results.

Using Deep-Z, we imaged Caenorhabditis elegans neurons using
a standard wide-field fluorescence microscope and extended the
native depth of field (DOF) by ~20-fold. Using Deep-Z, we further
demonstrated 3D tracking of the neuron activity of a C. elegans
worm over an extended DOF using a time sequence of fluorescence
images acquired at a single focal plane. Furthermore, we used spa-
tially non-uniform DPMs to refocus a 2D input fluorescence image
onto user-defined 3D surfaces to computationally correct for aber-
rations such as sample drift, tilt and spherical aberrations, all per-
formed after the image acquisition and without any modifications
to the optical hardware of a standard fluorescence microscope.

Another important feature of Deep-Z is that it permits cross-
modality digital refocusing of fluorescence images, where the GAN
is trained with gold-standard label images obtained by a differ-
ent fluorescence microscopy modality. We term this framework

Deep-Z+. To demonstrate a proof of concept, we trained Deep-Z+
with input and label images that were acquired with a wide-field
fluorescence microscope and a confocal microscope, respectively,
to blindly generate the output of this cross-modality Deep-Z+: digi-
tally refocused images of an input wide-field fluorescence image
that match confocal microscopy images of the same sections.

Results

Digital refocusing of fluorescence images using Deep-Z. Figure 1a
demonstrates Deep-Z-based digital refocusing of a single image of
a 300-nm fluorescent bead (excitation and emission wavelengths of
538 nm and 584 nm, respectively) to multiple user-defined planes,
represented by different DPMs; each one of these propagation
matrices represents, pixel-by-pixel, the axial distance of the tar-
get surface from the plane of the input image (Fig. 1a). The native
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Fig. 2 | 3D imaging of C. elegans neuron nuclei using Deep-Z. Different ROls are digitally refocused using Deep-Z to different planes within the sample
volume; the resulting images provide a very good match to the corresponding ground-truth images, acquired using a scanning fluorescence microscope.
The absolute difference images of the input and output with respect to the corresponding ground-truth image are also provided on the right, with
structural similarity index (SSIM) and root mean square error (r.m.s.e.) values reported, further demonstrating the success of Deep-Z. Lines represent
cross-sectional plots and arrowheads indicate where the cross-section was taken; blue and green represent two separate cross-section lateral locations.
Scale bars, 25 um. Experiments were repeated with 20 images, achieving similar results. Color scales indicate intensity.

DOF of the input fluorescence image, as defined by the numerical
aperture (NA) of the objective lens (20x/0.75 NA), is ~1 pm; using
Deep-Z, we digitally refocused the image of this fluorescent bead
over an axial range of approximately +10 pm, matching the corre-
sponding mechanically scanned images of the same region-of-inter-
est (ROI), which form the ground-truth. Note that the PSF in Fig. 1a
is asymmetric in the axial direction, which provides directional cues
to the neural network regarding the digital propagation of an input
image by Deep-Z. Unlike a symmetric Gaussian beam”, such PSF
asymmetry along the axial direction is ubiquitous in fluorescence
microscopy systems™.

Deep-Z also provides an improved signal-to-noise ratio (SNR)
at its output as compared to a fluorescence image of the same
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object measured at the corresponding depth (Supplementary
Fig. 1). To further quantify Deep-Z output we used PSF analysis;
Fig. 1b,c illustrates the histograms of both the lateral and the axial
full-width-half-maximum (FWHM) values of 461 individual iso-
lated nanobeads. These histograms agree with each other very well
(Fig. 1b,c), confirming the match between Deep-Z output images
calculated from a single fluorescence image and the corresponding
axially scanned ground-truth images.

Next, we tested Deep-Z by imaging the neurons of a C. elegans
nematode expressing pan-neuronal tagRFP*. Figure 2 demon-
strates our blind-testing results for Deep-Z-based refocusing of
different parts of a C. elegans worm from a single wide-field fluores-
cence input image. Using Deep-Z, non-distinguishable fluorescent
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neurons in the input image were brought into focus at different
depths, while other in-focus neurons in the input image became
out-of-focus and smeared into the background, according to
their true axial positions in 3D; comparisons to the ground-truth
mechanical scans are provided as cross-sections and image dif-
ference analyses in Fig. 2 and Supplementary Fig. 2. For optimal
performance, this Deep-Z model was specifically trained using
C. elegans samples, and the axial range of its refocusing capabil-
ity is determined by the training data range (+10um), and fails
outside of this training range (Supplementary Figure 3). Using
Deep-Z, we also generated (from a single 2D fluorescence image)
a virtual 3D stack (Supplementary Video 1) and 3D visualiza-
tion (Supplementary Video 2) of a C. elegans worm, over an axial
range of approximately +10 um. Similar results were also obtained
for a C. elegans imaged under a 40x/1.3 NA objective lens, where
Deep-Z successfully refocused the input image over an axial range
of approximately +4 um (Supplementary Fig. 4).

Next, we captured a video of four moving C. elegans worms,
where each frame of this fluorescence video was digitally refo-
cused to various depths using Deep-Z. This enabled us to cre-
ate simultaneously running videos of the same sample, each one
focused at a different depth (Supplementary Video 3). Each one of
these virtually created videos are temporally synchronized to each
other (that is, the frames at different depths have identical time-
stamps), which is not possible with a scanning-based 3D imaging
system owing to the unavoidable time delay between successive
measurements of different parts of the sample. Quite importantly,
Deep-Z also enables correction for sample-drift-induced defocus
after the image capture. Supplementary Video 4 shows a moving
C. elegans recorded by a fluorescence microscope, where Deep-Z
digitally brought the defocused nematode into focus (also see
Supplementary Note 1). In addition to 3D imaging of a nematode,
Deep-Z also works well to digitally refocus the images of fluores-
cent samples that are spatially denser such as the mitochondria and
F actin structures within bovine pulmonary artery endothelial cells
(BPAEC) (Supplementary Fig. 5).

Deep-Z not only substantially boosts the imaging speed, but also
reduces photobleaching on the sample. For a wide-field fluorescence
microscopy experiment, where an axial image stack is acquired,
the illumination excites the fluorophores through the entire speci-
men, and the total light exposure of a given point within the sample
volume is proportional to the number of imaging planes that are
acquired during a single-pass z stack. By contrast, Deep-Z only
requires a single image acquisition, if its axial training range covers
the sample depth. This reduction, enabled by Deep-Z, in the num-
ber of axial planes that need to be imaged within a sample directly
helps to reduce the photobleaching of samples (Supplementary Fig.
6 and Supplementary Note 2). This reduced light dose is also likely
to reduce the phototoxicity associated with volumetric imaging.

So far, the blindly tested samples were inferred with a network
that was trained using the same type of sample and the same micros-
copy system. In Supplementary Notes 3-4, we evaluated the perfor-
mance of Deep-Z under different scenarios, where a change in the
test data distribution is introduced in comparison to the training
image set, such as (1) a different type of sample is imaged, (2) a
different microscopy system is used for imaging and (3) a differ-
ent illumination power or SNR is used. Our results (Supplementary
Figs. 7-9) reveal the robustness of Deep-Z to these changes; how-
ever, to achieve the best performance using Deep-Z, the network
should be trained (from scratch or through transfer learning, which
expedites the training process) using training images obtained with
the same microscope system and the same types of samples as are
expected to be used at the testing phase.

As illustrated in Supplementary Notes 5-6, Deep-Z is also
robust to changes in the density of the fluorescent objects within
the sample (up to a limit, which is a function of the axial refocusing

Table 1| Neuron segmentation results for a C. elegans worm
using a watershed-based segmentation algorithm

Watershed-based neuron segmentation

n (neurons) Az (mean+ |Az| (mean +
s.d.; pm) s.d.; um)

Input image 95 —0.265+1.437 1156 +0.885
(M=1image)
Deep-Z output 128 —0.575+1.377 0.852+1.223
stack (M =1
image)
Merged stack 148 —0.157+0.983 0.639+0.761
(M =2 images)
Mechanical 146 Ground truth Ground truth
scan stack

(M= 41images)

The resulting segmented neuron locations were also compared against the ground truth (that is,
the corresponding mechanically scanned image stack, M=41images), reporting the axial error,
Az, as well as the absolute axial error, |Az|, as mean +s.d. in micrometers, respectively (also see
Supplementary Note 7).

distance), the exposure time of the input images, as well as the illu-
mination intensity modulation (Supplementary Figs. 10-13 and
Supplementary Video 5).

C. elegans neuron segmentation. For C. elegans neuron imaging, by
virtual refocusing over an extended DOF, Deep-Z helps to segment
more neurons and accurately predict their depth location as com-
pared to a single focal plane image. To demonstrate this capability, we
show the segmentation results of a C. elegans worm (Supplementary
Figs. 14d-1) calculated using a watershed segmentation algorithm*
from a 2D input image, the corresponding Deep-Z virtual image
stack and the mechanically scanned ground-truth image stack
(41 depths with 0.5-um axial spacing); the results are summarized
in Table 1. In comparison to the segmentation results obtained
from the 2D input image (Supplementary Fig. 14e), the segmenta-
tion obtained using the Deep-Z virtual image stack (Supplementary
Fig. 14f) detected 33 additional neurons, predicting the correct 3D
positions of 128 neurons in total. In comparison to the ground-
truth mechanically scanned 3D image stack (Supplementary
Fig. 14i), the segmentation algorithm recognized 18 fewer neurons
for the Deep-Z generated virtual stack, which were mostly located
within the head, where the neurons are much denser and are rela-
tively more challenging to recover and segment. In sparser regions
of the worm, the neurons were mostly correctly segmented, match-
ing the results obtained using the mechanically scanned 3D image
stack (41 axial scans). The depth locations of the segmented neu-
rons also matched well with the corresponding depths measured
using the ground-truth mechanically scanned 3D image stack, with
an average depth difference of Az=—0.575+1.377 um (Table 1).
To further improve Deep-Z-based neuron segmentation in
denser regions of the sample (such as the head of a worm), images
from more than one focal plane can be used as input. In compari-
son to the mechanically scanned 3D image stack, this is still sub-
stantially faster, requiring fewer images to recover the volume of the
specimen. For instance, in Supplementary Fig. 14h we demonstrate
the segmentation results of merging two virtual image stacks cre-
ated by Deep-Z (taking the per-pixel maximum), both spanning
—10pm to 10 pm but generated from two different input images at
z=0um and z=4um, respectively. The segmentation algorithm in
this case identified n=148 neurons and the results match better to
the ground-truth axial scanning results, n=146 (Table 1). To shed
more light on this comparison, we also used another segmentation
algorithm (TrackMate*') on the same image dataset; the results of
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Fig. 3 | C. elegans neuron activity tracking in 3D using Deep-Z. a, MIP along the axial direction of the median-intensity image taken across the time
sequence. The red channel (Texas Red) labels neuron nuclei. The green channel (FITC) labels neuron calcium activity. Scale bar, 25 um. Scale bars for

the expanded regions, 10 um. b, All the 155 localized neurons are shown in 3D, depths are color-coded. ¢, 3D tracking of neuron calcium activity events
corresponding to the 70 most active neurons. The neurons were grouped into three clusters (C1-C3) on the basis of similarities in their calcium activity
patterns (Methods). The locations of these neurons are marked by the circles in a. The colors of the circles in a represents different clusters: C1 (blue), C2

(cyan) and C3 (yellow).

this analysis, summarized in Supplementary Note 7, confirmed a
similar trend as that shown in Table 1.

3D functional imaging of C. elegans using Deep-Z. To highlight
the utility of Deep-Z for tracking the activity of neurons in 3D, we
recorded the fluorescence video of a C. elegans worm at a single focal
plane (z=0pm) at ~3.6 Hz for ~35s, using a 20x/0.8 NA objective
lens with two fluorescence channels, FITC for neuron activity and
Texas Red for neuron locations. Each frame at each channel of the
acquired video was digitally refocused using Deep-Z to a series of
planes (—10pm to 10um, 0.5-um step size), generating a virtual
3D fluorescence stack for each acquired frame. Supplementary
Video 6 shows a comparison of the recorded input video and a video
of the maximum intensity projection (MIP) along z for these virtual
stacks. As can be seen in this comparison, the neurons that are defo-
cused in the input video can be refocused on demand at the Deep-Z
output for both of the fluorescence channels. This enables accurate
spatiotemporal tracking of individual neuron activity in 3D from a
temporal sequence of 2D fluorescence images, captured at a single
focal plane.

Next, we segmented the voxels of each neuron using the Texas
Red channel, and tracked the change in the fluorescence inten-
sity, that is, AF(t)=F(t) —F,, in the FITC channel (neuron activ-
ity) inside each neuron segment over time, where F(¢) is the neuron
fluorescence emission intensity and F, is its time average (Methods).
A total of 155 neurons in 3D were isolated using Deep-Z output
images (Fig. 3b, Supplementary Video 7). For comparison, in
Supplementary Fig. 14b we report the results of the same segmen-
tation algorithm applied to just the input 2D image, in which 99
neurons were identified, without any depth information.
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Figure 3c plots the activities of the 70 most active neurons, which
were grouped into clusters C1-C3 on the basis of similarities in
their calcium activity patterns (Methods). The activity of all of the
155 neurons inferred using Deep-Z are provided in Supplementary
Fig. 15. Figure 3c reports that cluster C3 calcium activities increased
at t=14s, whereas the activities of cluster C2 decreased at a simi-
lar time point. These neurons very likely correspond to the type A
and B motor neurons that promote backward and forward motion,
respectively, which typically anticorrelate with each other*. Cluster
C1 features two cells that were comparatively larger in size, located
in the middle of the worm. These cells had three synchronized short
spikes at t=4, 17 and 32s. Their 3D positions and the regularity
of their calcium activity pattern suggest that they are either neuro-
nal or muscle cells of the defecation system that initiates defecation
in regular intervals in coordination with the locomotion system™.
We emphasize that all this 3D-tracked neuron activity was in fact
embedded in the input 2D fluorescence image sequence, which was
acquired at a single focal plane. Through Deep-Z, the neuron loca-
tions and activities were accurately tracked using a 2D microscopic
time sequence, without the need for mechanical scanning, addi-
tional hardware or a trade-off of resolution or imaging speed.

As Deep-Z generates temporally synchronized virtual image
stacks through digital refocusing, it can be used to match the imag-
ing speed to the limit of the camera framerate. To highlight this
opportunity, we used the stream mode of the camera of our micro-
scope (Methods) and captured two videos at 100 frames per second
to monitor the neuron nuclei (Texas Red) and the neuron calcium
activity (FITC) of a moving C. elegans over a period of 10, and used
Deep-Z to generate virtually refocused videos over an axial range of
+10um (Supplementary Videos 8 and 9).
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Fig. 4 | Non-uniform DPMs enable digital refocusing of a single fluorescence image onto user-defined 3D surfaces using Deep-Z. a, Measurement of a
tilted fluorescent sample (300-nm beads). b, The corresponding DPM for this tilted plane. ¢, Measured raw fluorescence image; the left and right parts
are out of focus in different directions, owing to the sample tilt. d, The Deep-Z output rapidly brings all the regions into correct focus. e f, Lateral FWHM
values of the nanobeads shown in ¢,d, respectively, clearly demonstrating that Deep-Z with the non-uniform DPM brought the out-of-focus particles into
focus. g, Measurement of a cylindrical surface with fluorescent beads (300-nm beads). h, The corresponding DPM for this curved surface. i, Measured
raw fluorescence image; the middle region and the edges are out-of-focus owing to the curvature of the sample. j, The Deep-Z output rapidly brings all the
regions into correct focus. kI, report the lateral FWHM values of the nanobeads shown in ij, respectively, clearly demonstrating that Deep-Z with the non-
uniform DPM brought the out-of-focus particles into focus, generating monodispersed distributions with a median of ~0.96 um and ~0.91um, respectively.
Experiments were repeated with 32 images, achieving similar results. Scale bars for the expanded regions, 2 um.
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Deep-Z-based aberration correction using spatially non-uni- fluorescence image after image capture and measurement or assess-

form DPMs. Even though Deep-Z is trained with uniform DPMs,
during testing one can also use spatially non-uniform entries as part
of a DPM to refocus an input fluorescence image onto user-defined
3D surfaces. Such a unique capability can be useful, among many
applications, for simultaneous autofocusing of different parts of a

ment of the aberrations introduced by the optical system (and/or
the sample), as well as for correction of such aberrations by applying
a desired non-uniform DPM. To exemplify this opportunity, Fig. 4
demonstrates the correction of the planar tilting and cylindrical
curvature of two different samples, after the acquisition of a single
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Fig. 5 | Deep-Z+, cross-modality digital refocusing of fluorescence images. a-c, A single wide-field fluorescence image (63%x/1.4 NA objective lens)

of BPAEC microtubule structures (a) was digitally refocused using Deep-Z+ to different planes in 3D (b), matching the images captured by a confocal
microscope at the corresponding planes (c), retrieving volumetric information from a single input image and performing axial sectioning at the same
time. Wide-field (WF) images are also shown in ¢ for comparison. The cross-sections (x-z and y-z) of refocused images are shown to demonstrate the
match between Deep-Z+ inference and the ground-truth (GT) confocal microscope images of the same planes; the same cross sections (x-z and y-z)
are also shown for a wide-field scanning fluorescence microscope, reporting a substantial axial blur in each case. Each cross-sectional expanded image
spans 1.6 um in the z direction (with an axial step size of 0.2 um) and the dotted arrows mark the locations at which the x-z and y-z cross sections were
taken. d, The absolute difference images of the Deep-Z+ output with respect to the corresponding confocal images, with SSIM and r.m.s.e. values, further
quantifying the performance of Deep-Z+. For comparison, we also show the absolute difference images of the ‘standard’ Deep-Z output images and the
scanning wide-field fluorescence microscope images with respect to the corresponding confocal images, both of which report increased error and weaker
SSIM as compared to |GT — Deep-Z+|. The quantitative match between |GT — WF| and |GT — Deep-Z| also suggests that the impact of 60-nm axial offset
between the confocal and wide-field image stacks is negligible. Scale bars, 10 um. Experiments were repeated with 42 images, achieving similar results.

Color scales indicate intensity.

2D fluorescence image per object. Figure 4a illustrates the first mea-
surement, in which the plane of a fluorescent nanobead sample was
tilted with respect to the focal plane of the objective lens (Methods).
By using a non-uniform DPM (see Fig. 4b), which represents the
sample tilt, Deep-Z can act on the blurred input image (Fig. 4c) and
accurately bring all the nanobeads into focus (Fig. 4d), even though
it was only trained using uniform DPMs. The lateral FWHM val-
ues calculated at the network output image became monodispersed,
with a median of ~0.96um (Fig. 4f), as compared to a median of
~2.14pm at the input image (Fig. 4e). Similarly, Fig. 4g illustrates
the second measurement, where the nanobeads were distributed
on a cylindrical surface with a diameter of ~7.2mm. Using a non-
uniform DPM that defines this cylindrical surface (Fig. 4h), the

NATURE METHODS | www.nature.com/naturemethods

aberration in Fig. 4i was corrected using Deep-Z (Fig. 4j); the lateral
FWHM values calculated at the network output once again became
monodispersed (Fig. 41). Supplementary Note 8 details an analysis
on the 3D surface curvature that a DPM can have without generat-
ing artifacts.

Cross-modality digital refocusing of fluorescence images.
Deep-Z can also be used to perform cross-modality digital refo-
cusing of an input image, where the generator can be trained using
pairs of input and label images captured by two different fluores-
cence imaging modalities, which we term as Deep-Z+. To demon-
strate this capability, we trained a Deep-Z+ network using pairs of
wide-field microscopy images (inputs) and confocal microscopy
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images at the corresponding planes (ground-truth labels) to per-
form cross-modality digital refocusing (Methods). Figure 5 demon-
strates our blind-testing results for imaging microtubule structures
of BPAEC using Deep-Z+. The trained Deep-Z+ network digitally
refocused the input wide-field fluorescence image onto different
axial distances, while at the same time rejecting some of the defo-
cused spatial features at the refocused planes, matching the confocal
images of the corresponding planes, which serve as our ground-
truth (Fig. 5). For example, the microtubule structure at the lower
left corner of Fig. 5b, which was prominent at a refocusing distance
of z=0.34 um, was digitally rejected by Deep-Z+ at a refocusing dis-
tance of z=—0.46 um as it became out of focus at this axial distance,
matching the corresponding image of the confocal microscope at
the same depth (Fig. 5¢). Wide-field images are also shown in Fig. 5¢
for comparison. These scanning wide-field images report the clos-
est heights to the corresponding confocal images, and have an axial
offest of 60 nm, as the two image stacks are discretely scanned and
digitally aligned to each other. Figure 5 reports x-z and y-z cross
sections of Deep-Z+ output images, in which the axial distributions
of the microtubule structures are substantially sharper as compared
to the axial scanning images of a wide-field fluorescence micro-
scope, providing a very good match to the cross sections obtained
with a confocal microscope, matching the aim of its training.

Discussion

We developed a unique framework, termed Deep-Z, powered by
deep neural networks, that enables rapid 3D refocusing within a
sample using a single 2D fluorescence image as input. This frame-
work is non-iterative and does not require hyperparameter tuning
after its training stage. Even though the network is only trained
using uniform DPMs, one can still apply various non-uniform
DPMs during the inference stage to enable, for example, correction
of sample drift, tilt, curvature or other optical aberrations, which
might prove useful for longitudinal imaging experiments in biology
and life sciences, by digitally recovering valuable information that
might otherwise be lost owing to, for example, the sample becom-
ing out of focus or tilted over time. On the basis of these unique
features, Deep-Z also has the potential to reduce the photobleaching
of samples that is associated with volumetric fluorescence imaging.

Yet another unique feature of this Deep-Z framework is that it
permits cross-modality virtual refocusing of fluorescence images,
where the network is trained with gold-standard label images
obtained by a different fluorescence microscopy modality (for
example, confocal) to teach the generator network to digitally
refocus an input image (for example, an image acquired by wide-
field microscopy) onto another plane within the sample volume,
but this time to match the image of the same plane acquired by a
different fluorescence imaging modality as compared to the input
image. Figure 5 contains an example of wide-field to confocal
transformation results.

We also demonstrated the efficacy of Deep-Z for structural and
functional imaging of neurons in C. elegans nematodes. For neuron
segmentation applications, we observed that Deep-Z output images
in denser regions of a sample (for example, the head of a C. elegans)
resulted in under-counting of the segmented neurons, which was
improved by merging the Deep-Z output images resulting from two
different focal planes as input. In fact, neuron segmentation is in
general a challenging task, and not all the neurons in the body of a
worm can be accurately identified in each experiment, even using
a mechanically scanned image stack with a high NA objective and
state-of-the-art neuron-segmentation algorithms*. Although not
demonstrated here, Deep-Z can potentially be used as a front-end
module to jointly optimize future deep-learning-based neuron-seg-
mentation algorithms, which can make use of Deep-Z to reduce the
number of images required to accurately and efficiently track neu-
ral activity of model organisms. This could also benefit from new

generator architectures that utilize more than one input images, for
example, from different focal planes, to more effectively combine
additional 3D information acquired at different planes.

Finally, we should note that the retrievable axial range in Deep-Z
depends on the SNR of the recorded image, that is, if the depth
information carried by the PSF falls below the noise floor, accurate
inference will be challenging. To validate the performance of a pre-
trained Deep-Z network under variable SNR, we tested the infer-
ence of Deep-Z at different exposure conditions (Supplementary
Figure 7), revealing the robustness of its inference over a broad
range of exposure times that were not included in the training data
(Supplementary Note 3). Our results demonstrated an enhance-
ment of ~20x in the DOF of a wide-field fluorescence image using
Deep-Z. This refocusing range is in fact not an absolute limit but
rather a practical choice for our training data, and it may be further
improved through hardware modifications to the optical setup by
engineering the PSF in the axial direction®>**. Supplementary
Video 10 shows an experimental demonstration of Deep-Z blind
inference for a double-helix PSE
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Methods

Sample preparation. The 300-nm red fluorescence nanobeads were purchased
from MagSphere (PSF-300NM 0.3 UM RED), diluted 5,000 times with methanol
and ultrasonicated for 15 min before and after dilution to break down the clusters.
For the fluorescent bead samples on a flat surface and a tilted surface, a number 1
coverslip (22 X 22 mm?, thickness of ~150 um) was thoroughly cleaned and plasma
treated. Then, a 2.5-pl droplet of the diluted bead sample was pipetted onto the
coverslip and dried. For the fluorescent bead sample on a curved (cylindrical)
surface, a glass tube (diameter of ~7.2 mm) was thoroughly cleaned and plasma
treated. Then, a 2.5-pl droplet of the diluted bead sample was pipetted onto the
outer surface of the glass tube and dried.

Structural imaging of C. elegans neurons was carried out in strain AML18.
AMLI18 carries the genotype wtfls3 [rab-3p::NLS::GFP+rab-3p:NLS::tagRFP]
and expresses GFP and tagRFP in the nuclei of all the neurons”. For functional
imaging, we used the strain AML32, carrying wtfls5 [rab-3p::NLS::GCaMP6s+rab-
3p:NLS:tagRFP]. The strains were acquired from the Caenorhabditis Genetics
Center. Worms were cultured on nematode growth medium seeded with OP50
bacteria using standard conditions*. For imaging, worms were washed off the
plates with M9 and anesthetized with 3 mM levamisole”. Anesthetized worms were
then mounted on slides seeded with 3% agarose. To image moving worms, the
levamisole was omitted.

Two slides of multilabeled BPAEC were acquired from Thermo Fisher:
FluoCells Prepared Slide 1 and FluoCells Prepared Slide 2. These cells were
labeled to express different cell structures and organelles. The first slide uses
Texas Red for mitochondria and FITC for F-actin structures. The second slide
uses FITC for microtubules.

Fluorescence image acquisition. The fluorescence images of nanobeads, C. elegans
structure and BPAEC samples were captured by an inverted scanning microscope
(IX83, Olympus Life Science) using a 20x/0.75NA objective lens (UPLSAPO20X,
Olympus Life Science). A 130-W fluorescence light source (U-HGLGPS, Olympus
Life Science) was used at 100% output power. Two bandpass optical filter sets

were used, Texas Red and FITC. The bead samples were captured by placing the
coverslip with beads directly on the microscope sample mount. The tilted surface
sample was captured by placing the coverslip with beads on a 3D-printed holder,
which created a 1.5° tilt with respect to the focal plane. The cylindrical tube surface
with fluorescent beads was placed directly on the microscope sample mount.
These fluorescent bead samples were imaged using a Texas Red filter set. The

C. elegans sample slide was placed on the microscope sample mount and imaged
using a Texas Red filter set. The BPAEC slide was placed on the microscope sample
mount and imaged using Texas Red and FITC filter sets. For all the samples, the
scanning microscope had a motorized stage (ProScan XY stage kit for IX73/83)
that moved the samples to different FOV's and performed image-contrast-based
autofocus at each location. The motorized stage was controlled using MetaMorph
microscope automation software (Molecular Devices). At each location, the
control software autofocused the sample on the basis of the s.d. of the image, and

a z-stack was taken from —20 um to 20 um with a step size of 0.5 um. The image
stack was captured by a monochrome scientific CMOS camera (ORCA-flash4.0 v2,
Hamamatsu Photonics K.K), and saved in uncompressed tiff format with 81 planes
and 2,048 x 2,048 pixels in each plane.

The images of C. elegans neuron activity were captured by another scanning
wide-field fluorescence microscope (TCS SP8, Leica Microsystems) using a
20%/0.8 NA objective lens (HCPLAPO20x/0.80DRY, Leica Microsystems) and
a40x/1.3NA objective lens (HC PL APO 40x/1.30 oil, Leica Microsystems).

Two bandpass optical filter sets were used, Texas Red and FITC. The images
were captured by a monochrome scientific CMOS camera (Leica DFC9000GTC-
VSC08298). For capturing image stacks of anesthetized worms, the motorized
stage controlled by a control software (LAS X, Leica Microsystems) moved the
sample slide to different FOVs. At each FOV, the control software took a z stack
from —20 pm to 20 um with a step size of 0.5 um for the 20x/0.8 NA objective
lens images or a step size of 0.27 um for the 40x/1.3 NA objective lens images,
with respect to a middle plane (z=0um). Two images were taken at each z plane,
for the Texas Red channel and FITC channel, respectively. For capturing 2D
videos of dynamic worms, the control software took a time-lapse video that also
time-multiplexed the Texas Red and FITC channels at the maximum speed of
the system. This resulted in an average framerate of ~3.6 frames per second for a
maximum camera framerate of 10 frames per second, for imaging both channels.

The BPAEC wide-field and confocal fluorescence images were captured by
another inverted scanning microscope (TCS SP5, Leica Microsystems). The images
were acquired using a 63x/1.4 NA objective lens (HC PL APO 63x/1.40 o0il CS2,
Leica Microsystems) and a FITC filter set was used. The wide-field images were
recorded by a charge-coupled device with 1,380 X 1,040 pixels and a 12-bit dynamic
range, whereas the confocal images were recorded by a photo-multiplier tube with
1,024 x 1,024 pixels and an 8-bit dynamic range. The scanning microscope had a
motorized stage that moved the sample to different FOVs and depths. For each
location, a stack of 12 images with 0.2-um axial spacing was recorded.

Image preprocessing and preparation of training data. Each captured image
stack was first axially aligned using the Image] plugin ‘StackReg™’, which corrects

the rigid shift and rotation caused by the microscope stage inaccuracy. Then

an extended depth of field (EDF) image was generated using the Image] plugin
‘Extended Depth of Field'. This EDF image was used as a reference image to
normalize the whole image stack in the following steps: (1) a triangular threshold™
was used on the image to separate the background and foreground pixels; (2) the
mean intensity of the background pixels of the EDF image was determined to

be the background noise and subtracted; (3) the EDF image intensity was scaled
to 0-1, where the scale factor was determined such that 1% of the foreground
pixels above the background were greater than one (that is, saturated); and (4) the
background level was subtracted from each image in the stack and each image was
normalized by the intensity scaling factor. For testing data without an image stack,
steps 1-3 were applied on the input image instead of the EDF image.

To prepare the training and validation datasets, on each FOV, a geodesic
dilation* with fixed thresholds was applied on fluorescence EDF images to
generate a mask that represents the regions containing the sample fluorescence
signal above the background. Then, a customized greedy algorithm was used to
determine a minimal set of regions with 256 x 256 pixels that covered this mask,
with ~5% area overlap between these training regions. The lateral locations of
these regions were used to crop images on each height of the image stack, where
the middle plane for each region was set to be the one with the highest s.d.

Then, 20 planes above and 20 planes below this middle plane were set to be the
range of the stack and an input image plane was generated from each of these 41
planes. Depending on the size of the dataset, around 5-10 of these 41 planes were
randomly selected as the corresponding target plane, forming around 150-300
image pairs. For each one of these image pairs, the refocusing distance was
determined on the basis of the location of the plane (that is, 0.5 um multiplied by
the difference from the input plane to the target plane). By repeating this number,
a uniform DPM was generated and appended to the input fluorescence image.
The final dataset typically contained ~100,000 image pairs. This was randomly
divided into a training dataset and a validation dataset, which took 85% and 15%
of the data, respectively. During the training process, each data point was further
augmented five times by flipping or rotating the images by a random multiple of
90°. The validation dataset was not augmented. The testing dataset was cropped
from separate measurements with sample FOV's that did not overlap with the
FOVs of the training and validation datasets.

Deep-Z network architecture. The Deep-Z network is formed by a least square
GAN framework™, and it is composed of two parts: a generator and a discriminator
(Supplementary Note 9). The generator is a convolutional neural network inspired
by the U-Net™, and follows a similar structure as that seen in refs. ***°. The
generator network consists of a downsampling path and a symmetric upsampling
path. In the downsampling path, there are five downsampling blocks. Each block
contains two convolutional layers that map the input tensor x; to the output

tensor x; ,

X1 = X -+ ReLU[CONVY, {ReLU[CONV {x;}]}] (1)

where ReLU[.] stands for the rectified linear unit operation and CONV{.}
stands for the convolution operator (including the bias terms). The subscript
of CONV denotes the number of channels in the convolutional layer; along the
downsampling path we have: k, =25, 72, 144, 288, 576 and k, =48, 96, 192, 384,
768 for levels k=1, 2, 3, 4, 5, respectively. The ‘+’ sign in equation (1) represents a
residual connection. Zero padding was used on the input tensor x; to compensate
for the channel number mismatch between the input and output tensors. The
connection between two consecutive downsampling blocks is a 2 X 2 max-pooling
layer with a stride of 2 X 2 pixels to perform a 2x downsampling. The fifth
downsampling block connects to the upsampling path, which will be detailed next.
In the upsampling path, there are four corresponding upsampling blocks, each
of which contains two convolutional layers that map the input tensor y,, , to the
output tensor y, using:

yx = ReLU[CONV}, {ReLU[CONV}, {CAT (x¢1 1, yi1) ] ()

where the CAT(-) operator represents the concatenation of the tensors along
the channel direction, that is, CAT(x,, ,,), ) appends tensor x,, , from the
downsampling path to the tensor y, ., in the upsampling path at the corresponding
level k+ 1. The number of channels in the convolutional layers, denoted by k; and
k,, are k; =72, 144, 288, 576 and k, =48, 96, 192, 384 along the upsampling path for
k=1, 2, 3, 4, respectively. The connection between consecutive upsampling blocks
is an up-convolution (convolution transpose) block that upsamples the image
pixels by 2X. The last block is a convolutional layer that maps the 48 channels to
one output channel.

The discriminator is a convolutional neural network that consists of six
consecutive convolutional blocks, each of which maps the input tensor z; to the
output tensor z,, ,, for a given level i

211 = LReLU[CONV,, {LReLU[CONV; {z}]}] 3)

where the LReLU stands for a leaky ReLU operator with a slope of 0.01. The
subscript of the convolutional operator represents its number of channels, which
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are i, =48, 96, 192, 384, 768, 1,536 and i,= 96, 192, 384, 768, 1,536, 3,072, for the
convolution block i=1, 2, 3, 4, 5, 6, respectively.

After the last convolutional block, an average pooling layer flattens the
output and reduces the number of parameters to 3,072. Subsequently there are
fully connected layers of size 3,072 X 3,072 with LReLU activation functions, and
another fully connected layer of size 3,072 X 1 with a sigmoid activation function.
The final output represents the discriminator score, which falls within (0, 1), where
0 represents a false and 1 represents a true label.

All the convolutional blocks use a convolutional kernel size of 3 X 3 pixels and
replicate padding of one pixel unless mentioned otherwise. All the convolutions
have a stride of 1 1 pixel, except the second convolutions in equation (3), which
has a stride of 2 X 2 pixels to perform a 2x downsampling in the discriminator
path. The weights are initialized using the Xavier initializer™ and the biases are
initialized to 0.1.

Training and testing of the Deep-Z network. The Deep-Z network learns to use
the information given by the appended DPM to digitally refocus the input image
to a user-defined plane. In the training phase, the input data of the generator G(.)
have the dimensions of 256 X 256 X 2, where the first channel is the fluorescence
image and the second channel is the user-defined DPM. The target data of G(.)
have the dimensions of 256 X 256, which represent the corresponding fluorescence
image at a surface specified by the DPM. The input data of the discriminator D(.)
have the dimensions of 256 X 256, which can be either the generator output or

the corresponding target z?. During the training phase, the network iteratively
minimizes the generator loss L and discriminator loss L, defined as:

Lo = % E;‘ [D (G (x“))) - 1] 2+a$ E;‘ MAE (x<"> 29) (4)

o= () (@) -1 o

=1

where N is the number of images used in each batch (for example, N=20), G(x)
is the generator output for the input x, z is the corresponding target label, D(.) is
the discriminator, and MAE(.) stands for mean absolute error. a is a regularization
parameter for the GAN loss and the MAE loss in L. In the training phase, it was
chosen as @ =0.02. For training stability and optimal performance, an adaptive
momentum optimizer was used to minimize both L; and Ly, with a learning rate
of 10~*and 3 X 10~° for L and L, respectively. In each iteration, six updates of the
generator loss and three updates of the discriminator loss were performed. The
validation set was tested every 50 iterations and the best network (to be blindly
tested) was chosen to be the one with the smallest MAE loss on the validation set.

In the testing phase, once the training is complete, only the generator network
is active. Limited by the graphical memory of our GPU, the largest image FOV that
we tested was 1,536 X 1,536 pixels. Because the image was normalized to be in the
range 0-1, whereas the refocusing distance was on the scale of around —10 to 10
(in micrometers), the DPM entries were divided by 10 to be in the range of —1 to 1
before the training and testing of the Deep-Z network to keep the dynamic range of
the image and DPM matrices similar to each other.

The network was implemented using TensorFlow”, performed on a PC with
Intel Core i7-8700K six-core 3.7 GHz CPU and 32 GB RAM, using an Nvidia
GeForce 1080Ti GPU. On average, the training takes ~70h for ~400,000 iterations
(equivalent to ~50 epochs). After the training, the network inference time was
~0.2s for an image with 512 x 512 pixels and ~1s for an image with 1,536 X 1,536
pixels on the same PC.

Measurement of the lateral and axial FWHM values of the fluorescent beads
samples. For characterizing the lateral FWHM of the fluorescent beads samples,

a threshold was performed on the image to extract the connected components.
Then, individual regions of 30X 30 pixels were cropped around the centroid of
these connected components. A 2D Gaussian fit was performed on each of these
individual regions, which was done using Isqcurvefit (https://www.mathworks.com/
help/optim/ug/lsqcurvefit.html) in Matlab (MathWorks) to match the function:

I(x, y) = Aexp

(%) Oy —y»z} ©

2 2
202 26y

The lateral FWHM was then calculated as the mean FWHM of x and y
directions

oAy + 0,A
FWHMyeral = 2V21n2 % (7)

where A,=A =0.325um was the effective pixel size of the fluorescence image on the
object plane. A histogram was subsequently generated for the lateral FWHM values
for all the thresholded beads (for example, n =461 for Fig. 1 and n > 750 for Fig. 4).
To characterize the axial FWHM values for the bead samples, slices along the
x-z direction with 81 steps were cropped at y=y, for each bead, from either the
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digitally refocused or the mechanically scanned axial image stack. Another 2D
Gaussian fit was performed on each cropped slice, to match the function

I(x,z) = Aexp [% %] ®

The axial FWHM was then calculated as

FWHMa = 2V21n20,A, 9)

where A,=0.5 pm was the axial step size. A histogram was subsequently generated
for the axial FWHM values.

Image quality evaluation. The network output images I°* were evaluated with
reference to the corresponding ground-truth images I°" using the following

five criteria: (1) mean square error (MSE), (2) r.m.s.e., (3) MAE, (4) correlation
coefficient and (5) SSIM**. The MSE is one of the most widely used error metrics,
defined as

1
MSE (1° IGT — Tout _ IGT 2
SE(I, 1) = | [

(10)

where N, and N, represent the number of pixels in the x and y directions,
respectively. The square root of MSE results in r.m.s.e. In comparison to MSE, MAE
uses 1-norm difference (absolute difference) instead of 2-norm difference, which is
less sensitive to outlier pixels

1

MAE(IOU‘,IGT) :WHIOM _IGTHl (11)
X
The correlation coefficient is defined as
out __ GT _
Corr(lout 16Ty — Ex Zy (Ixy ”Out) (Ixy ﬂGT)
| (12)

where p,,, and g are the mean values of the images I°* and 1T respectively.

While these criteria listed above can be used to quantify errors in the network
output as compared to the GT, they are not strong indicators of the perceived
similarity between two images. SSIM aims to address this shortcoming by
evaluating the structural similarity in the images, defined as

(2Houtkgr + C1)(260ucr + C2)
(Ugm + Hgr + Cl) (Gtzvul +ogr + CZ)

SSIM (1o, 16T) = (13)

where 6,,, and o are the standard deviations of I°* and I°" respectively, and 6,y
is the cross-variance between the two images; C, and C, are constants, used to avoid
division by a small denominator.

Tracking and quantification of C. elegans neuron activity. The C. elegans neuron
activity tracking video was captured by time multiplexing the two fluorescence
channels (FITC, followed by Texas Red and then FITC and so on). The adjacent
frames were combined so that the green color channel was FITC (neuron activity)
and the red color channel was Texas Red (neuron nuclei). Subsequent frames were
aligned using a feature-based registration toolbox with projective transformation
in Matlab (MathWorks) to correct for slight body motion of the worms. Each input
video frame was appended with DPMs representing propagation distances from
—10um to 10 um with a step size of 0.5um, and then tested through a Deep-Z
network (specifically trained for this imaging system), which generated a virtual
axial image stack for each frame in the video.

To localize individual neurons, the red channel stacks (Texas Red, neuron
nuclei) were projected by median-intensity through the time sequence. Local
maxima in this projected median-intensity stack marked the centroid of each
neuron and the voxels of each neuron was segmented from these centroids by
watershed segmentation*’, which generated a 3D spatial voxel mask for each
neuron. A total of 155 neurons were isolated. Then, the average of the 100 brightest
voxels in the green channel (FITC, neuron activity) inside each neuron spatial
mask was calculated as the calcium activity intensity F(t), for each time frame
tand each neuron i=1, 2,..., 155. The differential activity was then calculated,
AF(t)=F(t) — F,, for each neuron, where F, is the time average of F(t).

By thresholding on the s.d. of each AF(t), we selected the 70 most active cells
and performed further clustering on them on the basis of similarities in their
calcium activity pattern (Supplementary Figure 15b) using a spectral-clustering
algorithm™. The calcium activity pattern similarity was defined as

AFi(t)  AFi(t)?
Fi Fjo

Sjj = exp (14)

o2
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for neurons i and j, which results in a similarity matrix S (Supplementary Figure
15¢). The s.d. of this Gaussian similarity function is 6= 1.5, which controls the
width of the neighbors in the similarity graph. The spectral clustering solves an
eigenvalue problem on the graph Laplacian L generated from the similarity matrix
§, defined as the difference of weight matrix W and degree matrix D

L=D-W (15)
where
Sl ‘f ‘¢‘
Wij={ S (16)
0 ifi=j
YWy ifi=j
D=4 J (17)
0 if i%j

The number of clusters was chosen using eigengap heuristics*’, which was
the index of the largest general eigenvalue (by solving the general eigenvalue
problem Lv=21Dv) before the eigengap, where the eigenvalues jump up, which was
determined to be k=3 (Supplementary Figure 15d). Then the corresponding first
k=3 eigenvectors were combined as a matrix, whose rows were clustered using
standard k-means clustering™, which resulted in the three clusters of calcium
activity patterns shown in Supplementary Figure 15e and the rearranged similarity
matrix shown in Supplementary Figure 15f.

Cross-modality alignment of wide-field and confocal fluorescence images.
After its training, the Deep-Z+ network learns to digitally refocus a single input
fluorescence image acquired by a fluorescence microscope to a user-defined
target surface in 3D, but the output will match an image of the same sample
captured by a different fluorescence imaging modality at the corresponding height
(plane). To demonstrate this capability, we trained a Deep-Z+ network using
pairs of wide-field microscopy images (inputs) and confocal microscopy images
at the corresponding planes, where each stack of the wide field—confocal pair
was first self-aligned and normalized using the method described above. Then
the individual FOV's were stitched together using the ‘Tmage Stitching’ plugin
in Image] (https://imagej.net/Image_Stitching). The stitched wide-field and
confocal EDF images were then simultaneously registered using a feature-based
registration with projective transformation performed in Matlab (MathWorks;
https://www.mathworks.com/help/vision/ref/detectsurffeatures.html). Then
the stitched confocal EDF images, as well as the stitched stacks, were warped
using this estimated transformation to match their wide-field counterparts. The
non-overlapping regions of the wide-field and warped confocal images were
subsequently deleted. Then the greedy algorithm described above was used to
crop non-empty regions of 256 X 256 pixels from the remaining stitched wide-field
images and their corresponding warped confocal images. The same feature-based
registration was applied on each pair of cropped regions for fine alignment.
This step provides good correspondence between the wide-field image and the
corresponding confocal image in the lateral directions (Supplementary Note 10).
Although the axial scanning step size was fixed to be 0.2 um, the reference
zero-point in the axial direction for the wide-field and the confocal stacks needed
to be matched. To determine this reference zero-point in the axial direction, the
images at each depth were compared with the EDF image of the same region using
the SSIM?, providing a focus curve. A second-order polynomial fit was performed
on four points in this focus curve with highest SSIM values, and the reference
zero-point was determined to be the peak of the fit. The heights of wide-field and
confocal stacks were then centered by their corresponding reference zero-points
in the axial direction. For each wide-field image used as input, four confocal
images were randomly selected from the stack as the target, and their DPMs were
calculated on the basis of the axial difference of the centered height values of the
confocal and the corresponding wide-field images (Supplementary Note 10).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
We declare that all the data supporting the findings of this work are available within
the manuscript and its supplementary information.

Code availability

Deep learning models reported in this work used standard libraries and scripts
that are publicly available in TensorFlow. Through a custom-written Fiji-based
plugin, we provided our trained network models (together with some sample test

images) for the following objective lenses: Leica HC PL APO 20x/0.80 NA DRY
(two different network models trained on TxRd and FITC channels), Leica HC PL
APO 40x/1.30 NA oil (trained on TxRd channel), Olympus UPLSAPO20X 0.75NA
(trained on TxRd channel). We made this custom-written plugin and our models
publicly available through the following links: http://bit.ly/deep-z-git and http://bit.
ly/deep-z.
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each training and transfer learning phase; the best network (blindly tested) is chosen to be the one with the smallest MAE loss on the
validation dataset.

During the training of the Deep-Z network for C. elegans, the regions of the image stacks that contained a moving worm or a dead worm were
manually identified and removed from the training and validation data sets.

Deep-Z networks were first successfully tested on a total of 120 images, each with 1536x1536 pixels, where each image was virtually
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set, achieving similar results as in Figure 1.
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difference experiments, achieving similar results as in Figure 2 and Supplementary Figure 2.

-- Tested with 18 images containing C. elegans worms captured under a microscope with a 20x objective and FITC filter set through
difference experiments, achieving similar results as in Figure 2 and Supplementary Figure 2.

-- Tested with 12 images containing C. elegans worms captured under a microscope with a 40x objective and Texas Red filter set, achieving
similar results as in Supplementary Figure 4.

-- Tested with 5 imaging FOVs (cropped into 180 images with 240x240 pixels) containing BPAEC captured under a microscope with a 20x
objective and Texas Red filter set, achieving similar results as in Supplementary Figure 5

-- Tested with 5 imaging FOVs (cropped into 180 images with 240x240 pixels) containing BPAEC captured under a microscope with a 20x
objective and FITC filter set, achieving similar results as in Supplementary Figure 5

The networks were also successfully tested on another 16 time-sequences of fluorescence images, each containing 120 - 1000 frames, with
1536x1536 pixels in each frame, achieving similar results as in Supplementary Videos 3-5, 7, 8.

These networks were further successfully tested on 32 images virtually mapped to 3D surfaces that were not part of the training phase
(training only included refocusing to planes), achieving similar results as in Figure 4.

Deep-Z+ network was successfully tested on 42 image patches, each with 512x512 pixels, where each image was virtually refocused to 7
planes at different depths within the training axial range, achieving similar results as in Figure 5.

The training, validation and testing data sets were randomly selected.

Performances of deep neural networks were blindly tested and reported on images that were not included in the training or validation phases
of the network training.
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Laboratory animals Caenorhabditis elegans (C. elegans) worms [strain AML18 and AML32] were acquired from Caenorhabditis Genetics Center (CGC)
and cultured for fluorescence structural and functional imaging of their neurons.

Wild animals None
Field-collected samples None
Ethics oversight No ethical approval or guidance was required because there is no requirement for ethics in worms.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




nature ‘ methods SUPPLEMENTARY INFORMATION

https://doi.org/10.1038/5s41592-019-0622-5

In the format provided by the authors and unedited.

Three-dimensional virtual refocusing of
fluorescence microscopy images using deep
learning

Yichen Wu®1'238 Yair Rivenson®'23% Hongda Wang ©'23, Yilin Luo®"23, Eyal Ben-David?,
Laurent A. Bentolila®33, Christian Pritz® and Aydogan Ozcan®"237*

'Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA. ?Bioengineering Department, University
of California, Los Angeles, Los Angeles, CA, USA. 3California Nano Systems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA,
USA. “Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. *Department of
Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. ¢Department of Genetics, Hebrew University of Jerusalem,
Jerusalem, Israel. "Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. These authors
contributed equally: Yichen Wu, Yair Rivenson. *e-mail: ozcan@ucla.edu

NATURE METHODS | www.nature.com/naturemethods


http://orcid.org/0000-0002-9343-5489
http://orcid.org/0000-0003-1132-0715
http://orcid.org/0000-0003-0110-5624
http://orcid.org/0000-0002-4611-3049
http://orcid.org/0000-0002-8758-1594
http://orcid.org/0000-0002-0717-683X
mailto:ozcan@ucla.edu
http://www.nature.com/naturemethods

Single fluorescence image
(Deep-Z input)

Digital propagation
(Deep-Z output)

z2=-2pm

Original
images

SNR =49.97 dB SNR = 87.99 dB

Background
highlighted
images

Supplementary FHgure 1

Quantification of SNR improvementthrough Deep-Z.

Mechanical scan
(Ground truth)

SNR = 45.45 dB

Top row: an inputimage ofa 300 nm fluorescentbead was digitallyrefocused to a plane 2 um above it using Deep-Z, where the ground
truth was the mechanicallyscanned fluorescence image acquired atthis plane. Bottom row: same images as the firstrow, but saturated
to a dynamicrange of [0, 10] to highlightthe background. The SNR values were calculated by first taking a Gaussianfit(see the
Materials and Methods section) on the pixel values of each image to find the peak signal strength. Then the pixels in the region of
interest(ROI) that were 100 away (where o’ is the variance of the fitted Gaussian)were regarded as the background (marked bythe
region outside the red dotted circle in each image) and the standard deviation of these pixel values was calculated as the ba ckground
noise. The Deep-Z network rejects background noise and improves the outputimage SNR by ~ 40 dB, compared to the mechanical
scan ground truth image. Analysis was performed on arandomlyselected particle from a group of 96 images with similar results.
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Supplementary Fgure 2
Digital refocusing of fluorescence images of C. elegans worms.

(a, k) Measured fluorescence images (Deep-Zinput). (b, d, I, n) Deep-Z output at different target heights (2). (c, e, m, 0) Ground truth
(GT) images, captured using a mechanical axial scanning microscope atthe same heights as the Deep-Z outputs. (f, p) overlay of
Deep-Zoutputimages in magentaand GTimages ingreen.(g, i, g, s) Absolute difference images of Deep-Z outputimages and the
corresponding GTimages atthe same heights. (h, ], r, t) Absolute difference images of Deep-Zinputand the corresponding GT images.
Structural similarityindex (SSIM) and root mean square error (RMSE) were calculated for the output vs. GT and the inputvs. GT for
eachregion,displayedin(g, i, q, s) and (h, j, r, ), respectively. Scale bar: 25 um . Experiments were repeated with 20 images, achieving
similar results.
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Supplementary Fgure 3
Structural similarity (SSIM) index and correlation coefficient (Corr. Coeff.) analysis for digital refocusing of fluorescence images from an
inputplane at zinput to a target plane at zarget.

We created a scanned fluorescence z-stack of a C. elegans sample, within an axial range of -20 um to 20 um, with 1 um spacing. First
column:each scannedimage atzinpit in this stack was compared againstthe image at zarger, forming cross-correlated SSIM and Corr.
Coeff. matrices. Both the SSIM and Corr. Coeff. fall rapidlyoff the diagonal entries. Second column: A Deep-Z network trained with
fluorescence image data corresponding to +/- 7.5 um propagation range (marked bythe cyan diamond in each panel) was used to
digitallyrefocus images from zinput t0 Ziarget- The outputimages were compared againstthe ground truth images at Zwrget Using SSIM and
Corr. Coeff. Third column:same as the second column, exceptthe training fluorescence image data included up to +/- 10 um axial
propagation (marked bythe cyan diamond thatis now enlarged compared to the second column). These results confirm that Deep-Z
learned the digital propagation of fluorescence, butitis limited to the axial range that it was trained for (determined bythe training

image dataset). Outside the training range (defined by the cyan diamonds), both the SSIM and Corr. Coeff. values considerably

decrease.



z(um) -4.05 -3.24 -2.43 -1.62 -0.81 0 0.81 1.62 243 3.24 4.05

255

Mechanical scan
(Ground truth)

Digital propagation
(Deep-Z output)

Supplementary Fgure 4
3D imaging of C. elegans head neuron nuclei using Deep-Z.

The inputand ground truth images were acquired bya scanning fluorescence microscope with a 40x/1.4NA objective. A single
fluorescence image acquired atz=0 pm focal plane (marked by dashed yellow rectangle) was used as the inputimage to Deep-Zand
was digitallyrefocused to different planes within the sample volume, spanning around -4 to 4 um;the resulting images provide a good
match to the corresponding ground truth images. Scale bar: 25 um. Experiments were repeated with 12 images, achieving similar
results.
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Supplementary Fgure 5
Digital refocusing of fluorescence microscopyimages of BPAEC using Deep-Z.

The inputimage was captured using a 20x/0.75 NA objective lens, using the Texas Red and FITC filter sets, occupying the red and
green channels ofthe image, for the mitochondria and F-actin structures, respectively. Using Deep-Z, the inputimage was digitally
refocusedto 1 um above the focal plane, where the mitochondrial structuresin the green channel are in focus, matching the features on
the mechanically-scanned image (obtained directlyatthis depth). The same conclusion applies forthe Deep-Zoutputatz = 2 pm,
where the F-actin structures in the red channel come into focus. After 3 um above the image plane, the details ofthe image contentget
blurred. The absolute difference images ofthe input and output with respectto the corresponding ground truthimages are also
provided, with SSIM and RMSE values, quantifying the performance of Deep-Z. Scale bar: 20 um. Experiments were repeated with 180
images, achieving similarresults.
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Supplementary Fgure 6
Photobleaching analysis.

(a) Fluorescence signal of nanobeadsimaged in 3D, for 180 times of repeated axial scans, containing 41 planes, spanning +/- 10 pm
with a step size 0.5 um. The accumulated scanning time is ~30 min. (b) The corresponding scan for a single plane, whichis us ed by
Deep-Zto generate avirtual image stack, spanning the same axial depth within the sample (+/- 10 um). The accumulated scanning
time for Deep-Z is ~ 15 seconds. The center line represents the mean and the shaded region represents the standard deviation ofthe
normalized intensityfor 681 and 597 individual nanobeads (for (a) and (b), respectively) inside the sample volume.
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Supplementary Fgure 7
Refocusing capabilityof Deep-Z underlowerimage exposure.

(a) Virtual refocusing ofimages containing two microbeads under differentexposure times from defocused distances of -5,3 and 4.5
pm, using two Deep-Zmodels trained withimages captured at 10 ms and 100 ms exposure times, respectively. (b) Median FWHM
values of 91 microbeadsimaged inside a sample FOV after the virtual refocusing ofan input image across a defocus range of -10 um to
10 um by the Deep-Z (100 ms) network model. The testimages have differentexposure times spanning 3ms to 300 ms. (¢) Same as
(b), but plotted for the Deep-Z (10 ms) model.
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Supplementary Fgure 8
Deep-Zbased virtual refocusing of a different sample type and transferlearning results.

(a) The inputimage records the neuron activities of a C. elegansthatis labeled with GFP; the image is captured using a 20x/0.8NA
objective underthe FITC channel. The inputimage was virtually refocused using both the optimal worm strain model (denoted a s: same
model, functional GFP) as well as a different model (denoted as: differentmodel, structural tagRFP); we also reporthere the results ofa
transfer learning model which used the differentmodel as its initialization and functional GFP image datasetto refine it after ~ 500
iterations (~30 min of training). (b) A different C. elegans sample is shown. The inputimage records the neuron nuclei labeled with
tagRFP imaged using a20x/0.75NAobjective underthe Texas Red channel. The inputimage was virtually refocused using bothth e
exact worm strain model (same model, structural, tagRFP) as well as a differentmodel (differentmodel, 300 nm red beads); we also
report here the results ofa transferlearning model which used the differentmodel as its initialization and structural ragR FP image
datasetto refineit after ~ 4,000 iterations (~6 hours training). Image correlation coefficient (r) is shown at the lowerrightcorner of each
image, in reference to the ground truth mechanical scan performed atthe corresponding microscope system (Leica and Olympus,
respectively). The transferlearning was performed using 20% ofthe training data and 50% of the validation data, randomlyselected
from the original data set.
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Supplementary Fgure 9
Virtual refocusing ofa different microscope system and transfer learning results.

The inputimage records the C. elegans neuronal nucleilabeled with tag GFP, imaged using a Leica SP8 microscope with a 20x/0.8NA
objective. The inputimage was virtually focused using both the exact model (Leica SP 8 20x/0.8NA) as well as a different model
(denoted as: different model, Olympus 20x/0.75NA); we also reporthere the results ofa transfer learning model using the different
model as its initialization and Leica SP8 image datasetto refine it after ~ 2,000 iterations (~40 min training). Image correlation
coefficient(r) is shown atthe lowerright corner of eachimage, in reference to the ground truth mechanical scan performed atthe
corresponding microscope system. The transfer learning was performed using 20% ofthe training data and 50% of the validation data,
randomlyselected from the original data set.



semmmmmmmccemeeceeoeeo———— a. Uniform temporal modulation ----- oo __

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

;

B Rt e L P PP ) Spatuo-tempou:al modulation ------cccmm o
/ \
r \
n
L / \
|
i
\/

A \
A
a
Al |
i

z=4um
A\
P4
"

A

/ /|

/\/

B

“ g
- & ®» =~ & o° - & & % & o° bl ——LV0 - 8 @ = & e° v+ ®m @ % &8 8 ° s e v & ©°
s oS 8 & a8 < s o e & & © s & & o 6 o S o © © & o
Aisusiu poae oy A 9 Bad U AS U PAZIEMNOL Kysumu 2o ASURL POZHERLOL
et —

v
(\ |

W g m. |.w ... =
b Tl = -3 s -w 3. = e -m e -m
N Eow H £ H H

/\

i

M\
: v %
/\\ '/\1
||
\j |
z=8um‘~i |
\
.

- 4 S " ——— il —
s % = o =° - = ® =+ & o° R R o0 - R & = N &° o Ty — ) - % % < § &°
o < o o o < < < © o S o o =) ] C e = - = = o = o
Amuau paaye auou Apsusain pam guscu Auysumiu peieusoy Sysusqu pRipuL00 AusUsu PAZYROL

\
\
/\ g
§
0::::9“)
T
\
!
AN
] \
| |

‘\1‘ 2
—
-
g - {a =
3 )
g i f § biig g
“=l-§ e < s/ 8 o | B =
— 2 |
ey s 0 5 e £ ==
e g g B o :
) s N s X £
" o — ——
~ 3 18 " b ! n i —— i [
. . = e
f{l.’f«l. ; =i /l’/. = ffl. , ——
" e By SRR g = 3 - EE v A s H e N =g 3 59 ="
o = < = = - = o
Asueis peaeulou AusudlLY poR BULCY Fys mn penpou Kjysuion penpecu KU PAZIPLLO ANRUSU PATREBOU

R e B R e S e B e, S e e e e N S S e IR nsa



Supplementary Fgure 10
Time-modulated signal reconstruction using Deep-Z.

(a) A time-modulated illumination source was used to excite the fluorescence signal of microbeads (300 nm diameter). Time-lapse
sequence of the sample was captured under this modulated illumination at the in-focus plane (z = 0 um) as well as at various
defocused planes (z = 2-10 um) and refocused using Deep-Z to digitally reach z = 0 um. Intensity variations of 297 individual beads
inside the FOV (after refocusing) were tracked for each sequence. (b) Based on the video captured in (a), we took every other frame to
form an image sequence with twice the frame-rate and modulation frequency, and added it back onto the original sequence with a
lateral shift. These defocused and super-imposed images were virtually refocused using Deep-Z to digitally reach z=0 um, in-focus
plane. Group 1 contained 297 individual beads inside the FOV with 1 Hz modulation. Group 2 contained the signals of the other (new)
beads that are super-imposed on the same FOV with 2 Hz modulation frequency. Each intensity curve was nomalized, and the mean
(plotted as curve center) and the standard deviation (plotted as error bar) of the 297 curves were plotted for each time 4apse sequence.
Virtually-refocused Deep-Z output tracks the sinusoidal illumination, very closely following the in-focus reference time-modulation
reported in target (z = 0 pm). Please also see the SupplementaryVideo 5, related to this figure.
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Supplementary Fgure 11
Deep-Zbased virtual refocusing of a laterally shifted weaker fluorescentobjectnext to a stronger object.

(a) A defocused experimental image (left bead) at plane z was shifted laterallybyd pixels to the right and digitally weaken ed by a pre-
determined ratio (right bead), which was then added back to the original image, used as the inputimage to Deep-Z. Scale bar: 5 um. (b)
An example of the generated bead pair with an intensity ratio of 0.2; we show in-focus plane, defocused planes of 4 and 10 um, and the
corresponding virtually-refocused images by Deep-Z. (c-h) Average intensity ratio of the shifted and weakened bead signal with respect
to the original bead signal for 144 bead pairs inside a FOV, calculated at the virtually refocused plane using different axial defocus
distances (z). The crosses “X’ in each figure mark the corresponding lateral shift distance, below which the two beads cannot be
distinguished from each other, color-coded to representbead signal intensityratio (spanning 0.2-1.0).
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Supplementary Fgure 12
Impactof axial occlusions on Deep-Z virtual refocusing performance.

(a) 3D virtual refocusing oftwo beads that have identical lateral positions butare separated axiallyby 8 um; Deep-Z, as usual,used a
single 2D inputimage corresponding to the defocused image ofthe overlapping beads. The virtual refocusin g calculated by Deep-Z
exhibits two maximarepresenting the two beads along the z-axis, matching the simulated ground truth image stack. (b) Simulation
schematic: two defocused images inthe same bead image stack with a spacing of d was added together, with the higher stack located
ata depth of z=z8 um. A singleimage inthe merged image stack was used as the inputto Deep-Zfor virtual refocusing. (c-d) reportthe
average and the standard deviation (represented bytransparentcolors) ofthe intensityratio of the top (i.e., the dimmer) bead signal
with respectto the bead intensityin the original stack, calculated for 144 bead pairs inside a FOV, for z = 8 ym with diffe rent axial
separations (d) and bead intensityratios (spanning 0.2-1.0).
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Supplementary Fgure 13
Deep-Zinference results as a function of 3D fluorescentsample density.

(a) Comparison of Deep-Zinference againsta mechanically-scanned ground truth image stack over an axial depth of +/- 10 um with
increasing fluorescentbead concentration. The measured bead concentration resulting from the Deep-Z output (using a single input
image) as well as the mechanically-scanned ground truth (which includes 41 axial images acquired ata scanning step size of 0.5 um) is
shown on the top left corner of eachimage. MIP: maximal intensity projection along the axial direction. Scale bar: 30 um. (b -e)
Comparison of Deep-Z outputagainstthe ground truth results as afunction of the increasing bead concentration. Thered line is a2™

order polynomial fit to all the data points. The black dotted line represents y=X, shown for reference. These partlcle concentrations were
calculated/measured over a FOV of 1536x1536 pixels (500500 pm ) i.e. 15-times larger than the specific regions shown in (a).



a. Input image b. Segmentation on input image (N=99 neurons) c. Segmentation on Deep-Z output stack (N=155 neurons)
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Supplementary Fgure 14
C. elegans neuron segmentation comparison.

(a, d) The fluorescenceimage used as inputto Deep-Z. (b, €) Segmentation results based on (a, d), respectively. (c, f) Segmentation
results based on the virtual image stack (-10to 10 um) generated by Deep-Z using the inputimages in (a, d), respectively. (g) An
additional fluorescence image, captured ata different axial plane (z = 4 um). (h) Segmentation results on the merged virtual stack (-10
to 10 um). The merged image stack was generated byblending the two virtual stacks generated by Deep-Z using the inputimages (d)
and (g). (i) Segmentation results based on the mechanically-scanned image stack used as ground truth (acquired at41 depths with 0.5
pum axial spacing). Each neuron was represented bya small sphere in the segmentation map and the depth information of each neuron
was color-coded. (j-) The detected neuron positions in (e, f, h) were compared with the positions in (i) (see the Supplementary Methods
for details), and the axial displacementhistograms between the Deep-Zresults and the mechanically-scanned ground truth results were
plotted.
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Supplementary FHgure 15

C. elegans neuron activity tracking and clustering.
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(a) Max intensity projection (MIP) along the axial direction of the median intensityimage overtime. The red channel (Texas red) labels
neuron nuclei and the green channel (FITC) labels neuron calcium activity. A total of 155 neurons were identified in the 3D stack, as
labeled here. Scale bar: 25 um. Scale barfor the zoom-in regions: 10 um. (b) The intensity of the neuron calcium activity, AF(t), of
these 155 neurons is reported over a period of ~ 35 s at ~3.6Hz. Bas ed on a threshold on the standard deviation of each AF(t), we
separate neurons to be active (right-top, 70 neurons) and less active (right-bottom, 85 neurons). (c) The similaritymatrixof the calcium
activity patterns of the top 70 active neurons. (d) The top 40 eigen values of the similaritymatrix. An eigen-gap is shown atk=3, which
was chosen as the number of clusters according to eigen-gap heuristic (i.e. choose up to the largesteigenvalue before the eigenvalue
gap, where the eigenvalues increase significantly). (e) Normalized activity AF(t)/ Fo for the k=3 clusters after the spectral clustering on
the 70 active neurons. (f) Similaritymatrix after spectral clustering. The spectral clustering rearranged the row and column ordering of
the similaritymatrix (c) to be block diagonalin (f), which represents three individual clusters of calcium activity patterns.



Supplementary Notes:
Supplementary Note 1: Sample drift-induced defocus compensation using Deep-Z
Deep-Z enables the correction for sample drift induced defocus after the image is captured. To
demonstrate this, Supplementary Video 4 shows a moving C. elegans worm recorded by a wide-
field fluorescence microscope with a 20%/0.8NA objective lens (DOF ~ 1 um). The worm was
defocused ~ 2 — 10 um from the recording plane. Using Deep-Z, we can digitally refocus each
frame of the input video to different planes up to 10 um, correcting this sample drift induced
defocus (Supplementary Video 4). Such a sample drift is conventionally compensated by
actively monitoring the image focus and correcting for it during the measurement, e.g., by using
an additional microscope'. Deep-Z, on the other hand, provides the possibility to compensate

sample drift in already-captured 2D fluorescence images.



Supplementary Note 2: Reduced photodamage using Deep-Z

Another advantage of Deep-Z would be a reduction in photodamage to the sample. Photodamage
introduces a challenging tradeoff in applications of fluorescence microscopy in live cell imaging,
which sets a practical limitation on the number of images that can be acquired during e.g., a
longitudinal experiment. The specific nature of photodamage, in the form of photobleaching
and/or phototoxicity, depends on the illumination wavelength, beam profile, exposure time,
among many other factors, such as the sample pH and oxygen levels, temperature, fluorophore
density and photostability*™. Several strategies for illumination design have been demonstrated
to reduce the effects of photodamage, by e.g., adapting the illumination intensity delivered to the
specimen as in controlled light exposure microscopy (CLEM)® and predictive focus
illumination®, or decoupling the excitation and emission paths, as in selective plane illumination
microscopy® and among others.

For a widefield fluorescence microscopy experiment, where an axial image stack is acquired, the
illumination excites the fluorophores through the entire thickness of the specimen, regardless of
the position that is imaged in the objective’s focal plane. For example, if one assumes that the
sample thickness is relatively small compared to the focal volume of the excitation beam, the
entire sample volume is uniformly exited at each axial image acquisition step. This means the
total light exposure of a given point within the sample volume is sub-linearly proportional to the
number of imaging planes (N,) that are acquired during a single-pass z-stack. In contrast, Deep-Z
only requires a single image acquisition step if its axial training range covers the sample depth;
in case the sample is thicker or dense, more than one input image might be required for improved
Deep-Z inference as demonstrated in Supplementary Figure 14h, which, in this case, used two

input images to better resolve neuron nuclei in the head region of a C. elegans. Therefore, this



reduction, enabled by Deep-Z, in the number of axial planes that need to be imaged within a
sample volume directly helps to reduce the photodamage to the sample.

To further illustrate this advantage, we performed an additional experiment where we repeatedly
imaged in 3D a sample containing fluorescent beads (300 nm diameter, and embedded in
ProLong Gold antifade mountant) with N,=41 axial planes spanning 20 pm depth range (0.5 pm
step size) over 180 repeated cycles, which took a total of ~ 30 min. The average fluorescence
signal of the nanobeads decayed down to ~80% of its original value at the end of the imaging
cycle (see Supplementary Figure 6a). In comparison, to generate a similar virtual image stack,
Deep-Z only requires to take a single input image, which results in a total imaging time of ~ 15
seconds for 180 repeated cycles, and the average fluorescence signal in the Deep-Z generated
virtual image stack does not show a visible decay during the same number of imaging cycles (see
Supplementary Figure 6b). For imaging of live samples, potentially without a dedicated antifade
mountant, the fluorescence signal decay would be more drastic compared to Supplementary
Figure 6a due to photodamage and photobleaching, and Deep-Z can be used to significantly
reduce these negative effects, especially during longitudinal imaging experiments.

Although not demonstrated in this work, the application of Deep-Z concept to light sheet
microscopy can also be used to reduce the number of imaging planes within the sample, by
increasing the axial separation between two successive light sheets using Deep-Z 3D inference in
between.

In general a reduction in N, further helps us to reduce photodamage effect if we also take into
account hardware-software synchronization times* that are required during the axial scan, which

introduces additional time overhead if e.g., an arc burner is used as the illumination source; this



illumination overhead can be mostly eliminated when using LEDs for illumination, which have
much faster on-off transition times.

In summary, Deep-Z has the potential to substantially circumvent the standard photodamage
tradeoffs in fluorescence microscopy and enable imaging at higher speeds and/or improved SNR
since the illumination intensity can be increased for a given photodamage threshold that is set,

offset by the reduced number of axial images that are acquired through the use of Deep-Z.



Supplementary Note 3: Deep-Z virtual refocusing capability at lower image exposure

To further validate the generalization performance of a pre-trained Deep-Z network model under
variable exposure conditions (which directly affect the signal-to-noise ratio, SNR), we trained
two Deep-Z networks using microbead images captured at 10 ms and 100 ms exposure times; we
denoted these trained networks as Deep-Z (10 ms) and Deep-Z (100 ms), respectively, and
blindly tested their performance to virtually refocus defocused images captured under different
exposure times, varying between 3 ms to 300 ms. Training image data were captured using 300
nm red fluorescent bead samples imaged with a 20x/0.75NA objective lens, same as the micro-
bead samples reported in the main text, except that the fluorescence excitation light source was
set at 25% power (32.5 mW) and the exposure times were chosen as 10 ms and 100 ms,
respectively. Two separate Deep-Z networks were trained using the image dataset captured at 10
ms and 100 ms exposure times, where each training image set contained ~ 100,000 image pairs
(input and ground truth), and each network was trained for ~ 50 epochs. Testing image data were
captured under the same settings except the exposure times varied from 3 ms to 300 ms. The
training and testing images were normalized using the same pre-processing algorithm: after
image alignment, the input image was similarly first thresholded using a triangular thresholding
method (see the Methods section in the main text for details) to separate the sample foreground
and background pixels. The mean of the background pixel values was taken as the background
fluorescence level and subtracted from the entire image. The images were then normalized such
that 1% of the foreground pixels were saturated (above one). This pre-processing step did not
further clip or quantize the image. These pre-processed images (in single precision format) were

fed into the network directly for training or blind testing.



Examples of these blind testing results are shown in Supplementary Figure 7a, where the input
bead images were defocused by -5.0, 3.0, and 4.5 um. With lower exposure times, the input
image quality was compromised by noise and image quantization error due to the lower bit
depth. As shown in Supplementary Figure 7a, the Deep-Z (100 ms) model can successfully
refocus the input images even down to an exposure time of 10 ms. However, the Deep-Z (100
ms) model fails to virtually refocus the input images acquired at 3 ms exposure time, giving a
blurry output image with background noise. On the other hand, the Deep-Z (10 ms) model can
successfully refocus input images that were captured at 3 ms exposure times, as illustrated in
Supplementary Figure 7. Interestingly, the Deep-Z (10 ms) model performs slightly worse for
input images that were acquired at higher exposure times; for example the input images acquired
at 300 ms exposure time exhibit a slight blur at the output image as demonstrated in the last row
of Supplementary Figure 7a.These observations are further confirmed in Supplementary Figure
7b,c by quantifying the median FWHM values of the imaged microbeads, calculated at the Deep-
Z output images as a function of the refocusing distance. This analysis confirms that Deep-Z
(100 ms) model cannot successfully refocus the images captured at 3 ms exposure time outside
of a narrow defocus window of ~ [—1 um, 1 um] (see Supplementary Figure 7b). On the other
hand, Deep-Z (10 ms) model demonstrates improved refocusing performance for the input
images captured at 3ms exposure time (Supplementary Figure 7c). These results indicate that
training a Deep-Z model with images acquired at exposure times that are relatively close to the
expected exposure times of the test images would be important for successful inference. Another
important observation is that, compared to the ground truth images, the Deep-Z output images
also reject the background noise since noise overall does not generalize well during the training

phase of the neural network, as also discussed for Supplementary Figure 1.



As also emphasized in the main text, the noise performance of Deep-Z can potentially be further
enhanced by engineering the microscope’s point spread function (PSF) to span an extended
depth-of-field, by e.g., inserting a phase mask in the Fourier plane of the microscope, ideally
without introducing additional photon losses along the path of the fluorescence signal collection.
For example, refer to the Supplementary Video 10 for an experimental demonstration of Deep-Z

blind inference for objects imaged through a double-helix PSF.



Supplementary Note 4: Robustness of Deep-Z to changes in samples and imaging systems

In our results reported so far, the blindly tested samples were inferred with a Deep-Z network
that has been trained using the same type of sample and the same microscope system. Here we
evaluate and discuss the performance of Deep-Z for different scenarios where a change in the test
data distribution is introduced in comparison to the training image set, such as e.g., (1) a different
type of sample that is imaged, (2) a different microscope system used for imaging, and (3) a
different illumination power or SNR.

Regarding the first item, if there is a high level of similarity between the trained sample type and
the tested sample type distributions, we expect the performance of the network output to be
comparable. As reported in Supplementary Figure 8a, a Deep-Z model that was trained to
virtually refocus images of tagRFP-labeled C. elegans neuron nuclei was blindly tested to
virtually refocus the images of GFP-labeled C. elegans neuron activity. The output image results
of the different model column are quite similar to the output images of the optimal model,
trained specifically on GFP-labeled neuron activity images (same model column), as well as the
mechanically-scanned ground truth images, with a minor difference in the correlation
coefficients of the two sets of output images with respect to the ground truth images of the same
samples. Similar conclusions may be drawn for the effectiveness of a Deep-Z model blindly
tested on images of a different strain of C. elegans.

On the other hand, when the training sample type and its optical features are considerably
different from the testing samples, noticeable differences in Deep-Z performance can be
observed. For instance, as shown in Supplementary Figure 8b, a Deep-Z model that was trained
with 300 nm beads can only partially refocus the images of C. elegans neuron nuclei, which are

typically 1-5 um in size, and therefore are not well-represented by the training image dataset



containing only nanobeads. This limitation can be remedied through a transfer learning”®
process, where the network trained on one type of sample (e.g., the nanobeads in this example)
can be used as an initialization of the network weights and the Deep-Z model can be further
trained using new images that contain neuron nuclei. Compared to starting from scratch (e.g.,
randomized initialization), which takes ~ 40,000 iterations (~60 hours) to reach an optimal
model, transfer learning can help us achieve an optimal model with only ~4,000 iterations (~6
hours) that successfully refocuses neuron nuclei images, matching the performance of the
optimal model (transfer learning column in Supplementary Figure 8). This transfer learning
approach can also be applied to image different types of C. elegans using earlier models that are
refined with new image data in e.g., ~500-1,000 iterations. Another advantage of transfer
learning is using less training data; in this case, for example, only 20% of the original training
data used for the optimal model was used for transfer learning.

Regarding the second item, i.e., a potential change in the microscope system used for imaging
can also adversely affect the inference performance of a previously trained network model. One
of the more challenging scenarios for a pre-trained Deep-Z network will be when the test images
are captured using a different objective lens with a change in the numerical aperture (NA); this
directly modifies the 3D PSF profile, making it deviate from the Deep-Z learned features,
especially along the depth direction. Similar to the changes in the sample type, if the differences
in imaging system parameters are small, we expect that a previously trained Deep-Z model can
be used to virtually refocus images captured by a different microscope to some extent.
Supplementary Figure 9 shows an example of this scenario, where a Deep-Z model was trained
using the images of C. elegans neuron nuclei, captured using an Olympus 1X81 microscope with

a 20x/0.75NA objective lens, and was blindly tested on images captured using a Leica SP8



microscope with 20x/0.8NA objective lens. Stated differently, two different microscopes,
manufactured by two different companies, have been used, together with a small NA change
between the training and testing phases. As illustrated in Supplementary Figure 9, most of the
virtual refocusing results remained successful, in comparison to the optimal model. However,
due to these changes in the imaging parameters, a couple of mis-arrangements of the neurons in
the virtually refocused images can be seen in the different model output column, which also
resulted in a small difference of ~0.02-0.06 between the correlation coefficients of the optimal
Deep-Z model output and the different model output (both calculated with respect to the
corresponding ground truth images acquired using two different microscope systems). As
discussed earlier, one can also use transfer learning to further improve these results by taking the
initial Deep-Z model trained on Olympus IX81 microscope (20%/0.75NA objective) as
initialization and further training it for another ~2,000 iterations on a new image dataset captured
using the Leica SP8 microscope (20%/0.8NA objective). Similar to the example that we
presented earlier, 20% of the original training data used for the optimal model was used for
transfer learning in Supplementary Figure 9.

As for the third item, the illumination power, together with the exposure time and the efficiency
of the fluorophore, contributes to two major factors: the dynamic range and the SNR of the input
images. Since we use a pre-processing step to remove the background fluorescence, also
involving a normalization step based on a triangular threshold (see the Methods section of the
main text for details), the input images will always be re-normalized to similar signal ranges and
therefore illumination power associated dynamic range changes do not pose a major challenge
for Deep-Z. Furthermore, as detailed earlier, robust virtual refocusing can still be achieved under

significantly lower SNR, i.e., with input images acquired at much lower exposure times (see
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Supplementary Figure 7). These results and the corresponding analysis reveal that Deep-Z is
fairly robust to changes observed in the dynamic range and the SNR of the input images. Having
emphasized this, training a Deep-Z model with images acquired at exposure times that are
relatively similar to the expected exposure times of the test images would be recommended for
various uses of Deep-Z. In fact, the same conclusion applies in general: to achieve the best
performance with Deep-Z inference results, the neural network should be trained (from scratch or
through transfer learning which significantly expedites the training process) using training
images obtained with the same microscope system and the same types of samples as expected to

be used at the testing phase.
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Supplementary Note 5: Time-modulated signal reconstruction using Deep-Z

To further test the generalization capability of Deep-Z, we conducted an experiment, where the
microbead fluorescence is modulated in time, induced by an external time-varying excitation.
Training data were captured for 300 nm red fluorescent beads using a 20%/0.75NA objective lens
with the Texas Red filter set, same as the microbead samples reported earlier (e.g., Fig.4), except
that the fluorescence light source was set at 25% illumination power (32.5 mW) and the exposure
time was chosen as 100 ms. Testing data consisted of images of 300 nm red fluorescent beads
placed on a single 2D plane (pipetted onto a #1 coverslip) captured using an external light
emitting diode (M530L3-C1, Thorlabs) driven by an LED controller (LEDD1B, Thorlabs)
modulated by a function generator (SDG2042X, Siglent) that modulated the output current of the
LED controller between 0 to 1.2 A following a sinusoidal pattern with a period of 1 s. A Texas
Red filter and 100 ms exposure time were used. The same FOV was captured at in-focus plane (z
=0 um) and five defocus planes (z =2, 4, 6, 8, 10 um). At each plane, a two-second video (i.e.
two periods of the modulation) was captured at 20 frames per second. Each frame of the
defocused planes was then virtually refocused using the trained Deep-Z network to digitally
reach the focal plane (z = 0 um). Fluorescence intensity changes of 297 individual beads within
the sample FOV captured at z = 0 um were tracked over the two-second time window. The same
297 beads were also tracked as a function of time using those five virtually refocused time-lapse
sequences (using Deep-Z output). The intensity curve for each bead was normalized between 0
and 1.

Supplementary Figure 10a reports the time-modulated signal of 297 individual microbeads at the
focal plane (z = 0 um) tracked over a 2 s period at a frame rate of 20 frames per second, plotted

with their normalized mean and standard deviation. This curve shows a similar modulation
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pattern as the input excitation light, with a slight deviation from a perfect sinusoidal curve due to
the nonlinear response of fluorescence. The standard deviation was ~1.0% of the mean signal at
each point. Testing the blind inference of Deep-Z, the subsequent entries of supplementary
Figure 10a reports the same quantities corresponding to the same field-of-view (FOV), but
captured at defocused planes (z = 2, 4, 6, 8, 10 um) and virtually refocused to the focal plane (z
= (0 wm) using a Deep-Z network trained with images captured under fixed signal strength. The
mean curves calculated using the virtually-refocused images (z =2, 4, 6, 8, 10 um) match very
well with the in-focus one (z = 0 pum), whereas the standard deviation increased slightly with
increased virtual refocusing distance, which were ~1.0%, 1.1%, 1.7%, 1.9%, and 2.1% of the
mean signal for virtual refocusing distances of z=2, 4, 6, §, and 10 pm, respectively.

Based on this acquired sequence of images, we further took every other frame to form a new
video; by doing so, the down sampled video compressed the original 2 s video to 1 s, forming a
group of beads that were modulated at doubled frequency, i.e., 2 Hz. This down-sampled video
was repeated, and added back onto the original video, frame-by-frame, with a lateral shift of 8
pixels (2.6 pm). Supplementary Figure 10b shows the Deep-Z output on these added images,
corresponding to 297 pairs of beads that had the original modulation frequency 1 Hz (first row)
and the doubled modulation frequency 2 Hz (second row), masked separately in the same output
image sequence. This analysis demonstrates that Deep-Z output tracks the sinusoidal illumination
well, closely following the in-focus reference time-modulation reported in the first column, same
as in Supplementary Figure 10a. We also created Supplementary Video 5 to illustrate an example
region of interest containing six pairs of these 1 Hz and 2 Hz emitters, cropped from the input

and output FOVs for different defocus planes.
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Supplementary Note 6: Impact of the sample density on Deep-Z inference

If the fluorescence emitters are too close to each other or if the intensity of one feature is much
weaker than the other(s) within a certain FOV, the intensity distribution of the virtually
refocused Deep-Z images may deviate from the ground truth. To shed more light on this, we first
used numerical simulations resulting from experimental data, where we (1) laterally shifted a
planar fluorescence image that contained individual 300 nm fluorescent beads, (2) attenuated this
shifted image intensity with respect to the original intensity by a ratio (0.2 to 1.0), and (3) added
this attenuated and shifted feature back to the original image (see Supplementary Figure 11 for
an illustration of this). Based on a spatially-invariant incoherent PSF, this numerical simulation,
derived from experimental data, represents an imaging scenario, where there are two individual
sets of fluorescent objects that have different signal strengths with respect to each other, also
with a varying distance between them. The resulting images, with different defocus distances
(see Supplementary Figure 11b) were virtually refocused to the correct focal plane by a Deep-Z
network that was trained using planar bead samples (see Methods section, Sample Preparation).
Supplementary Figure 11b-h demonstrates various examples of bead pairs that were laterally
separated by e.g., 1-15 pixels and axially defocused by 0-10 um, with an intensity ratio that
spans 0.2-1.0. To quantify the performance of Deep-Z inference for these different input images,
we plot in Supplementary Figure 11c-h the average intensity ratio of 144 pairs of dimmer and
brighter beads at the virtually refocused plane as a function of the lateral shift (d) and the
intensity ratio between the dimmer and the brighter beads, also covering various defocus
distances up to 10 um; in each panel of this figure, we marked the minimal resolvable distance

between the two beads by a cross-symbol “x”. This figure reveals that larger defocus distances
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and smaller ratios require slightly larger lateral shift amount for the bead pairs to be accurately
resolved.

Next, we examined the impact of occlusions in the axial direction, which can be more
challenging to resolve. For this, we created new numerical simulations, also resulting from
experimental data, where this time we axially shifted a planar fluorescent bead image stack and
added them back to the corresponding original image stack with different intensity ratios (see
Supplementary Figure 12b for an illustration of this). To accurately represent the inference task,
the deep network was trained via transfer learning with an augmented dataset containing axially-
overlapping objects. Supplementary Figure 12a demonstrates our Deep-Z results for a pair of
beads located at z =0 and z = 8 pm respectively. The network was able to successfully refocus
these two beads separately, inferring two intensity maxima along the z-axis at z=0 um and z =8
um, very well matching the simulated mechanically-scanned image stack (ground truth).
Supplementary Figures 12c, d plot the average and the standard deviation of the intensity ratio of
the top (i.e., the dimmer) bead and the lower bead (i.e., the bead in the original stack) for 144
individual bead pairs inside a sample FOV, corresponding to z=8 um with different axial
separations (d, see Supplementary Figure 12b), for both the virtually refocused Deep-Z image
stack and the simulated ground truth image stack, respectively. The results in Supplementary
Figure 12c¢ and d are similar, having rather small discrepancies in the exact intensity ratio values.
Our results might be further improved by potentially using a 3D convolutional neural network
architecture °.

To further understand the impact of the axial refocusing distance and the density of the
fluorescent sample on Deep-Z 3D inference, we performed additional imaging experiments

corresponding to 3D bead samples with different densities of particles, which was adjusted by
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mixing 2.5 pL red fluorescent bead (300 nm) solution at various concentrations with 10 pL.
ProLong Gold antifade mountant (P10144, ThermoFisher) on a glass slide. After covering the
sample with a thin coverslip, the sample naturally resulted in a 3D sample volume, with 300 nm
fluorescent beads spanning an axial range of ~20-30 um. Different samples, corresponding to
different bead densities, were axially scanned using a 20x/0.75NA objective lens using the Texas
Red channel. To get the optimal performance, a Deep-Z network was trained with transfer
learning (initialized with the original bead network) using 6 image stacks (2048 x 2048 pixels)
captured from one of the samples. Another 54 non-overlapping image stacks (1536 x 1536
pixels) were used for blind testing; within each image stack, 41 axial planes spanning +/- 10 um
with 0.5 pm step size were used as ground truth (mechanically-scanned), and the middle plane
(z=0 pm) was used as the input image to Deep-Z, which generated the virtually refocused output
image stack, spanning the same depth range as the ground truth images. Thresholding was
applied to the ground truth and Deep-Z output image stacks, where each connected region after
thresholding represents a 300 nm bead. Supplementary Figure 13a illustrates the input images
and the maximal intensity projection (MIP) of the ground truth image stack as well as the Deep-Z
output image stack corresponding to some of the non-overlapping sample regions used for blind
testing. At lower particle concentrations (below 0.5%10° pL™), the Deep-Z output image stack
results match very well with the mechanically-scanned ground truth results over our training
range of +/- 10 pm axial defocus. With larger particle concentrations, the Deep-Z output
gradually loses its capability to refocus and retrieve all the individual beads, resulting in under-
counting of the fluorescent beads.

In fact, this refocusing capability of Deep-Z not only depends on the concentration of the

fluorescent objects, but also depends on the refocusing axial distance. To quantify this, we plot in
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Supplementary Figure 13b-e the fluorescent particle density measured using the mechanically-
scanned ground truth image stack as well as the Deep-Z virtually refocused image stack as a
function of the axial defocus distance, i.e., £2.5 um, 5 um, £7.5 pm and £10 um from the input
plane (z=0 um), respectively. For example, for a virtual refocusing range of +2.5 um, the Deep-Z
output image stack (using a single input image at z=0 pm) closely matches the ground truth
results even for the highest tested sample density (~ 4x10° pL™); on the other hand, at larger
virtual refocusing distances Deep-Z suffers from some under-counting of the fluorescent beads
(see e.g., Supplementary Figures 13c-e). This is also consistent with our analysis reported earlier
(e.g., Supplementary Figures 11-12), where the increased density of the beads in the sample
results in axial occlusions and partially affects the virtual refocusing fidelity of Deep-Z.

In our analysis reported so far, we mainly focused on fluorescent particles to be able to quantify
different trade-off mechanisms in Deep-Z inference; in these examples that we reported, the
training image data did not include strong variations in the signal intensities of the particles or
axial occlusions that existed in the testing data; this was an important disadvantage for Deep-Z.
However, we believe that a Deep-Z model that is trained with the correct type of samples
(matching the test sample type and its 3D structure) will have an easier task in its blind inference
and virtual refocusing performance since the training images will naturally contain relevant 3D

structures, better representing the feature distribution expected in the test samples.
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Supplementary Note 7: Additional analysis on C. elegans neuron segmentation

As summarized in Supplementary Table SN1, using an additional neuron segmentation algorithm
(named TrackMate'”) that is based on the Laplacian of Gaussian (LoG) method, resulted in 147
neurons for the Deep-Z output, 175 neurons in the target image stack (mechanically scanned) and
169 in the Deep-Z merged stack (only 2 axial planes used as input images) for the same worm
shown in Supplementary Figure 14d-1i, revealing a close match between Deep-Z results and the
results obtained with a mechanically scanned image stack, with a relatively small depth
difference (Az =-0.243 £ 0.706 pm; see Supplementary Table SN1). The neuron segmentation
results obtained by TrackMate (Supplementary Table SN1), in comparison to the ones shown in
Table 1 in the main text, also show some inconsistency in the neuron segmentation itself
(meaning that there might not be a single ground truth method). Furthermore, as shown in
Supplementary Table SN1, a change in the center plane of the image stack (i.e.,z = 0 pm v.s.

z = —2.5 um, where both image stacks cover the entire body of the worm) also changes the
resulting number of segmented neurons, even for the ground truth, using M = 41 mechanically
scanned images; this once again illustrates the challenging nature of the neuron segmentation
task itself.

Neuron locations in Supplementary Figure 14 were compared by first matching the pairs of
neurons from two different methods (e.g., Deep-Z results vs. mechanically-scanned ground
truth). Matching two groups of segmented neurons ({4, (1,), represented by their spatial
coordinates, was considered as a bipartite graph minimal cost matching problem, i.e.:

argminz Ce " Xe
Xe

e
s.t. Z Xe =1, forvu; € Q,

e€ 8 (uy)

18



Xe <1, forVu, €,
€€ b (up)

Xe € {0,1}
where x, = 1 represents that the edge between the two groups of neurons (€4, Q,) were
included in the match. The cost on edge e = (u4, u,) is defined based on the Manhattan distance
between u; € Qq, u, € Q,, i.e., ¢, = |x; — x3| + |y — ¥2| + |21 — z,|. Because the problem
satisfies totally unimodular condition, the above integer constraint x, € {0,1}can be relaxed to
linear constraint x = 0 without changing the optimal solution, and the problem was solved by
linear programming using Matlab function linporg. Then the axial distances between each paired

neurons (Az) were calculated and their distributions were plotted and reported.

TrackMate segmentation (centered at Z = 0 um) TrackMate segmentation (centered at Z = -2.5 um)
N (neurons) Az (mean # std, um) | |Az|(mean * std, um) N (neurons) Az (mean * std, um) | [Az[(mean % std, um)
Input image
. 7 0.078 £ 0.357 0.273 £0.219 6 0.120 £0.181 0.189 £ 0.083
(M =1image)
Deep-Z output stack
eep-2 output stac 147 -0.243 £ 0.706 0.445 + 0.600 146 0.577 £0.922 0.689 + 0.841
(M = 1image)
Merged stack
R 169 -0.102 + 0.569 0.386 +0.430 179 0.581 +1.352 0.863 +1.191
(M = 2 images)
Mechanical scan stack
i 175 (Ground truth) (Ground truth) 177 (Ground truth) (Ground truth)
(M = 41 images)

Supplementary Table SN1. Neuron segmentation results for a C. elegans worm using TrackMate .
Two image stacks each spanning +/- 10 pm were used here, one centered at z= 0 um and the other at z =
-2.5 um, respectively. Both of these image stacks cover the entire body of the worm, and are axially
shifted with respect to each other by 5 frames. TrackMate was used to segment neurons with identical
parameters on both sets of 3D image stacks. The segmented neuron locations were also compared against
the ground truth (i.e., the corresponding mechanically scanned image stack, M = 41), reporting the axial
error, Az, as well as the absolute axial error, |Az|, in the form of mean + standard deviation (std),

respectively.
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Supplementary Note 8: Deep-Z based aberration correction using spatially non-uniform

DPMs

To evaluate the limitations of Deep-Z based aberration correction using spatially non-uniform
DPMs, we quantified the 3D surface curvature that a DPM can have without generating artifacts.
For this, we used a series of DPMs that consisted of 3D sinusoidal patterns with lateral periods of
D=1,2,...,256 pixels along the x-direction (with a pixel size of 0.325 pm) and an axial
oscillation range of 8 um, i.e., a sinusoidal depth span of -1 um to -9 um with respect to the input
plane. Each one of these 3D sinusoidal DPMs was appended on an input fluorescence image that
was fed into the Deep-Z network. The network output at each sinusoidal 3D surface defined by
the corresponding DPM was then compared against the images that were interpolated in 3D
using an axially-scanned z-stack with a scanning step size of 0.5 um, which formed the ground
truth images that we used for comparison. As summarized in Supplementary Figure SN1, the
Deep-Z network can reliably refocus the input fluorescence image onto 3D surfaces defined by
sinusoidal DPMs when the period of the modulation is > 100 pixels (i.e., > 32 um in object
space). For faster oscillating DPMs, with periods smaller than 32 um, the network output images
at the corresponding 3D surfaces exhibit background modulation at these high-frequencies and
their harmonics as illustrated in the spectrum analysis reported in Supplementary Figure SN1.
These higher harmonic artifacts and the background modulation disappear for lower frequency
DPMs, which define sinusoidal 3D surfaces at the output with a lateral period of > 32 pm and an

axial range of 8 um.
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Supplementary Figure SN1. DPM surface curvature analysis. (a) A fluorescent sample
consisting of 300 nm fluorescent beads was digitally refocused to a plane 5 um above the sample
by appending a DPM with uniform entries. The ground truth is captured using mechanical
scanning at the same plane. Vertical average (i.e., the pixel average along the y-axis of the
image) and its spatial frequency spectrum (i.e., the Fourier transform of the vertical average with
the zero-frequency removed) are shown next to the corresponding images. (b) Digital refocusing
of the same input fluorescence image by appending a DPM that defines a sinusoidal 3D surface
with varying periods, from 0.65 pm to 130 pm along the x-axis, with an axial oscillation range of
8 um, i.e., a sinusoidal depth span of -1 um to -9 pm with respect to the input plane. The ground
truth images were bicubic-interpolated in 3D from a z-scanned stack with 0.5 pm axial spacing.
Vertical average of each DPM and the corresponding spatial frequency spectrum are shown
below each DPM. Vertical average of the difference images (i.e., the resulting Deep-Z image
minus the reference Deep-Z image in (a) as well as the ground truth image minus the reference
ground truth image in (a)) and the corresponding spectra are shown below each image. (c-f)
Correlation coefficient (Corr. Coeft.), structural similarity index (SSIM), mean absolute error
(MAE) and mean square error (MSE) were used to compare Deep-Z output images against the
ground truth images (calculated for a single imaging FOV of 1024x1024 pixels) at the same 3D
sinusoidal surfaces defined by the corresponding DPMs, with varying periods from 0.65 um to
170 um along the x-axis. Reliable Deep-Z focusing onto sinusoidal 3D surfaces can be achieved
for lateral modulation periods greater than ~32 um (corresponding to ~ 100 pixels), as marked by
the black arrows in (c-f). the same conclusion is also confirmed by our results and spatial

frequency analysis reported in (b). (c-f) was calculated from a single image FOV.
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Supplementary Note 9:
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Supplementary Figure SN2. Generator and discriminator network structures used in

Deep-Z. ReLU: rectified linear unit. Conv: convolutional layer.
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Supplementary Note 10: Cross-modality z-stack registration

a
Aligned wide- EDF EDF Aligned
field stack wide-field confocal confocal stack

Stitched EDF Stitched EDF
wide-field confocal

>‘-

|<— alignment coordinates ->|<— stitching coordinates —+— transformation —)It— stitching coordinates —>|<— alignment coordinates —a-|

A

c Wide-field stack Confocal stack
1 1
|l &
f 08 Z .
3 2 " \
T)u 0.9 4 [ L
= + =06
7 0.85 a
0.8 . 0.4
gl T 4
0.75 ' 0.2
0 1 2 3 0 1 2 3
Height of images in stack (pm) Height of images in stack (um)

Supplementary Figure SN3. Deep-Z+ training phase: the registration of a wide-field
fluorescence z-stack against a confocal z-stack. (a) Registration in the lateral direction. Both
the wide-field and the confocal z-stacks were first self-aligned and extended depth of field (EDF)
images were calculated for each stack. The EDF images were stitched spatially and the stitched
EDF images from wide-field were aligned to those of confocal microscopy images. The spatial
transformations, from stitching to the EDF alignment, were used as consecutive transformations
to associate the wide-field stack to the confocal stack. (b) Non-empty wide-field ROIs of
256%256 pixels and the corresponding confocal ROIs were cropped from the EDF image, which
were further aligned. The image here shows an example overlay of the registered image pair,
with wide-field image in magenta and the corresponding confocal image in green. (c) To align

the wide-field and confocal stacks in the axial direction, focus curves in the wide-field stack and
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the confocal stack were calculated and compared based on the corresponding SSIM values (see

Methods for details).
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Supplementary Video Captions:

Supplementary Video 1. Deep-Z inference comparison against the images captured using a

mechanical axial scan of a C. elegans sample.

Left: a single fluorescence image of the C. elegans was captured at the reference plane (z =0
um), used as the Deep-Z input. Middle: the input image was appended with different DPMs and
passed through the trained Deep-Z network to digitally refocus the input image to a series of
planes, from -10 pm to 10 pm (with a step size of 0.5 pm) with respect to the reference plane.
Right: mechanical axial scan of the same C. elegans at the same series of planes, used for

comparison.

Supplementary Video 2. 3D visualization of a C. elegans using Deep-Z inference.

Left: a single fluorescence image of a C. elegans was captured and used as Deep-Z input. Middle:
the input fluorescence image was digitally refocused using Deep-Z to a series of planes, from -10
um to 10 um (with an axial step size of 0.5 um) to generate a 3D stack. This 3D stack was
rotated around the vertical axis of the input image, spanning 360° with a step size of 2°.
Maximum intensity projection of the 3D volume at each rotated angle is shown in the video,
which was generated using the ImageJ plugin “Volume Viewer”. Right: the same 3D stack was
deconvolved using the Lucy-Richardson deconvolution regularized by total variation in ImageJ
plugin “DeconvolutionLab2”. The deconvolved 3D stack was rotated and displayed in the same

way as the middle video.
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Supplementary Video 3. Deep-Z 3D inference from a 2D video containing four moving C.

elegans.

A fluorescence video containing four C. elegans was recorded at a single plane (z=0 pum) at 10
frames per second for 10 seconds. Each frame was digitally refocused using Deep-Z to a series of
planes at z= -6, -4, -2, 2, and 4 um away from the input plane, generating virtual videos at these
different depths in 3D. The input video and the Deep-Z generated videos were played

simultaneously at one frame per second, i.e., 10-fold slowed down.

Supplementary Video 4. Deep-Z 3D inference from a 2D video containing a defocused

moving C. elegans.

A fluorescence video was captured at a single focal plane (z =0 pm) at 3 frames per second for a
duration of 18 seconds. Each frame was digitally refocused using Deep-Z to a series of planes at
z=2,4,6, 8 and 10 um away from the input focal plane, generating virtual videos at these
different depths in 3D. In the input video, the worm was mostly defocused due to sample drift

and motion. Using Deep-Z, neurons are rapidly refocused at these virtual planes in 3D.

Supplementary Video 5. Deep-Z based refocusing of spatio-temporally modulated bead
images.

Videos contain two groups of 300 nm bead emitters (sinusoidally-modulated at 1 Hz and 2 Hz,
respectively). Deep-Z was used to digitally refocus the defocused videos to virtually reach z= 0
um plane. An example region of interest containing six pairs of such emitters was cropped and

shown in this video. Also see Supplementary Figure 10.
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Supplementary Video 6. Tracking of neuron calcium activity events in 3D from a single 2D

fluorescence video.

A fluorescence video containing a fixed C. elegans was recorded at a single focal plane (z=0
um) at ~3.6 frames per second for ~35 seconds. The video contained two color channels: the red
channel represents the Texas Red fluorescence targeting the RFP-tagged neuron nuclei and the
green channel represents the FITC fluorescence targeting the GFP-tagged neuron activities. Each
frame was digitally refocused using Deep-Z to a series of planes from -10 to 10 pm with 0.5 pm
step size, for each one of the fluorescence channels. MIP was applied along the axial direction to
generate an extended depth of field image for each frame. 2% zoom-ins of the head and tail
regions were shown for better visualization. The input video and the Deep-Z generated MIP

video were played simultaneously at ~3.6 frames per second.

Supplementary Video 7. Locations of the detected neurons in 3D.

Individual neuron locations were isolated from the Deep-Z inferred 3D stack of the neuron
calcium activity video. The isolated neuron locations were plotted in 3D. A rough shape of the
worm was also plotted, which was generated by thresholding the auto-fluorescence of the worm
in the Deep-Z generated 3D stack. The 3D plot was rotated around the z-axis at one degree steps
for 360 degrees, and viewed at 15 degrees tilt. Each neuron was color-coded according to its

depth (z) location, as indicated by the color-bar on the right.
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Supplementary Video 8. Deep-Z based 3D structural imaging of C. elegans at 100 Hz.

A C. elegans worm was imaged using a 20x/0.8NA objective lens under the Texas Red channel
to capture its tag-RFP signal, labeling the neuron nuclei. A fluorescence video was captured at a
single focal plane (z =0 um) at 100 full frames per second for a duration of 10 seconds using the
stream mode of the camera. Each frame was digitally refocused using Deep-Z to a series of
planes at z=-2, 2, 4, 6, 8 and 10 um away from the input focal plane, generating virtual videos
at these different depths in 3D, as well as a corresponding MIP video (over an axial depth range

of +/- 10 um).

Supplementary Video 9. Deep-Z based 3D functional imaging of C. elegans at 100 Hz.

A C. elegans worm was imaged using a 20x/0.8NA objective lens under the FITC channel to
capture its GFP signal that labels its calcium activity. A fluorescence video was captured at a
single focal plane (z =0 um) at 100 full frames per second for a duration of 10 seconds using the
stream mode of the camera. Each frame was digitally refocused using Deep-Z to a series of
planes at z=-2, 2,4, 6, 8 and 10 um away from the input focal plane, generating virtual videos
at these different depths in 3D, as well as a corresponding MIP video (over an axial depth range

of +/- 10 um).
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Supplementary Video 10. Deep-Z based refocusing of microscopic objects imaged with a 3D

engineered point-spread function (PSF).

Left: a single fluorescence image of 300 nm red fluorescence beads with a 3D engineered
double-helix PSF was captured at the reference plane (z = 0 um), which was used as the Deep-Z
input. Middle: the input image on the left was appended with different DPMs and passed through
a trained Deep-Z network to digitally refocus the input image to a series of planes, from -13 pm
to 10 um (with a step size of 0.2 um) with respect to the reference plane. Right: mechanical axial

scan of the same sample at the same corresponding planes, used for comparison.
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