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High-throughput volumetric fluorescence imaging is very 
important in various fields including, for example, biology, 
life sciences and engineering, and still remains a challenge 

in microscopy research. 3D fluorescence information is usually 
acquired through scanning an excitation source through the sam-
ple volume to obtain images at multiple planes, forming the basis 
of volumetric imaging in confocal1, two-photon2, light-sheet3–5 
and various super-resolution6–11 microscopy techniques. However, 
scanning can limit the imaging speed and throughput, potentially 
introducing phototoxicity and photobleaching, even with optimized 
scanning strategies1 or point-spread-function (PSF) engineering3,12. 
3D fluorescence information of a specimen can also be acquired 
using non-scanning microscopy methods that simultaneously map 
the axial information onto a two-dimensional (2D) image, such as 
fluorescence light-field microscopy13–18, Fresnel correlation holog-
raphy19–21 and others22,23. However, these non-scanning 3D fluores-
cence microscopy approaches require relatively time-consuming 
iterative algorithms to solve the inverse problem for reconstructing 
a new image, and use customized optical components and hard-
ware, which increase the complexity of the setup.

There are emerging approaches that use deep learning to solve 
inverse problems in fluorescence microscopy24, for example, to 
enhance the lateral25–31 and axial31–33 resolution using artificial neu-
ral networks trained with image data. Such deep-learning-based 
image reconstruction and enhancement methods take a relatively 
long time to train; however, this training process is a one-time effort, 
and after it is complete, each new sample of interest can be rapidly 
reconstructed through a single forward pass through the trained 
network, without the need for any iterations or hyperparameter  

tuning, which in general forms an important advantage of deep-
learning-based solutions to inverse imaging problems34.

Here we introduce a digital image refocusing framework in 
fluorescence microscopy by training a deep neural network using 
microscopic image data, enabling 3D imaging of fluorescent sam-
ples using a single 2D wide-field image, without the need for any 
mechanical scanning, additional hardware or parameter estimation. 
This framework rapidly refocuses a 2D fluorescence image onto 
user-defined 3D surfaces (such as tilted planes, curved surfaces and 
others), and can be used to digitally correct for various aberrations 
caused by the sample and/or the optical system. We term this deep-
learning-based approach Deep-Z, and use it to computationally 
refocus a single 2D wide-field fluorescence image onto 3D surfaces 
within the sample, without sacrificing the imaging speed, resolution 
or field of view (FOV) of a standard microscope.

In Deep-Z, an input 2D fluorescence image is first appended 
with a user-defined digital propagation matrix (DPM) that repre-
sents, pixel-by-pixel, the axial distance of the target surface from 
the plane of the input image (Fig. 1). Deep-Z is trained using a 
conditional generative adversarial neural network (GAN)35,36 with 
accurately matched pairs of (1) various fluorescence images axially 
focused at different depths and appended with different DPMs, and 
(2) the corresponding fluorescence images (that is, the ground-truth 
labels) captured at the correct (target) focus plane defined by the 
corresponding DPM. Through this training process that only uses 
experimental image data, the generator network of the GAN learns 
to interpret the values of each DPM pixel as an axial refocusing dis-
tance, and outputs an equivalent fluorescence image that is digitally 
refocused within the sample to the 3D surface defined by the user.
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Using Deep-Z, we imaged Caenorhabditis elegans neurons using 
a standard wide-field fluorescence microscope and extended the 
native depth of field (DOF) by ~20-fold. Using Deep-Z, we further 
demonstrated 3D tracking of the neuron activity of a C. elegans 
worm over an extended DOF using a time sequence of fluorescence 
images acquired at a single focal plane. Furthermore, we used spa-
tially non-uniform DPMs to refocus a 2D input fluorescence image 
onto user-defined 3D surfaces to computationally correct for aber-
rations such as sample drift, tilt and spherical aberrations, all per-
formed after the image acquisition and without any modifications 
to the optical hardware of a standard fluorescence microscope.

Another important feature of Deep-Z is that it permits cross-
modality digital refocusing of fluorescence images, where the GAN 
is trained with gold-standard label images obtained by a differ-
ent fluorescence microscopy modality. We term this framework 

Deep-Z+. To demonstrate a proof of concept, we trained Deep-Z+ 
with input and label images that were acquired with a wide-field 
fluorescence microscope and a confocal microscope, respectively, 
to blindly generate the output of this cross-modality Deep-Z+: digi-
tally refocused images of an input wide-field fluorescence image 
that match confocal microscopy images of the same sections.

Results
Digital refocusing of fluorescence images using Deep-Z. Figure 1a  
demonstrates Deep-Z-based digital refocusing of a single image of 
a 300-nm fluorescent bead (excitation and emission wavelengths of 
538 nm and 584 nm, respectively) to multiple user-defined planes, 
represented by different DPMs; each one of these propagation 
matrices represents, pixel-by-pixel, the axial distance of the tar-
get surface from the plane of the input image (Fig. 1a). The native 
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Fig. 1 | Refocusing of fluorescence images using Deep-Z. a, Steps involved in using the Deep-Z network. By appending a DPM to a single fluorescence 
image (left) and passing it through a trained Deep-Z network, refocused images at different planes can be virtually obtained. The PSF generated by Deep-Z 
(middle) and mechanical scanning (right) are shown for comparison. Color scale indicates intensity. b, Lateral FWHM histograms for 461 individual 
isolated fluorescence nanobeads (300 nm) distributed over ~500 × 500 µm2, measured using Deep-Z inference (n = 1 captured image) and images 
obtained using mechanical axial scanning (n = 41 captured images) match each other very well. c, As in b, except using the axial FWHM measurements for 
the same dataset, revealing a very good match between Deep-Z inference results and the axial mechanical scanning results.
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DOF of the input fluorescence image, as defined by the numerical 
aperture (NA) of the objective lens (20×/0.75 NA), is ~1 µm; using 
Deep-Z, we digitally refocused the image of this fluorescent bead 
over an axial range of approximately ±10 µm, matching the corre-
sponding mechanically scanned images of the same region-of-inter-
est (ROI), which form the ground-truth. Note that the PSF in Fig. 1a 
is asymmetric in the axial direction, which provides directional cues 
to the neural network regarding the digital propagation of an input 
image by Deep-Z. Unlike a symmetric Gaussian beam37, such PSF 
asymmetry along the axial direction is ubiquitous in fluorescence 
microscopy systems38.

Deep-Z also provides an improved signal-to-noise ratio (SNR) 
at its output as compared to a fluorescence image of the same 

object measured at the corresponding depth (Supplementary  
Fig. 1). To further quantify Deep-Z output we used PSF analysis; 
Fig. 1b,c illustrates the histograms of both the lateral and the axial 
full-width-half-maximum (FWHM) values of 461 individual iso-
lated nanobeads. These histograms agree with each other very well 
(Fig. 1b,c), confirming the match between Deep-Z output images 
calculated from a single fluorescence image and the corresponding 
axially scanned ground-truth images.

Next, we tested Deep-Z by imaging the neurons of a C. elegans 
nematode expressing pan-neuronal tagRFP39. Figure 2 demon-
strates our blind-testing results for Deep-Z-based refocusing of 
different parts of a C. elegans worm from a single wide-field fluores-
cence input image. Using Deep-Z, non-distinguishable fluorescent  

Single fluorescence image
(Deep-Z input)

ROI 1

ROI 2

ROI 3

z = 0 µm

Digital propagation
(Deep-Z output)

Mechanical scan
(ground truth, GT)

255

0

SSIM = 0.9590
r.m.s.e. = 3.4021

SSIM = 0.8207
r.m.s.e. = 17.1474

SSIM = 0.9517
r.m.s.e. = 6.3728

SSIM = 0.8509
r.m.s.e. = 17.8200

SSIM = 0.9773
r.m.s.e. = 1.6122

SSIM = 0.9043
r.m.s.e. = 6.3169

SSIM = 0.9693
r.m.s.e. = 2.9671

SSIM = 0.9349
r.m.s.e. = 5.7277

SSIM = 0.9554
r.m.s.e. = 3.8913

SSIM = 0.8886
r.m.s.e. = 8.5081

SSIM = 0.9521
r.m.s.e. = 3.7264

SSIM = 0.8528
r.m.s.e. = 10.5611

0

255

D
igital propagation netw

ork (D
eep-Z

)

z = –5 µm z = –5 µm

z = 5 µm z = 5 µm

z = –5 µm

z = 3 µm

z = –3.5 µm

z = 7.5 µm

z = –5 µm

z = 3 µm

z = –3.5 µm

z = 7.5 µm

∣Input – GT∣ ∣Output – GT∣

Fig. 2 | 3D imaging of C. elegans neuron nuclei using Deep-Z. Different ROIs are digitally refocused using Deep-Z to different planes within the sample 
volume; the resulting images provide a very good match to the corresponding ground-truth images, acquired using a scanning fluorescence microscope. 
The absolute difference images of the input and output with respect to the corresponding ground-truth image are also provided on the right, with 
structural similarity index (SSIM) and root mean square error (r.m.s.e.) values reported, further demonstrating the success of Deep-Z. Lines represent 
cross-sectional plots and arrowheads indicate where the cross-section was taken; blue and green represent two separate cross-section lateral locations. 
Scale bars, 25 µm. Experiments were repeated with 20 images, achieving similar results. Color scales indicate intensity.
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neurons in the input image were brought into focus at different 
depths, while other in-focus neurons in the input image became 
out-of-focus and smeared into the background, according to 
their true axial positions in 3D; comparisons to the ground-truth 
mechanical scans are provided as cross-sections and image dif-
ference analyses in Fig. 2 and Supplementary Fig. 2. For optimal 
performance, this Deep-Z model was specifically trained using 
C. elegans samples, and the axial range of its refocusing capabil-
ity is determined by the training data range (±10 µm), and fails 
outside of this training range (Supplementary Figure 3). Using 
Deep-Z, we also generated (from a single 2D fluorescence image) 
a virtual 3D stack (Supplementary Video 1) and 3D visualiza-
tion (Supplementary Video 2) of a C. elegans worm, over an axial 
range of approximately ±10 µm. Similar results were also obtained 
for a C. elegans imaged under a 40×/1.3 NA objective lens, where 
Deep-Z successfully refocused the input image over an axial range 
of approximately ±4 µm (Supplementary Fig. 4).

Next, we captured a video of four moving C. elegans worms, 
where each frame of this fluorescence video was digitally refo-
cused to various depths using Deep-Z. This enabled us to cre-
ate simultaneously running videos of the same sample, each one 
focused at a different depth (Supplementary Video 3). Each one of 
these virtually created videos are temporally synchronized to each 
other (that is, the frames at different depths have identical time-
stamps), which is not possible with a scanning-based 3D imaging 
system owing to the unavoidable time delay between successive 
measurements of different parts of the sample. Quite importantly, 
Deep-Z also enables correction for sample-drift-induced defocus 
after the image capture. Supplementary Video 4 shows a moving 
C. elegans recorded by a fluorescence microscope, where Deep-Z 
digitally brought the defocused nematode into focus (also see 
Supplementary Note 1). In addition to 3D imaging of a nematode, 
Deep-Z also works well to digitally refocus the images of fluores-
cent samples that are spatially denser such as the mitochondria and 
F actin structures within bovine pulmonary artery endothelial cells 
(BPAEC) (Supplementary Fig. 5).

Deep-Z not only substantially boosts the imaging speed, but also 
reduces photobleaching on the sample. For a wide-field fluorescence 
microscopy experiment, where an axial image stack is acquired, 
the illumination excites the fluorophores through the entire speci-
men, and the total light exposure of a given point within the sample 
volume is proportional to the number of imaging planes that are 
acquired during a single-pass z stack. By contrast, Deep-Z only 
requires a single image acquisition, if its axial training range covers 
the sample depth. This reduction, enabled by Deep-Z, in the num-
ber of axial planes that need to be imaged within a sample directly 
helps to reduce the photobleaching of samples (Supplementary Fig. 
6 and Supplementary Note 2). This reduced light dose is also likely 
to reduce the phototoxicity associated with volumetric imaging.

So far, the blindly tested samples were inferred with a network 
that was trained using the same type of sample and the same micros-
copy system. In Supplementary Notes 3–4, we evaluated the perfor-
mance of Deep-Z under different scenarios, where a change in the 
test data distribution is introduced in comparison to the training 
image set, such as (1) a different type of sample is imaged, (2) a 
different microscopy system is used for imaging and (3) a differ-
ent illumination power or SNR is used. Our results (Supplementary 
Figs. 7–9) reveal the robustness of Deep-Z to these changes; how-
ever, to achieve the best performance using Deep-Z, the network 
should be trained (from scratch or through transfer learning, which 
expedites the training process) using training images obtained with 
the same microscope system and the same types of samples as are 
expected to be used at the testing phase.

As illustrated in Supplementary Notes 5–6, Deep-Z is also 
robust to changes in the density of the fluorescent objects within 
the sample (up to a limit, which is a function of the axial refocusing  

distance), the exposure time of the input images, as well as the illu-
mination intensity modulation (Supplementary Figs. 10–13 and 
Supplementary Video 5).

C. elegans neuron segmentation. For C. elegans neuron imaging, by 
virtual refocusing over an extended DOF, Deep-Z helps to segment 
more neurons and accurately predict their depth location as com-
pared to a single focal plane image. To demonstrate this capability, we 
show the segmentation results of a C. elegans worm (Supplementary 
Figs. 14d–i) calculated using a watershed segmentation algorithm40 
from a 2D input image, the corresponding Deep-Z virtual image 
stack and the mechanically scanned ground-truth image stack  
(41 depths with 0.5-µm axial spacing); the results are summarized 
in Table 1. In comparison to the segmentation results obtained 
from the 2D input image (Supplementary Fig. 14e), the segmenta-
tion obtained using the Deep-Z virtual image stack (Supplementary  
Fig. 14f) detected 33 additional neurons, predicting the correct 3D 
positions of 128 neurons in total. In comparison to the ground-
truth mechanically scanned 3D image stack (Supplementary  
Fig. 14i), the segmentation algorithm recognized 18 fewer neurons 
for the Deep-Z generated virtual stack, which were mostly located 
within the head, where the neurons are much denser and are rela-
tively more challenging to recover and segment. In sparser regions 
of the worm, the neurons were mostly correctly segmented, match-
ing the results obtained using the mechanically scanned 3D image 
stack (41 axial scans). The depth locations of the segmented neu-
rons also matched well with the corresponding depths measured 
using the ground-truth mechanically scanned 3D image stack, with 
an average depth difference of Δz = −0.575 ± 1.377 µm (Table 1).

To further improve Deep-Z-based neuron segmentation in 
denser regions of the sample (such as the head of a worm), images 
from more than one focal plane can be used as input. In compari-
son to the mechanically scanned 3D image stack, this is still sub-
stantially faster, requiring fewer images to recover the volume of the 
specimen. For instance, in Supplementary Fig. 14h we demonstrate 
the segmentation results of merging two virtual image stacks cre-
ated by Deep-Z (taking the per-pixel maximum), both spanning 
−10 µm to 10 µm but generated from two different input images at 
z = 0 µm and z = 4 µm, respectively. The segmentation algorithm in 
this case identified n = 148 neurons and the results match better to 
the ground-truth axial scanning results, n = 146 (Table 1). To shed 
more light on this comparison, we also used another segmentation 
algorithm (TrackMate41) on the same image dataset; the results of 

Table 1 | Neuron segmentation results for a C. elegans worm 
using a watershed-based segmentation algorithm

Watershed-based neuron segmentation

 n (neurons) Δz (mean ±  
s.d.; µm)

|Δz| (mean ±  
s.d.; µm)

Input image 
(M = 1 image)

95 −0.265 ± 1.437 1.156 ± 0.885

Deep-Z output 
stack (M = 1 
image)

128 −0.575 ± 1.377 0.852 ± 1.223

Merged stack 
(M = 2 images)

148 −0.157 ± 0.983 0.639 ± 0.761

Mechanical  
scan stack 
(M = 41 images)

146 Ground truth Ground truth

The resulting segmented neuron locations were also compared against the ground truth (that is, 
the corresponding mechanically scanned image stack, M = 41 images), reporting the axial error, 
Δz, as well as the absolute axial error, |Δz|, as mean ± s.d. in micrometers, respectively (also see 
Supplementary Note 7).
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this analysis, summarized in Supplementary Note 7, confirmed a 
similar trend as that shown in Table 1.

3D functional imaging of C. elegans using Deep-Z. To highlight 
the utility of Deep-Z for tracking the activity of neurons in 3D, we 
recorded the fluorescence video of a C. elegans worm at a single focal 
plane (z = 0 µm) at ~3.6 Hz for ~35 s, using a 20×/0.8 NA objective 
lens with two fluorescence channels, FITC for neuron activity and 
Texas Red for neuron locations. Each frame at each channel of the 
acquired video was digitally refocused using Deep-Z to a series of 
planes (−10 µm to 10 µm, 0.5-µm step size), generating a virtual 
3D fluorescence stack for each acquired frame. Supplementary  
Video 6 shows a comparison of the recorded input video and a video 
of the maximum intensity projection (MIP) along z for these virtual 
stacks. As can be seen in this comparison, the neurons that are defo-
cused in the input video can be refocused on demand at the Deep-Z 
output for both of the fluorescence channels. This enables accurate 
spatiotemporal tracking of individual neuron activity in 3D from a 
temporal sequence of 2D fluorescence images, captured at a single 
focal plane.

Next, we segmented the voxels of each neuron using the Texas 
Red channel, and tracked the change in the fluorescence inten-
sity, that is, ΔF(t) = F(t) − F0, in the FITC channel (neuron activ-
ity) inside each neuron segment over time, where F(t) is the neuron 
fluorescence emission intensity and F0 is its time average (Methods). 
A total of 155 neurons in 3D were isolated using Deep-Z output 
images (Fig. 3b, Supplementary Video 7). For comparison, in 
Supplementary Fig. 14b we report the results of the same segmen-
tation algorithm applied to just the input 2D image, in which 99 
neurons were identified, without any depth information.

Figure 3c plots the activities of the 70 most active neurons, which 
were grouped into clusters C1–C3 on the basis of similarities in 
their calcium activity patterns (Methods). The activity of all of the 
155 neurons inferred using Deep-Z are provided in Supplementary 
Fig. 15. Figure 3c reports that cluster C3 calcium activities increased 
at t = 14 s, whereas the activities of cluster C2 decreased at a simi-
lar time point. These neurons very likely correspond to the type A 
and B motor neurons that promote backward and forward motion, 
respectively, which typically anticorrelate with each other42. Cluster 
C1 features two cells that were comparatively larger in size, located 
in the middle of the worm. These cells had three synchronized short 
spikes at t = 4, 17 and 32 s. Their 3D positions and the regularity 
of their calcium activity pattern suggest that they are either neuro-
nal or muscle cells of the defecation system that initiates defecation 
in regular intervals in coordination with the locomotion system43. 
We emphasize that all this 3D-tracked neuron activity was in fact 
embedded in the input 2D fluorescence image sequence, which was 
acquired at a single focal plane. Through Deep-Z, the neuron loca-
tions and activities were accurately tracked using a 2D microscopic 
time sequence, without the need for mechanical scanning, addi-
tional hardware or a trade-off of resolution or imaging speed.

As Deep-Z generates temporally synchronized virtual image 
stacks through digital refocusing, it can be used to match the imag-
ing speed to the limit of the camera framerate. To highlight this 
opportunity, we used the stream mode of the camera of our micro-
scope (Methods) and captured two videos at 100 frames per second 
to monitor the neuron nuclei (Texas Red) and the neuron calcium 
activity (FITC) of a moving C. elegans over a period of 10 s, and used 
Deep-Z to generate virtually refocused videos over an axial range of 
±10 µm (Supplementary Videos 8 and 9).
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Deep-Z-based aberration correction using spatially non-uni-
form DPMs. Even though Deep-Z is trained with uniform DPMs, 
during testing one can also use spatially non-uniform entries as part 
of a DPM to refocus an input fluorescence image onto user-defined 
3D surfaces. Such a unique capability can be useful, among many 
applications, for simultaneous autofocusing of different parts of a 

fluorescence image after image capture and measurement or assess-
ment of the aberrations introduced by the optical system (and/or 
the sample), as well as for correction of such aberrations by applying 
a desired non-uniform DPM. To exemplify this opportunity, Fig. 4  
demonstrates the correction of the planar tilting and cylindrical 
curvature of two different samples, after the acquisition of a single 
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focus. g, Measurement of a cylindrical surface with fluorescent beads (300-nm beads). h, The corresponding DPM for this curved surface. i, Measured 
raw fluorescence image; the middle region and the edges are out-of-focus owing to the curvature of the sample. j, The Deep-Z output rapidly brings all the 
regions into correct focus. k,l, report the lateral FWHM values of the nanobeads shown in i,j, respectively, clearly demonstrating that Deep-Z with the non-
uniform DPM brought the out-of-focus particles into focus, generating monodispersed distributions with a median of ~0.96 µm and ~0.91 µm, respectively. 
Experiments were repeated with 32 images, achieving similar results. Scale bars for the expanded regions, 2 µm.
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2D fluorescence image per object. Figure 4a illustrates the first mea-
surement, in which the plane of a fluorescent nanobead sample was 
tilted with respect to the focal plane of the objective lens (Methods). 
By using a non-uniform DPM (see Fig. 4b), which represents the 
sample tilt, Deep-Z can act on the blurred input image (Fig. 4c) and 
accurately bring all the nanobeads into focus (Fig. 4d), even though 
it was only trained using uniform DPMs. The lateral FWHM val-
ues calculated at the network output image became monodispersed, 
with a median of ~0.96 µm (Fig. 4f), as compared to a median of 
~2.14 µm at the input image (Fig. 4e). Similarly, Fig. 4g illustrates 
the second measurement, where the nanobeads were distributed 
on a cylindrical surface with a diameter of ~7.2 mm. Using a non- 
uniform DPM that defines this cylindrical surface (Fig. 4h), the 

aberration in Fig. 4i was corrected using Deep-Z (Fig. 4j); the lateral 
FWHM values calculated at the network output once again became 
monodispersed (Fig. 4l). Supplementary Note 8 details an analysis 
on the 3D surface curvature that a DPM can have without generat-
ing artifacts.

Cross-modality digital refocusing of fluorescence images. 
Deep-Z can also be used to perform cross-modality digital refo-
cusing of an input image, where the generator can be trained using 
pairs of input and label images captured by two different fluores-
cence imaging modalities, which we term as Deep-Z+. To demon-
strate this capability, we trained a Deep-Z+ network using pairs of 
wide-field microscopy images (inputs) and confocal microscopy 
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Fig. 5 | Deep-Z+, cross-modality digital refocusing of fluorescence images. a–c, A single wide-field fluorescence image (63×/1.4 NA objective lens) 
of BPAEC microtubule structures (a) was digitally refocused using Deep-Z+ to different planes in 3D (b), matching the images captured by a confocal 
microscope at the corresponding planes (c), retrieving volumetric information from a single input image and performing axial sectioning at the same 
time. Wide-field (WF) images are also shown in c for comparison. The cross-sections (x–z and y–z) of refocused images are shown to demonstrate the 
match between Deep-Z+ inference and the ground-truth (GT) confocal microscope images of the same planes; the same cross sections (x–z and y–z) 
are also shown for a wide-field scanning fluorescence microscope, reporting a substantial axial blur in each case. Each cross-sectional expanded image 
spans 1.6 µm in the z direction (with an axial step size of 0.2 µm) and the dotted arrows mark the locations at which the x–z and y–z cross sections were 
taken. d, The absolute difference images of the Deep-Z+ output with respect to the corresponding confocal images, with SSIM and r.m.s.e. values, further 
quantifying the performance of Deep-Z+. For comparison, we also show the absolute difference images of the ‘standard’ Deep-Z output images and the 
scanning wide-field fluorescence microscope images with respect to the corresponding confocal images, both of which report increased error and weaker 
SSIM as compared to |GT − Deep-Z+|. The quantitative match between |GT − WF| and |GT − Deep-Z| also suggests that the impact of 60-nm axial offset 
between the confocal and wide-field image stacks is negligible. Scale bars, 10 µm. Experiments were repeated with 42 images, achieving similar results. 
Color scales indicate intensity.
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images at the corresponding planes (ground-truth labels) to per-
form cross-modality digital refocusing (Methods). Figure 5 demon-
strates our blind-testing results for imaging microtubule structures 
of BPAEC using Deep-Z+. The trained Deep-Z+ network digitally 
refocused the input wide-field fluorescence image onto different 
axial distances, while at the same time rejecting some of the defo-
cused spatial features at the refocused planes, matching the confocal 
images of the corresponding planes, which serve as our ground-
truth (Fig. 5). For example, the microtubule structure at the lower 
left corner of Fig. 5b, which was prominent at a refocusing distance 
of z = 0.34 µm, was digitally rejected by Deep-Z+ at a refocusing dis-
tance of z = −0.46 µm as it became out of focus at this axial distance, 
matching the corresponding image of the confocal microscope at 
the same depth (Fig. 5c). Wide-field images are also shown in Fig. 5c 
for comparison. These scanning wide-field images report the clos-
est heights to the corresponding confocal images, and have an axial 
offest of 60 nm, as the two image stacks are discretely scanned and 
digitally aligned to each other. Figure 5 reports x–z and y–z cross 
sections of Deep-Z+ output images, in which the axial distributions 
of the microtubule structures are substantially sharper as compared 
to the axial scanning images of a wide-field fluorescence micro-
scope, providing a very good match to the cross sections obtained 
with a confocal microscope, matching the aim of its training.

Discussion
We developed a unique framework, termed Deep-Z, powered by 
deep neural networks, that enables rapid 3D refocusing within a 
sample using a single 2D fluorescence image as input. This frame-
work is non-iterative and does not require hyperparameter tuning 
after its training stage. Even though the network is only trained 
using uniform DPMs, one can still apply various non-uniform 
DPMs during the inference stage to enable, for example, correction 
of sample drift, tilt, curvature or other optical aberrations, which 
might prove useful for longitudinal imaging experiments in biology 
and life sciences, by digitally recovering valuable information that 
might otherwise be lost owing to, for example, the sample becom-
ing out of focus or tilted over time. On the basis of these unique 
features, Deep-Z also has the potential to reduce the photobleaching 
of samples that is associated with volumetric fluorescence imaging.

Yet another unique feature of this Deep-Z framework is that it 
permits cross-modality virtual refocusing of fluorescence images, 
where the network is trained with gold-standard label images 
obtained by a different fluorescence microscopy modality (for 
example, confocal) to teach the generator network to digitally 
refocus an input image (for example, an image acquired by wide-
field microscopy) onto another plane within the sample volume, 
but this time to match the image of the same plane acquired by a 
different fluorescence imaging modality as compared to the input 
image. Figure 5 contains an example of wide-field to confocal 
transformation results.

We also demonstrated the efficacy of Deep-Z for structural and 
functional imaging of neurons in C. elegans nematodes. For neuron 
segmentation applications, we observed that Deep-Z output images 
in denser regions of a sample (for example, the head of a C. elegans) 
resulted in under-counting of the segmented neurons, which was 
improved by merging the Deep-Z output images resulting from two 
different focal planes as input. In fact, neuron segmentation is in 
general a challenging task, and not all the neurons in the body of a 
worm can be accurately identified in each experiment, even using 
a mechanically scanned image stack with a high NA objective and 
state-of-the-art neuron-segmentation algorithms44. Although not 
demonstrated here, Deep-Z can potentially be used as a front-end 
module to jointly optimize future deep-learning-based neuron-seg-
mentation algorithms, which can make use of Deep-Z to reduce the 
number of images required to accurately and efficiently track neu-
ral activity of model organisms. This could also benefit from new 

generator architectures that utilize more than one input images, for 
example, from different focal planes, to more effectively combine 
additional 3D information acquired at different planes.

Finally, we should note that the retrievable axial range in Deep-Z 
depends on the SNR of the recorded image, that is, if the depth 
information carried by the PSF falls below the noise floor, accurate 
inference will be challenging. To validate the performance of a pre-
trained Deep-Z network under variable SNR, we tested the infer-
ence of Deep-Z at different exposure conditions (Supplementary 
Figure 7), revealing the robustness of its inference over a broad 
range of exposure times that were not included in the training data 
(Supplementary Note 3). Our results demonstrated an enhance-
ment of ~20× in the DOF of a wide-field fluorescence image using 
Deep-Z. This refocusing range is in fact not an absolute limit but 
rather a practical choice for our training data, and it may be further 
improved through hardware modifications to the optical setup by 
engineering the PSF in the axial direction3,12,45–47. Supplementary 
Video 10 shows an experimental demonstration of Deep-Z blind 
inference for a double-helix PSF.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41592-019-0622-5.
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Methods
Sample preparation. The 300-nm red fluorescence nanobeads were purchased 
from MagSphere (PSF-300NM 0.3 UM RED), diluted 5,000 times with methanol 
and ultrasonicated for 15 min before and after dilution to break down the clusters. 
For the fluorescent bead samples on a flat surface and a tilted surface, a number 1 
coverslip (22 × 22 mm2, thickness of ~150 µm) was thoroughly cleaned and plasma 
treated. Then, a 2.5-µl droplet of the diluted bead sample was pipetted onto the 
coverslip and dried. For the fluorescent bead sample on a curved (cylindrical) 
surface, a glass tube (diameter of ~7.2 mm) was thoroughly cleaned and plasma 
treated. Then, a 2.5-µl droplet of the diluted bead sample was pipetted onto the 
outer surface of the glass tube and dried.

Structural imaging of C. elegans neurons was carried out in strain AML18. 
AML18 carries the genotype wtfIs3 [rab-3p::NLS::GFP+rab-3p::NLS::tagRFP] 
and expresses GFP and tagRFP in the nuclei of all the neurons39. For functional 
imaging, we used the strain AML32, carrying wtfIs5 [rab-3p::NLS::GCaMP6s+rab-
3p::NLS::tagRFP]. The strains were acquired from the Caenorhabditis Genetics 
Center. Worms were cultured on nematode growth medium seeded with OP50 
bacteria using standard conditions48. For imaging, worms were washed off the 
plates with M9 and anesthetized with 3 mM levamisole49. Anesthetized worms were 
then mounted on slides seeded with 3% agarose. To image moving worms, the 
levamisole was omitted.

Two slides of multilabeled BPAEC were acquired from Thermo Fisher: 
FluoCells Prepared Slide 1 and FluoCells Prepared Slide 2. These cells were  
labeled to express different cell structures and organelles. The first slide uses  
Texas Red for mitochondria and FITC for F-actin structures. The second slide  
uses FITC for microtubules.

Fluorescence image acquisition. The fluorescence images of nanobeads, C. elegans 
structure and BPAEC samples were captured by an inverted scanning microscope 
(IX83, Olympus Life Science) using a 20×/0.75 NA objective lens (UPLSAPO20X, 
Olympus Life Science). A 130-W fluorescence light source (U-HGLGPS, Olympus 
Life Science) was used at 100% output power. Two bandpass optical filter sets 
were used, Texas Red and FITC. The bead samples were captured by placing the 
coverslip with beads directly on the microscope sample mount. The tilted surface 
sample was captured by placing the coverslip with beads on a 3D-printed holder, 
which created a 1.5° tilt with respect to the focal plane. The cylindrical tube surface 
with fluorescent beads was placed directly on the microscope sample mount.  
These fluorescent bead samples were imaged using a Texas Red filter set. The  
C. elegans sample slide was placed on the microscope sample mount and imaged 
using a Texas Red filter set. The BPAEC slide was placed on the microscope sample 
mount and imaged using Texas Red and FITC filter sets. For all the samples, the 
scanning microscope had a motorized stage (ProScan XY stage kit for IX73/83) 
that moved the samples to different FOVs and performed image-contrast-based 
autofocus at each location. The motorized stage was controlled using MetaMorph 
microscope automation software (Molecular Devices). At each location, the 
control software autofocused the sample on the basis of the s.d. of the image, and 
a z-stack was taken from −20 µm to 20 µm with a step size of 0.5 µm. The image 
stack was captured by a monochrome scientific CMOS camera (ORCA-flash4.0 v2, 
Hamamatsu Photonics K.K), and saved in uncompressed tiff format with 81 planes 
and 2,048 × 2,048 pixels in each plane.

The images of C. elegans neuron activity were captured by another scanning 
wide-field fluorescence microscope (TCS SP8, Leica Microsystems) using a 
20×/0.8 NA objective lens (HCPLAPO20x/0.80DRY, Leica Microsystems) and 
a 40×/1.3 NA objective lens (HC PL APO 40×/1.30 oil, Leica Microsystems). 
Two bandpass optical filter sets were used, Texas Red and FITC. The images 
were captured by a monochrome scientific CMOS camera (Leica DFC9000GTC-
VSC08298). For capturing image stacks of anesthetized worms, the motorized 
stage controlled by a control software (LAS X, Leica Microsystems) moved the 
sample slide to different FOVs. At each FOV, the control software took a z stack 
from −20 µm to 20 µm with a step size of 0.5 µm for the 20×/0.8 NA objective 
lens images or a step size of 0.27 µm for the 40×/1.3 NA objective lens images, 
with respect to a middle plane (z = 0 µm). Two images were taken at each z plane, 
for the Texas Red channel and FITC channel, respectively. For capturing 2D 
videos of dynamic worms, the control software took a time-lapse video that also 
time-multiplexed the Texas Red and FITC channels at the maximum speed of 
the system. This resulted in an average framerate of ~3.6 frames per second for a 
maximum camera framerate of 10 frames per second, for imaging both channels.

The BPAEC wide-field and confocal fluorescence images were captured by 
another inverted scanning microscope (TCS SP5, Leica Microsystems). The images 
were acquired using a 63×/1.4 NA objective lens (HC PL APO 63×/1.40 oil CS2, 
Leica Microsystems) and a FITC filter set was used. The wide-field images were 
recorded by a charge-coupled device with 1,380 × 1,040 pixels and a 12-bit dynamic 
range, whereas the confocal images were recorded by a photo-multiplier tube with 
1,024 × 1,024 pixels and an 8-bit dynamic range. The scanning microscope had a 
motorized stage that moved the sample to different FOVs and depths. For each 
location, a stack of 12 images with 0.2-µm axial spacing was recorded.

Image preprocessing and preparation of training data. Each captured image 
stack was first axially aligned using the ImageJ plugin ‘StackReg’50, which corrects 

the rigid shift and rotation caused by the microscope stage inaccuracy. Then 
an extended depth of field (EDF) image was generated using the ImageJ plugin 
‘Extended Depth of Field’51. This EDF image was used as a reference image to 
normalize the whole image stack in the following steps: (1) a triangular threshold52 
was used on the image to separate the background and foreground pixels; (2) the 
mean intensity of the background pixels of the EDF image was determined to 
be the background noise and subtracted; (3) the EDF image intensity was scaled 
to 0–1, where the scale factor was determined such that 1% of the foreground 
pixels above the background were greater than one (that is, saturated); and (4) the 
background level was subtracted from each image in the stack and each image was 
normalized by the intensity scaling factor. For testing data without an image stack, 
steps 1–3 were applied on the input image instead of the EDF image.

To prepare the training and validation datasets, on each FOV, a geodesic 
dilation40 with fixed thresholds was applied on fluorescence EDF images to 
generate a mask that represents the regions containing the sample fluorescence 
signal above the background. Then, a customized greedy algorithm was used to 
determine a minimal set of regions with 256 × 256 pixels that covered this mask, 
with ~5% area overlap between these training regions. The lateral locations of 
these regions were used to crop images on each height of the image stack, where 
the middle plane for each region was set to be the one with the highest s.d. 
Then, 20 planes above and 20 planes below this middle plane were set to be the 
range of the stack and an input image plane was generated from each of these 41 
planes. Depending on the size of the dataset, around 5–10 of these 41 planes were 
randomly selected as the corresponding target plane, forming around 150–300 
image pairs. For each one of these image pairs, the refocusing distance was 
determined on the basis of the location of the plane (that is, 0.5 µm multiplied by 
the difference from the input plane to the target plane). By repeating this number, 
a uniform DPM was generated and appended to the input fluorescence image. 
The final dataset typically contained ~100,000 image pairs. This was randomly 
divided into a training dataset and a validation dataset, which took 85% and 15% 
of the data, respectively. During the training process, each data point was further 
augmented five times by flipping or rotating the images by a random multiple of 
90°. The validation dataset was not augmented. The testing dataset was cropped 
from separate measurements with sample FOVs that did not overlap with the 
FOVs of the training and validation datasets.

Deep-Z network architecture. The Deep-Z network is formed by a least square 
GAN framework53, and it is composed of two parts: a generator and a discriminator 
(Supplementary Note 9). The generator is a convolutional neural network inspired 
by the U-Net54, and follows a similar structure as that seen in refs. 33,55. The 
generator network consists of a downsampling path and a symmetric upsampling 
path. In the downsampling path, there are five downsampling blocks. Each block 
contains two convolutional layers that map the input tensor xk to the output  
tensor xk + 1

xkþ1 ¼ xk þ ReLU CONVk2 ReLU CONVk1 xkf g½ f g½  ð1Þ

where ReLU[.] stands for the rectified linear unit operation and CONV{.} 
stands for the convolution operator (including the bias terms). The subscript 
of CONV denotes the number of channels in the convolutional layer; along the 
downsampling path we have: k1 = 25, 72, 144, 288, 576 and k2 = 48, 96, 192, 384, 
768 for levels k = 1, 2, 3, 4, 5, respectively. The ‘+’ sign in equation (1) represents a 
residual connection. Zero padding was used on the input tensor xk to compensate 
for the channel number mismatch between the input and output tensors. The 
connection between two consecutive downsampling blocks is a 2 × 2 max-pooling 
layer with a stride of 2 × 2 pixels to perform a 2× downsampling. The fifth 
downsampling block connects to the upsampling path, which will be detailed next.

In the upsampling path, there are four corresponding upsampling blocks, each 
of which contains two convolutional layers that map the input tensor yk + 1 to the 
output tensor yk using:

yk ¼ ReLU CONVk4 ReLU CONVk3 CAT xkþ1; ykþ1ð Þf g½ f g½  ð2Þ

where the CAT(·) operator represents the concatenation of the tensors along 
the channel direction, that is, CAT(xk + 1,yk + 1) appends tensor xk + 1 from the 
downsampling path to the tensor yk + 1 in the upsampling path at the corresponding 
level k + 1. The number of channels in the convolutional layers, denoted by k3 and 
k4, are k3 = 72, 144, 288, 576 and k4 = 48, 96, 192, 384 along the upsampling path for 
k = 1, 2, 3, 4, respectively. The connection between consecutive upsampling blocks 
is an up-convolution (convolution transpose) block that upsamples the image 
pixels by 2×. The last block is a convolutional layer that maps the 48 channels to 
one output channel.

The discriminator is a convolutional neural network that consists of six 
consecutive convolutional blocks, each of which maps the input tensor zi to the 
output tensor zi + 1, for a given level i

ziþ1 ¼ LReLU CONVi2 LReLU CONVi1 zif g½ f g½  ð3Þ

where the LReLU stands for a leaky ReLU operator with a slope of 0.01. The 
subscript of the convolutional operator represents its number of channels, which 
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are i1 = 48, 96, 192, 384, 768, 1,536 and i2 = 96, 192, 384, 768, 1,536, 3,072, for the 
convolution block i = 1, 2, 3, 4, 5, 6, respectively.

After the last convolutional block, an average pooling layer flattens the 
output and reduces the number of parameters to 3,072. Subsequently there are 
fully connected layers of size 3,072 × 3,072 with LReLU activation functions, and 
another fully connected layer of size 3,072 × 1 with a sigmoid activation function. 
The final output represents the discriminator score, which falls within (0, 1), where 
0 represents a false and 1 represents a true label.

All the convolutional blocks use a convolutional kernel size of 3 × 3 pixels and 
replicate padding of one pixel unless mentioned otherwise. All the convolutions 
have a stride of 1 × 1 pixel, except the second convolutions in equation (3), which 
has a stride of 2 × 2 pixels to perform a 2× downsampling in the discriminator 
path. The weights are initialized using the Xavier initializer56 and the biases are 
initialized to 0.1.

Training and testing of the Deep-Z network. The Deep-Z network learns to use 
the information given by the appended DPM to digitally refocus the input image 
to a user-defined plane. In the training phase, the input data of the generator G(.) 
have the dimensions of 256 × 256 × 2, where the first channel is the fluorescence 
image and the second channel is the user-defined DPM. The target data of G(.) 
have the dimensions of 256 × 256, which represent the corresponding fluorescence 
image at a surface specified by the DPM. The input data of the discriminator D(.) 
have the dimensions of 256 × 256, which can be either the generator output or 
the corresponding target z(i). During the training phase, the network iteratively 
minimizes the generator loss LG and discriminator loss LD, defined as:

LG ¼ 1
2N

XN

i¼1

D G x ið Þ
  

� 1
h i2

þα
1
2N

XN

i¼1

MAE x ið Þ; z ið Þ
 

ð4Þ

LD ¼ 1
2N

XN

i¼1

D G x ið Þ
  h i2

þ 1
2N

XN

i¼1

D z ið Þ
 

� 1
h i2

ð5Þ

where N is the number of images used in each batch (for example, N = 20), G(x(i)) 
is the generator output for the input x(i), z(i) is the corresponding target label, D(.) is 
the discriminator, and MAE(.) stands for mean absolute error. α is a regularization 
parameter for the GAN loss and the MAE loss in LG. In the training phase, it was 
chosen as α = 0.02. For training stability and optimal performance, an adaptive 
momentum optimizer was used to minimize both LG and LD, with a learning rate 
of 10−4 and 3 × 10−5 for LG and LD, respectively. In each iteration, six updates of the 
generator loss and three updates of the discriminator loss were performed. The 
validation set was tested every 50 iterations and the best network (to be blindly 
tested) was chosen to be the one with the smallest MAE loss on the validation set.

In the testing phase, once the training is complete, only the generator network 
is active. Limited by the graphical memory of our GPU, the largest image FOV that 
we tested was 1,536 × 1,536 pixels. Because the image was normalized to be in the 
range 0–1, whereas the refocusing distance was on the scale of around −10 to 10 
(in micrometers), the DPM entries were divided by 10 to be in the range of −1 to 1 
before the training and testing of the Deep-Z network to keep the dynamic range of 
the image and DPM matrices similar to each other.

The network was implemented using TensorFlow57, performed on a PC with 
Intel Core i7-8700K six-core 3.7 GHz CPU and 32 GB RAM, using an Nvidia 
GeForce 1080Ti GPU. On average, the training takes ~70 h for ~400,000 iterations 
(equivalent to ~50 epochs). After the training, the network inference time was 
~0.2 s for an image with 512 × 512 pixels and ~1 s for an image with 1,536 × 1,536 
pixels on the same PC.

Measurement of the lateral and axial FWHM values of the fluorescent beads 
samples. For characterizing the lateral FWHM of the fluorescent beads samples, 
a threshold was performed on the image to extract the connected components. 
Then, individual regions of 30 × 30 pixels were cropped around the centroid of 
these connected components. A 2D Gaussian fit was performed on each of these 
individual regions, which was done using lsqcurvefit (https://www.mathworks.com/
help/optim/ug/lsqcurvefit.html) in Matlab (MathWorks) to match the function:

I x; yð Þ ¼ Aexp
x � xcð Þ2
2σ2x

þ y � ycð Þ2
2σ2y

" #
ð6Þ

The lateral FWHM was then calculated as the mean FWHM of x and y 
directions

FWHMlateral ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2 ln 2

p σxΔx þ σyΔy

2
ð7Þ

where Δx = Δy = 0.325 μm was the effective pixel size of the fluorescence image on the 
object plane. A histogram was subsequently generated for the lateral FWHM values 
for all the thresholded beads (for example, n = 461 for Fig. 1 and n > 750 for Fig. 4).

To characterize the axial FWHM values for the bead samples, slices along the 
x–z direction with 81 steps were cropped at y = yc for each bead, from either the 

digitally refocused or the mechanically scanned axial image stack. Another 2D 
Gaussian fit was performed on each cropped slice, to match the function

I x; zð Þ ¼ Aexp
x � xcð Þ2
2σ2x

þ z � zcð Þ2
2σ2z

� �
ð8Þ

The axial FWHM was then calculated as

FWHMaxial ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
σzΔz ð9Þ

where Δz = 0.5 μm was the axial step size. A histogram was subsequently generated 
for the axial FWHM values.

Image quality evaluation. The network output images Iout were evaluated with 
reference to the corresponding ground-truth images IGT using the following 
five criteria: (1) mean square error (MSE), (2) r.m.s.e., (3) MAE, (4) correlation 
coefficient and (5) SSIM58. The MSE is one of the most widely used error metrics, 
defined as

MSE Iout; IGT
� �

¼ 1
Nx Ny

jjIout � IGTjj22 ð10Þ

where Nx and Ny represent the number of pixels in the x and y directions, 
respectively. The square root of MSE results in r.m.s.e. In comparison to MSE, MAE 
uses 1-norm difference (absolute difference) instead of 2-norm difference, which is 
less sensitive to outlier pixels

MAE Iout; IGT
� �

¼ 1
Nx Ny

jjIout � IGTjj1 ð11Þ

The correlation coefficient is defined as

corr Iout; IGT
� 

¼
P

x

P
y Ioutxy � μout

 
IGTxy � μGT

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

x

P
y Ioutxy � μout

 2
  P

x

P
y IGTxy � μGT

 2
 s ð12Þ

where μout and μGT are the mean values of the images Iout and IGT respectively.
While these criteria listed above can be used to quantify errors in the network 

output as compared to the GT, they are not strong indicators of the perceived 
similarity between two images. SSIM aims to address this shortcoming by 
evaluating the structural similarity in the images, defined as

SSIM Iout; IGT
� �

¼ 2μoutμGT þ C1ð Þð2σout;GT þ C2Þ
μ2out þ μ2GT þ C1
� �

σ2out þ σ2GT þ C2
� � ð13Þ

where σout and σGT are the standard deviations of Iout and IGT respectively, and σout,GT 
is the cross-variance between the two images; C1 and C2 are constants, used to avoid 
division by a small denominator.

Tracking and quantification of C. elegans neuron activity. The C. elegans neuron 
activity tracking video was captured by time multiplexing the two fluorescence 
channels (FITC, followed by Texas Red and then FITC and so on). The adjacent 
frames were combined so that the green color channel was FITC (neuron activity) 
and the red color channel was Texas Red (neuron nuclei). Subsequent frames were 
aligned using a feature-based registration toolbox with projective transformation 
in Matlab (MathWorks) to correct for slight body motion of the worms. Each input 
video frame was appended with DPMs representing propagation distances from 
−10 µm to 10 µm with a step size of 0.5 µm, and then tested through a Deep-Z 
network (specifically trained for this imaging system), which generated a virtual 
axial image stack for each frame in the video.

To localize individual neurons, the red channel stacks (Texas Red, neuron 
nuclei) were projected by median-intensity through the time sequence. Local 
maxima in this projected median-intensity stack marked the centroid of each 
neuron and the voxels of each neuron was segmented from these centroids by 
watershed segmentation40, which generated a 3D spatial voxel mask for each 
neuron. A total of 155 neurons were isolated. Then, the average of the 100 brightest 
voxels in the green channel (FITC, neuron activity) inside each neuron spatial 
mask was calculated as the calcium activity intensity Fi(t), for each time frame 
t and each neuron i = 1, 2,…, 155. The differential activity was then calculated, 
ΔF(t)=F(t) − F0, for each neuron, where F0 is the time average of F(t).

By thresholding on the s.d. of each ΔF(t), we selected the 70 most active cells 
and performed further clustering on them on the basis of similarities in their 
calcium activity pattern (Supplementary Figure 15b) using a spectral-clustering 
algorithm59,60. The calcium activity pattern similarity was defined as

Sij ¼ exp �
ΔFi tð Þ
Fi0

� ΔFj tð Þ
Fj0

2


σ2

0
B@

1
CA ð14Þ
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for neurons i and j, which results in a similarity matrix S (Supplementary Figure 
15c). The s.d. of this Gaussian similarity function is σ = 1.5, which controls the 
width of the neighbors in the similarity graph. The spectral clustering solves an 
eigenvalue problem on the graph Laplacian L generated from the similarity matrix 
S, defined as the difference of weight matrix W and degree matrix D

L ¼ D�W ð15Þ

where

W ij ¼
Sij if i≠j

0 if i ¼ j

�
ð16Þ

Dij ¼
P
j
W ij if i ¼ j

0 if i≠j

(
ð17Þ

The number of clusters was chosen using eigengap heuristics59, which was 
the index of the largest general eigenvalue (by solving the general eigenvalue 
problem Lv = λDv) before the eigengap, where the eigenvalues jump up, which was 
determined to be k = 3 (Supplementary Figure 15d). Then the corresponding first 
k = 3 eigenvectors were combined as a matrix, whose rows were clustered using 
standard k-means clustering59, which resulted in the three clusters of calcium 
activity patterns shown in Supplementary Figure 15e and the rearranged similarity 
matrix shown in Supplementary Figure 15f.

Cross-modality alignment of wide-field and confocal fluorescence images. 
After its training, the Deep-Z+ network learns to digitally refocus a single input 
fluorescence image acquired by a fluorescence microscope to a user-defined 
target surface in 3D, but the output will match an image of the same sample 
captured by a different fluorescence imaging modality at the corresponding height 
(plane). To demonstrate this capability, we trained a Deep-Z+ network using 
pairs of wide-field microscopy images (inputs) and confocal microscopy images 
at the corresponding planes, where each stack of the wide field–confocal pair 
was first self-aligned and normalized using the method described above. Then 
the individual FOVs were stitched together using the ‘Image Stitching’ plugin 
in ImageJ (https://imagej.net/Image_Stitching). The stitched wide-field and 
confocal EDF images were then simultaneously registered using a feature-based 
registration with projective transformation performed in Matlab (MathWorks; 
https://www.mathworks.com/help/vision/ref/detectsurffeatures.html). Then 
the stitched confocal EDF images, as well as the stitched stacks, were warped 
using this estimated transformation to match their wide-field counterparts. The 
non-overlapping regions of the wide-field and warped confocal images were 
subsequently deleted. Then the greedy algorithm described above was used to 
crop non-empty regions of 256 × 256 pixels from the remaining stitched wide-field 
images and their corresponding warped confocal images. The same feature-based 
registration was applied on each pair of cropped regions for fine alignment. 
This step provides good correspondence between the wide-field image and the 
corresponding confocal image in the lateral directions (Supplementary Note 10).

Although the axial scanning step size was fixed to be 0.2 µm, the reference 
zero-point in the axial direction for the wide-field and the confocal stacks needed 
to be matched. To determine this reference zero-point in the axial direction, the 
images at each depth were compared with the EDF image of the same region using 
the SSIM57, providing a focus curve. A second-order polynomial fit was performed 
on four points in this focus curve with highest SSIM values, and the reference 
zero-point was determined to be the peak of the fit. The heights of wide-field and 
confocal stacks were then centered by their corresponding reference zero-points 
in the axial direction. For each wide-field image used as input, four confocal 
images were randomly selected from the stack as the target, and their DPMs were 
calculated on the basis of the axial difference of the centered height values of the 
confocal and the corresponding wide-field images (Supplementary Note 10).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We declare that all the data supporting the findings of this work are available within 
the manuscript and its supplementary information.

Code availability
Deep learning models reported in this work used standard libraries and scripts 
that are publicly available in TensorFlow. Through a custom-written Fiji-based 
plugin, we provided our trained network models (together with some sample test 

images) for the following objective lenses: Leica HC PL APO 20×/0.80 NA DRY 
(two different network models trained on TxRd and FITC channels), Leica HC PL 
APO 40×/1.30 NA oil (trained on TxRd channel), Olympus UPLSAPO20X 0.75 NA 
(trained on TxRd channel). We made this custom-written plugin and our models 
publicly available through the following links: http://bit.ly/deep-z-git and http://bit.
ly/deep-z.
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Supplementary Figure 1 

Quantification of SNR improvement through Deep-Z. 

Top row: an input image of a 300 nm fluorescent bead was digitally refocused to a plane 2 µm above it using Deep-Z, where the ground 
truth was the mechanically scanned fluorescence image acquired at this plane. Bottom row: same images as the first row, but saturated 
to a dynamic range of [0, 10] to highlight the background. The SNR values were calculated by first taking a Gaussian fit (see  the 
Materials and Methods section) on the pixel values of each image to find the peak signal strength. Then the pixels in the region of 
interest (ROI) that were 10σ away (where σ

2 
is the variance of the fitted Gaussian) were regarded as the background (marked by the 

region outside the red dotted circle in each image) and the standard deviation of these pixel values was calculated as the ba ckground 
noise. The Deep-Z network rejects background noise and improves the output image SNR by ~ 40 dB, compared to the mechan ical 
scan ground truth image. Analysis was performed on a randomly selected particle from a group of 96 images with similar result s. 

 



 

Supplementary Figure 2 

Digital refocusing of fluorescence images of C. elegans worms. 

(a, k) Measured fluorescence images (Deep-Z input). (b, d, l, n) Deep-Z output at different target heights (z). (c, e, m, o) Ground truth 
(GT) images, captured using a mechanical axial scanning microscope at the same heights as the Deep-Z outputs. (f, p) overlay of 
Deep-Z output images in magenta and GT images in green. (g, i, q, s) Absolute difference images of Deep-Z output images and the 
corresponding GT images at the same heights. (h, j, r, t) Absolute difference images of Deep-Z input and the corresponding GT images. 
Structural similarity index (SSIM) and root mean square error (RMSE) were calculated for the output vs. GT and the input vs. GT for 
each region, displayed in (g, i, q, s) and (h, j, r, t), respectively. Scale bar: 25 µm . Experiments were repeated with 20 images, achieving 
similar results. 



 

Supplementary Figure 3 

Structural similarity (SSIM) index and correlation coefficient (Corr. Coeff.) analysis for digital refocusing of fluorescence  images from an 
input plane at zinput to a target plane at ztarget. 

We created a scanned fluorescence z-stack of a C. elegans sample, within an axial range of -20 µm to 20 µm, with 1 µm spacing. First 
column: each scanned image at zinput in this stack was compared against the image at ztarget, forming cross-correlated SSIM and Corr. 
Coeff. matrices. Both the SSIM and Corr. Coeff. fall rapidly off the diagonal entries. Second column: A Deep-Z network trained with 
fluorescence image data corresponding to +/- 7.5 µm propagation range (marked by the cyan diamond in each panel) was used to 
digitally refocus images from zinput to ztarget. The output images were compared against the ground truth images at ztarget using SSIM and 
Corr. Coeff. Third column: same as the second column, except the training fluorescence image data included up to +/- 10 µm axial 
propagation (marked by the cyan diamond that is now enlarged compared to the second column). These results confirm that Deep-Z 
learned the digital propagation of fluorescence, but it is limited to the axial range that it was trained for (determined by the training 
image dataset). Outside the training range (defined by the cyan diamonds), both the SSIM and Corr. Coeff. values considerably 
decrease.  



 

Supplementary Figure 4 

3D imaging of C. elegans head neuron nuclei using Deep-Z. 

The input and ground truth images were acquired by a scanning fluorescence microscope with a 40×/1.4NA objective. A single 
fluorescence image acquired at z=0 µm focal plane (marked by dashed yellow rectangle) was used as the input image to Deep-Z and 
was digitally refocused to different planes within the sample volume, spanning around -4 to 4 µm; the resulting images provide a good 
match to the corresponding ground truth images. Scale bar: 25 µm. Experiments were repeated with 12 images, achieving similar 
results. 



 

Supplementary Figure 5 

Digital refocusing of fluorescence microscopy images of BPAEC using Deep-Z. 

The input image was captured using a 20×/0.75 NA objective lens, using the Texas Red and FITC filter sets, occupying the red and 
green channels of the image, for the mitochondria and F-actin structures, respectively. Using Deep-Z, the input image was digitally 
refocused to 1 µm above the focal plane, where the mitochondrial structures in the green channel are in focus, matching the features on 
the mechanically-scanned image (obtained directly at this depth). The same conclusion applies for the Deep-Z output at z = 2 µm, 
where the F-actin structures in the red channel come into focus. After 3 µm above the image plane, the details of the image content get 
blurred. The absolute difference images of the input and output with respect to the corresponding ground truth images are also 
provided, with SSIM and RMSE values, quantifying the performance of Deep-Z. Scale bar: 20 µm. Experiments were repeated with 180 
images, achieving similar results. 



 

Supplementary Figure 6 

Photobleaching analysis. 

(a) Fluorescence signal of nanobeads imaged in 3D, for 180 times of repeated axial scans, containing 41 planes, spanning +/ - 10 µm 
with a step size 0.5 µm. The accumulated scanning time is ~30 min. (b) The corresponding scan for a single plane, which is us ed by 
Deep-Z to generate a virtual image stack, spanning the same axial depth within the sample (+/- 10 µm). The accumulated scanning 
time for Deep-Z is ~ 15 seconds. The center line represents the mean and the shaded region represents the standard deviation of the 
normalized intensity for 681 and 597 individual nanobeads (for (a) and (b), respectively) inside the sample volume.  



 

Supplementary Figure 7 

Refocusing capability of Deep-Z under lower image exposure. 

(a) Virtual refocusing of images containing two microbeads under different exposure times from defocused distances of -5, 3 and 4.5 
µm, using two Deep-Z models trained with images captured at 10 ms and 100 ms exposure times, respectively.  (b) Median FWHM 
values of 91 microbeads imaged inside a sample FOV after the virtual refocusing of an input image across a defocus range of -10 µm to 
10 µm by the Deep-Z (100 ms) network model. The test images have different exposure times spanning 3 ms to 300 ms.  (c) Same as 
(b), but plotted for the Deep-Z (10 ms) model.     



 

Supplementary Figure 8 

Deep-Z based virtual refocusing of a different sample type and transfer learning results. 

(a) The input image records the neuron activities of a C. elegans that is labeled with GFP; the image is captured using a 20×/0.8NA 
objective under the FITC channel. The input image was virtually refocused using both the optimal worm strain model (denoted a s: same 
model, functional GFP) as well as a different model (denoted as: different model, structural tagRFP); we also report here the results of a 
transfer learning model which used the different model as its initialization and functional GFP image dataset to refine it af ter ~ 500 
iterations (~30 min of training). (b) A different C. elegans sample is shown. The input image records the neuron nuclei labeled with 
tagRFP imaged using a 20×/0.75NA objective under the Texas Red channel. The input image was virtually refocused using both th e 
exact worm strain model (same model, structural, tagRFP) as well as a different model (different model, 300 nm red beads); we also 
report here the results of a transfer learning model which used the different model as its initialization and structural ragR FP image 
dataset to refine it after ~ 4,000 iterations (~6 hours training). Image correlation coefficient (r) is shown at the lower right corner of each 
image, in reference to the ground truth mechanical scan performed at the corresponding microscope system (Leica and Olympus, 
respectively). The transfer learning was performed using 20% of the training data and 50% of the validation data, randomly selected 
from the original data set.  



 

Supplementary Figure 9 

Virtual refocusing of a different microscope system and transfer learning results. 

The input image records the C. elegans neuronal nuclei labeled with tag GFP, imaged using a Leica SP8 microscope with a 20×/0.8NA 
objective. The input image was virtually focused using both the exact model (Leica SP8 20×/0.8NA) as well as a different model 
(denoted as: different model, Olympus 20×/0.75NA); we also report here the results of a transfer learning model using the dif ferent 
model as its initialization and Leica SP8 image dataset to refine it after ~ 2,000  iterations (~40 min training). Image correlation 
coefficient (r) is shown at the lower right corner of each image, in reference to the ground truth mechanical scan performed at the 
corresponding microscope system. The transfer learning was performed using 20% of the training data and 50% of the validation data, 
randomly selected from the original data set. 



 



Supplementary Figure 10 

Time-modulated signal reconstruction using Deep-Z. 

(a) A time-modulated illumination source was used to excite the fluorescence signal of microbeads (300 nm diameter). Time-lapse 
sequence of the sample was captured under this modulated illumination at the in -focus plane (z = 0 µm) as well as at various 
defocused planes (z = 2-10 µm) and refocused using Deep-Z to digitally reach z = 0 µm. Intensity variations of 297 individual beads 
inside the FOV (after refocusing) were tracked for each sequence. (b) Based on the video captured in (a), we took every other  frame to 
form an image sequence with twice the frame-rate and modulation frequency, and added it back onto the original sequence with a 
lateral shift. These defocused and super-imposed images were virtually refocused using Deep-Z to digitally reach z=0 µm, in-focus 
plane. Group 1 contained 297 individual beads inside the FOV with 1 Hz modulation. Group 2 contained the signals of the other (new) 
beads that are super-imposed on the same FOV with 2 Hz modulation frequency. Each intensity curve was normalized, and the mean 
(plotted as curve center) and the standard deviation (plotted as error bar) of the 297 curves were plotted for each time -lapse sequence. 
Virtually-refocused Deep-Z output tracks the sinusoidal illumination, very closely following the in -focus reference time-modulation 
reported in target (z = 0 µm). Please also see the Supplementary Video 5, related to this figure.  



 

Supplementary Figure 11 

Deep-Z based virtual refocusing of a laterally shifted weaker fluorescent object next to a stronger object. 

(a) A defocused experimental image (left bead) at plane z was shifted laterally by d pixels to the right and digitally weaken ed by a pre-
determined ratio (right bead), which was then added back to the original image, used as the input image to Deep-Z. Scale bar: 5 μm. (b) 
An example of the generated bead pair with an intensity ratio of 0.2; we show in -focus plane, defocused planes of 4 and 10 µm, and the 
corresponding virtually-refocused images by Deep-Z. (c-h) Average intensity ratio of the shifted and weakened bead signal with respect 
to the original bead signal for 144 bead pairs inside a FOV, calculated at the virtually refocused plane using different axia l defocus 
distances (z). The crosses “x” in each figure mark the corresponding lateral shift distance, below which the two beads cannot be 
distinguished from each other, color-coded to represent bead signal intensity ratio (spanning 0.2-1.0). 



 

Supplementary Figure 12 

Impact of axial occlusions on Deep-Z virtual refocusing performance.  

(a) 3D virtual refocusing of two beads that have identical lateral positions but are separated axially by 8 µm; Deep-Z, as usual, used a 
single 2D input image corresponding to the defocused image of the overlapping beads. The virtual refocusin g calculated by Deep-Z 
exhibits two maxima representing the two beads along the z-axis, matching the simulated ground truth image stack. (b) Simulation 
schematic: two defocused images in the same bead image stack with a spacing of d was added together, with the higher stack located 
at a depth of z=8 µm. A single image in the merged image stack was used as the input to Deep-Z for virtual refocusing. (c-d) report the 
average and the standard deviation (represented by transparent colors) of the intensity ratio  of the top (i.e., the dimmer) bead signal 
with respect to the bead intensity in the original stack, calculated for 144 bead pairs inside a FOV, for z = 8 µm with diffe rent axial 
separations (d) and bead intensity ratios (spanning 0.2-1.0).  



 

Supplementary Figure 13 

Deep-Z inference results as a function of 3D fluorescent sample density. 

(a) Comparison of Deep-Z inference against a mechanically-scanned ground truth image stack over an axial depth of +/- 10 µm with 
increasing fluorescent bead concentration. The measured bead concentration resulting from the Deep-Z output (using a single input 
image) as well as the mechanically-scanned ground truth (which includes 41 axial images acquired at a scanning step size of 0.5 µm)  is 
shown on the top left corner of each image. MIP: maximal intensity projection along the axial direction. Scale bar: 30 µm. (b -e) 
Comparison of Deep-Z output against the ground truth results as a function of the increasing bead concentration. The red li ne is a 2

nd
 

order polynomial fit to all the data points. The black dotted line represents y=x, shown for reference. These particle concentrations were 
calculated/measured over a FOV of 1536×1536 pixels (500×500 µm

2
), i.e. 15-times larger than the specific regions shown in (a). 



 

Supplementary Figure 14 

C. elegans neuron segmentation comparison. 

(a, d) The fluorescence image used as input to Deep-Z. (b, e) Segmentation results based on (a, d), respectively. (c, f) Segmentation 
results based on the virtual image stack (-10 to 10 µm) generated by Deep-Z using the input images in (a, d), respectively. (g) An 
additional fluorescence image, captured at a different axial plane (z = 4 µm). (h) Segmentation results on the merged virtual stack (-10 
to 10 µm). The merged image stack was generated by blending the two virtual stacks generated by Deep-Z using the input images (d) 
and (g). (i) Segmentation results based on the mechanically-scanned image stack used as ground truth (acquired at 41 depths with 0.5 
µm axial spacing). Each neuron was represented by a small sphere in the segmentation map and the depth information of each neuron 
was color-coded. (j-l) The detected neuron positions in (e, f, h) were compared with the positions in  (i) (see the Supplementary Methods 
for details), and the axial displacement histograms between the Deep-Z results and the mechanically-scanned ground truth results were 
plotted.  



 

Supplementary Figure 15 

C. elegans neuron activity tracking and clustering. 

(a) Max intensity projection (MIP) along the axial direction of the median intensity image over time. The red channel (Texas red) labels 
neuron nuclei and the green channel (FITC) labels neuron calcium activity. A total of 155 neurons were identified in the 3D stack, as 
labeled here. Scale bar: 25 µm. Scale bar for the zoom-in regions: 10 µm. (b) The intensity of the neuron calcium activity, ΔF(t), of 
these 155 neurons is reported over a period of ~ 35 s at ~3.6Hz. Bas ed on a threshold on the standard deviation of each ΔF(t), we 
separate neurons to be active (right-top, 70 neurons) and less active (right-bottom, 85 neurons). (c) The similarity matrix of the calcium 
activity patterns of the top 70 active neurons. (d) The top 40 eigen values of the similarity matrix. An eigen-gap is shown at k=3, which 
was chosen as the number of clusters according to eigen-gap heuristic (i.e. choose up to the largest eigenvalue before the eigenvalue 
gap, where the eigenvalues increase significantly). (e) Normalized activity ΔF(t)/ F0 for the k=3 clusters after the spectral clustering on 
the 70 active neurons. (f) Similarity matrix after spectral clustering. The spectral clustering rearranged the row and column  ordering of 
the similarity matrix (c) to be block diagonal in (f), which represents three individual clusters of calcium activity patterns. 
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 Supplementary Notes: 

Supplementary Note 1: Sample drift-induced defocus compensation using Deep-Z 

Deep-Z enables the correction for sample drift induced defocus after the image is captured. To 

demonstrate this, Supplementary Video 4 shows a moving C. elegans worm recorded by a wide-

field fluorescence microscope with a 20×/0.8NA objective lens (DOF ~ 1 µm). The worm was 

defocused ~ 2 – 10 µm from the recording plane. Using Deep-Z, we can digitally refocus each 

frame of the input video to different planes up to 10 µm, correcting this sample drift induced 

defocus (Supplementary Video 4). Such a sample drift is conventionally compensated by 

actively monitoring the image focus and correcting for it during the measurement, e.g., by using 

an additional microscope1. Deep-Z, on the other hand, provides the possibility to compensate 

sample drift in already-captured 2D fluorescence images.  
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Supplementary Note 2: Reduced photodamage using Deep-Z 

Another advantage of Deep-Z would be a reduction in photodamage to the sample. Photodamage 

introduces a challenging tradeoff in applications of fluorescence microscopy in live cell imaging, 

which sets a practical limitation on the number of images that can be acquired during e.g., a 

longitudinal experiment. The specific nature of photodamage, in the form of photobleaching 

and/or phototoxicity, depends on the illumination wavelength, beam profile, exposure time, 

among many other factors, such as the sample pH and oxygen levels, temperature, fluorophore 

density and photostability2–4. Several strategies for illumination design have been demonstrated 

to reduce the effects of photodamage, by e.g., adapting the illumination intensity delivered to the 

specimen as in controlled light exposure microscopy (CLEM)5 and predictive focus 

illumination3, or decoupling the excitation and emission paths, as in selective plane illumination 

microscopy6 and among others.  

For a widefield fluorescence microscopy experiment, where an axial image stack is acquired, the 

illumination excites the fluorophores through the entire thickness of the specimen, regardless of 

the position that is imaged in the objective’s focal plane. For example, if one assumes that the 

sample thickness is relatively small compared to the focal volume of the excitation beam, the 

entire sample volume is uniformly exited at each axial image acquisition step. This means the 

total light exposure of a given point within the sample volume is sub-linearly proportional to the 

number of imaging planes (Nz) that are acquired during a single-pass z-stack. In contrast, Deep-Z 

only requires a single image acquisition step if its axial training range covers the sample depth; 

in case the sample is thicker or dense, more than one input image might be required for improved 

Deep-Z inference as demonstrated in Supplementary Figure 14h, which, in this case, used two 

input images to better resolve neuron nuclei in the head region of a C. elegans. Therefore, this 
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reduction, enabled by Deep-Z, in the number of axial planes that need to be imaged within a 

sample volume directly helps to reduce the photodamage to the sample.  

To further illustrate this advantage, we performed an additional experiment where we repeatedly 

imaged in 3D a sample containing fluorescent beads (300 nm diameter, and embedded in 

ProLong Gold antifade mountant) with Nz=41 axial planes spanning 20 µm depth range (0.5 µm 

step size) over 180 repeated cycles, which took a total of ~ 30 min. The average fluorescence 

signal of the nanobeads decayed down to ~80% of its original value at the end of the imaging 

cycle (see Supplementary Figure 6a). In comparison, to generate a similar virtual image stack, 

Deep-Z only requires to take a single input image, which results in a total imaging time of ~ 15 

seconds for 180 repeated cycles, and the average fluorescence signal in the Deep-Z generated 

virtual image stack does not show a visible decay during the same number of imaging cycles (see 

Supplementary Figure 6b). For imaging of live samples, potentially without a dedicated antifade 

mountant, the fluorescence signal decay would be more drastic compared to Supplementary 

Figure 6a due to photodamage and photobleaching, and Deep-Z can be used to significantly 

reduce these negative effects, especially during longitudinal imaging experiments. 

Although not demonstrated in this work, the application of Deep-Z concept to light sheet 

microscopy can also be used to reduce the number of imaging planes within the sample, by 

increasing the axial separation between two successive light sheets using Deep-Z 3D inference in 

between. 

In general a reduction in Nz further helps us to reduce photodamage effect if we also take into 

account hardware-software synchronization times4 that are required during the axial scan, which 

introduces additional time overhead if e.g., an arc burner is used as the illumination source; this 
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illumination overhead can be mostly eliminated when using LEDs for illumination, which have 

much faster on-off transition times. 

In summary, Deep-Z has the potential to substantially circumvent the standard photodamage 

tradeoffs in fluorescence microscopy and enable imaging at higher speeds and/or improved SNR 

since the illumination intensity can be increased for a given photodamage threshold that is set, 

offset by the reduced number of axial images that are acquired through the use of Deep-Z.  
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Supplementary Note 3: Deep-Z virtual refocusing capability at lower image exposure  

To further validate the generalization performance of a pre-trained Deep-Z network model under 

variable exposure conditions (which directly affect the signal-to-noise ratio, SNR), we trained 

two Deep-Z networks using microbead images captured at 10 ms and 100 ms exposure times; we 

denoted these trained networks as Deep-Z (10 ms) and Deep-Z (100 ms), respectively, and 

blindly tested their performance to virtually refocus defocused images captured under different 

exposure times, varying between 3 ms to 300 ms. Training image data were captured using 300 

nm red fluorescent bead samples imaged with a 20×/0.75NA objective lens, same as the micro-

bead samples reported in the main text, except that the fluorescence excitation light source was 

set at 25% power (32.5 mW) and the exposure times were chosen as 10 ms and 100 ms, 

respectively. Two separate Deep-Z networks were trained using the image dataset captured at 10 

ms and 100 ms exposure times, where each training image set contained ~ 100,000 image pairs 

(input and ground truth), and each network was trained for ~ 50 epochs. Testing image data were 

captured under the same settings except the exposure times varied from 3 ms to 300 ms. The 

training and testing images were normalized using the same pre-processing algorithm: after 

image alignment, the input image was similarly first thresholded using a triangular thresholding 

method (see the Methods section in the main text for details) to separate the sample foreground 

and background pixels. The mean of the background pixel values was taken as the background 

fluorescence level and subtracted from the entire image. The images were then normalized such 

that 1% of the foreground pixels were saturated (above one). This pre-processing step did not 

further clip or quantize the image. These pre-processed images (in single precision format) were 

fed into the network directly for training or blind testing.  
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Examples of these blind testing results are shown in Supplementary Figure 7a, where the input 

bead images were defocused by -5.0, 3.0, and 4.5 µm. With lower exposure times, the input 

image quality was compromised by noise and image quantization error due to the lower bit 

depth. As shown in Supplementary Figure 7a, the Deep-Z (100 ms) model can successfully 

refocus the input images even down to an exposure time of 10 ms. However, the Deep-Z (100 

ms) model fails to virtually refocus the input images acquired at 3 ms exposure time, giving a 

blurry output image with background noise. On the other hand, the Deep-Z (10 ms) model can 

successfully refocus input images that were captured at 3 ms exposure times, as illustrated in 

Supplementary Figure 7. Interestingly, the Deep-Z (10 ms) model performs slightly worse for 

input images that were acquired at higher exposure times; for example the input images acquired 

at 300 ms exposure time exhibit a slight blur at the output image as demonstrated in the last row 

of Supplementary Figure 7a.These observations are further confirmed in Supplementary Figure 

7b,c by quantifying the median FWHM values of the imaged microbeads, calculated at the Deep-

Z output images as a function of the refocusing distance.  This analysis confirms that Deep-Z 

(100 ms) model cannot successfully refocus the images captured at 3 ms exposure time outside 

of a narrow defocus window of ~ [െ1	μm, 1	μm] (see Supplementary Figure 7b). On the other 

hand, Deep-Z (10 ms) model demonstrates improved refocusing performance for the input 

images captured at 3ms exposure time (Supplementary Figure 7c). These results indicate that 

training a Deep-Z model with images acquired at exposure times that are relatively close to the 

expected exposure times of the test images would be important for successful inference. Another 

important observation is that, compared to the ground truth images, the Deep-Z output images 

also reject the background noise since noise overall does not generalize well during the training 

phase of the neural network, as also discussed for Supplementary Figure 1.  
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As also emphasized in the main text, the noise performance of Deep-Z can potentially be further 

enhanced by engineering the microscope’s point spread function (PSF) to span an extended 

depth-of-field, by e.g., inserting a phase mask in the Fourier plane of the microscope, ideally 

without introducing additional photon losses along the path of the fluorescence signal collection. 

For example, refer to the Supplementary Video 10 for an experimental demonstration of Deep-Z 

blind inference for objects imaged through a double-helix PSF.  
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Supplementary Note 4: Robustness of Deep-Z to changes in samples and imaging systems 

In our results reported so far, the blindly tested samples were inferred with a Deep-Z network 

that has been trained using the same type of sample and the same microscope system. Here we 

evaluate and discuss the performance of Deep-Z for different scenarios where a change in the test 

data distribution is introduced in comparison to the training image set, such as e.g., (1) a different 

type of sample that is imaged, (2) a different microscope system used for imaging, and (3) a 

different illumination power or SNR.  

Regarding the first item, if there is a high level of similarity between the trained sample type and 

the tested sample type distributions, we expect the performance of the network output to be 

comparable. As reported in Supplementary Figure 8a, a Deep-Z model that was trained to 

virtually refocus images of tagRFP-labeled C. elegans neuron nuclei was blindly tested to 

virtually refocus the images of GFP-labeled C. elegans neuron activity. The output image results 

of the different model column are quite similar to the output images of the optimal model, 

trained specifically on GFP-labeled neuron activity images (same model column), as well as the 

mechanically-scanned ground truth images, with a minor difference in the correlation 

coefficients of the two sets of output images with respect to the ground truth images of the same 

samples. Similar conclusions may be drawn for the effectiveness of a Deep-Z model blindly 

tested on images of a different strain of C. elegans.  

On the other hand, when the training sample type and its optical features are considerably 

different from the testing samples, noticeable differences in Deep-Z performance can be 

observed. For instance, as shown in Supplementary Figure 8b, a Deep-Z model that was trained 

with 300 nm beads can only partially refocus the images of C. elegans neuron nuclei, which are 

typically 1-5 µm in size, and therefore are not well-represented by the training image dataset 
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containing only nanobeads. This limitation can be remedied through a transfer learning7,8 

process, where the network trained on one type of sample (e.g., the nanobeads in this example) 

can be used as an initialization of the network weights and the Deep-Z model can be further 

trained using new images that contain neuron nuclei. Compared to starting from scratch (e.g., 

randomized initialization), which takes ~ 40,000 iterations (~60 hours) to reach an optimal 

model, transfer learning can help us achieve an optimal model with only ~4,000 iterations (~6 

hours) that successfully refocuses neuron nuclei images, matching the performance of the 

optimal model (transfer learning column in Supplementary Figure 8). This transfer learning 

approach can also be applied to image different types of C. elegans using earlier models that are 

refined with new image data in e.g., ~500-1,000 iterations. Another advantage of transfer 

learning is using less training data; in this case, for example, only 20% of the original training 

data used for the optimal model was used for transfer learning.  

Regarding the second item, i.e., a potential change in the microscope system used for imaging 

can also adversely affect the inference performance of a previously trained network model. One 

of the more challenging scenarios for a pre-trained Deep-Z network will be when the test images 

are captured using a different objective lens with a change in the numerical aperture (NA); this 

directly modifies the 3D PSF profile, making it deviate from the Deep-Z learned features, 

especially along the depth direction. Similar to the changes in the sample type, if the differences 

in imaging system parameters are small, we expect that a previously trained Deep-Z model can 

be used to virtually refocus images captured by a different microscope to some extent. 

Supplementary Figure 9 shows an example of this scenario, where a Deep-Z model was trained 

using the images of C. elegans neuron nuclei, captured using an Olympus IX81 microscope with 

a 20×/0.75NA objective lens, and was blindly tested on images captured using a Leica SP8 
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microscope with 20×/0.8NA objective lens. Stated differently, two different microscopes, 

manufactured by two different companies, have been used, together with a small NA change 

between the training and testing phases. As illustrated in Supplementary Figure 9, most of the 

virtual refocusing results remained successful, in comparison to the optimal model. However, 

due to these changes in the imaging parameters, a couple of mis-arrangements of the neurons in 

the virtually refocused images can be seen in the different model output column, which also 

resulted in a small difference of ~0.02-0.06 between the correlation coefficients of the optimal 

Deep-Z model output and the different model output (both calculated with respect to the 

corresponding ground truth images acquired using two different microscope systems). As 

discussed earlier, one can also use transfer learning to further improve these results by taking the 

initial Deep-Z model trained on Olympus IX81 microscope (20×/0.75NA objective) as 

initialization and further training it for another ~2,000 iterations on a new image dataset captured 

using the Leica SP8 microscope (20×/0.8NA objective). Similar to the example that we 

presented earlier, 20% of the original training data used for the optimal model was used for 

transfer learning in Supplementary Figure 9. 

As for the third item, the illumination power, together with the exposure time and the efficiency 

of the fluorophore, contributes to two major factors: the dynamic range and the SNR of the input 

images. Since we use a pre-processing step to remove the background fluorescence, also 

involving a normalization step based on a triangular threshold (see the Methods section of the 

main text for details), the input images will always be re-normalized to similar signal ranges and 

therefore illumination power associated dynamic range changes do not pose a major challenge 

for Deep-Z.  Furthermore, as detailed earlier, robust virtual refocusing can still be achieved under 

significantly lower SNR, i.e., with input images acquired at much lower exposure times (see 
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Supplementary Figure 7). These results and the corresponding analysis reveal that Deep-Z is 

fairly robust to changes observed in the dynamic range and the SNR of the input images. Having 

emphasized this, training a Deep-Z model with images acquired at exposure times that are 

relatively similar to the expected exposure times of the test images would be recommended for 

various uses of Deep-Z. In fact, the same conclusion applies in general: to achieve the best 

performance with Deep-Z inference results, the neural network should be trained (from scratch or 

through transfer learning which significantly expedites the training process) using training 

images obtained with the same microscope system and the same types of samples as expected to 

be used at the testing phase.  
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Supplementary Note 5: Time-modulated signal reconstruction using Deep-Z 

To further test the generalization capability of Deep-Z, we conducted an experiment, where the 

microbead fluorescence is modulated in time, induced by an external time-varying excitation. 

Training data were captured for 300 nm red fluorescent beads using a 20×/0.75NA objective lens 

with the Texas Red filter set, same as the microbead samples reported earlier (e.g., Fig.4), except 

that the fluorescence light source was set at 25% illumination power (32.5 mW) and the exposure 

time was chosen as 100 ms. Testing data consisted of images of 300 nm red fluorescent beads 

placed on a single 2D plane (pipetted onto a #1 coverslip) captured using an external light 

emitting diode (M530L3-C1, Thorlabs) driven by an LED controller (LEDD1B, Thorlabs) 

modulated by a function generator (SDG2042X, Siglent) that modulated the output current of the 

LED controller between 0 to 1.2 A following a sinusoidal pattern with a period of 1 s. A Texas 

Red filter and 100 ms exposure time were used. The same FOV was captured at in-focus plane (z 

= 0 µm) and five defocus planes (z = 2, 4, 6, 8, 10 µm). At each plane, a two-second video (i.e. 

two periods of the modulation) was captured at 20 frames per second. Each frame of the 

defocused planes was then virtually refocused using the trained Deep-Z network to digitally 

reach the focal plane (z = 0 µm). Fluorescence intensity changes of 297 individual beads within 

the sample FOV captured at z = 0 µm were tracked over the two-second time window. The same 

297 beads were also tracked as a function of time using those five virtually refocused time-lapse 

sequences (using Deep-Z output). The intensity curve for each bead was normalized between 0 

and 1.  

Supplementary Figure 10a reports the time-modulated signal of 297 individual microbeads at the 

focal plane (z = 0 µm) tracked over a 2 s period at a frame rate of 20 frames per second, plotted 

with their normalized mean and standard deviation. This curve shows a similar modulation 
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pattern as the input excitation light, with a slight deviation from a perfect sinusoidal curve due to 

the nonlinear response of fluorescence. The standard deviation was ~1.0% of the mean signal at 

each point. Testing the blind inference of Deep-Z, the subsequent entries of supplementary 

Figure 10a reports the same quantities corresponding to the same field-of-view (FOV), but 

captured at defocused planes (z = 2, 4, 6, 8, 10 µm) and virtually refocused to the focal plane (z 

= 0 µm) using a Deep-Z network trained with images captured under fixed signal strength. The 

mean curves calculated using the virtually-refocused images (z = 2, 4, 6, 8, 10 µm) match very 

well with the in-focus one (z = 0 µm), whereas the standard deviation increased slightly with 

increased virtual refocusing distance, which were ~1.0%, 1.1%, 1.7%, 1.9%, and 2.1% of the 

mean signal for virtual refocusing distances of z = 2, 4, 6, 8, and 10 µm, respectively.  

Based on this acquired sequence of images, we further took every other frame to form a new 

video; by doing so, the down sampled video compressed the original 2 s video to 1 s, forming a 

group of beads that were modulated at doubled frequency, i.e., 2 Hz. This down-sampled video 

was repeated, and added back onto the original video, frame-by-frame, with a lateral shift of 8 

pixels (2.6 µm). Supplementary Figure 10b shows the Deep-Z output on these added images, 

corresponding to 297 pairs of beads that had the original modulation frequency 1 Hz (first row) 

and the doubled modulation frequency 2 Hz (second row), masked separately in the same output 

image sequence. This analysis demonstrates that Deep-Z output tracks the sinusoidal illumination 

well, closely following the in-focus reference time-modulation reported in the first column, same 

as in Supplementary Figure 10a. We also created Supplementary Video 5 to illustrate an example 

region of interest containing six pairs of these 1 Hz and 2 Hz emitters, cropped from the input 

and output FOVs for different defocus planes. 
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Supplementary Note 6: Impact of the sample density on Deep-Z inference 

If the fluorescence emitters are too close to each other or if the intensity of one feature is much 

weaker than the other(s) within a certain FOV, the intensity distribution of the virtually 

refocused Deep-Z images may deviate from the ground truth. To shed more light on this, we first 

used numerical simulations resulting from experimental data, where we (1) laterally shifted a 

planar fluorescence image that contained individual 300 nm fluorescent beads, (2) attenuated this 

shifted image intensity with respect to the original intensity by a ratio (0.2 to 1.0), and (3) added 

this attenuated and shifted feature back to the original image (see Supplementary Figure 11 for 

an illustration of this). Based on a spatially-invariant incoherent PSF, this numerical simulation, 

derived from experimental data, represents an imaging scenario, where there are two individual 

sets of fluorescent objects that have different signal strengths with respect to each other, also 

with a varying distance between them. The resulting images, with different defocus distances 

(see Supplementary Figure 11b) were virtually refocused to the correct focal plane by a Deep-Z 

network that was trained using planar bead samples (see Methods section, Sample Preparation). 

Supplementary Figure 11b-h demonstrates various examples of bead pairs that were laterally 

separated by e.g., 1-15 pixels and axially defocused by 0-10 µm, with an intensity ratio that 

spans 0.2-1.0. To quantify the performance of Deep-Z inference for these different input images, 

we plot in Supplementary Figure 11c-h the average intensity ratio of 144 pairs of dimmer and 

brighter beads at the virtually refocused plane as a function of the lateral shift (d) and the 

intensity ratio between the dimmer and the brighter beads, also covering various defocus 

distances up to 10 µm; in each panel of this figure, we marked the minimal resolvable distance 

between the two beads by a cross-symbol “x”. This figure reveals that larger defocus distances 
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and smaller ratios require slightly larger lateral shift amount for the bead pairs to be accurately 

resolved.  

Next, we examined the impact of occlusions in the axial direction, which can be more 

challenging to resolve. For this, we created new numerical simulations, also resulting from 

experimental data, where this time we axially shifted a planar fluorescent bead image stack and 

added them back to the corresponding original image stack with different intensity ratios (see 

Supplementary Figure 12b for an illustration of this). To accurately represent the inference task, 

the deep network was trained via transfer learning with an augmented dataset containing axially-

overlapping objects. Supplementary Figure 12a demonstrates our Deep-Z results for a pair of 

beads located at z = 0 and z = 8 µm respectively. The network was able to successfully refocus 

these two beads separately, inferring two intensity maxima along the z-axis at z = 0 µm and z = 8 

µm, very well matching the simulated mechanically-scanned image stack (ground truth). 

Supplementary Figures 12c, d plot the average and the standard deviation of the intensity ratio of 

the top (i.e., the dimmer) bead and the lower bead (i.e., the bead in the original stack) for 144 

individual bead pairs inside a sample FOV, corresponding to z=8 µm with different axial 

separations (d, see Supplementary Figure 12b), for both the virtually refocused Deep-Z image 

stack and the simulated ground truth image stack, respectively. The results in Supplementary 

Figure 12c and d are similar, having rather small discrepancies in the exact intensity ratio values. 

Our results might be further improved by potentially using a 3D convolutional neural network 

architecture 9.  

To further understand the impact of the axial refocusing distance and the density of the 

fluorescent sample on Deep-Z 3D inference, we performed additional imaging experiments 

corresponding to 3D bead samples with different densities of particles, which was adjusted by 
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mixing 2.5 µL red fluorescent bead (300 nm) solution at various concentrations with 10 µL 

ProLong Gold antifade mountant (P10144, ThermoFisher) on a glass slide. After covering the 

sample with a thin coverslip, the sample naturally resulted in a 3D sample volume, with 300 nm 

fluorescent beads spanning an axial range of ~20-30 µm. Different samples, corresponding to 

different bead densities, were axially scanned using a 20×/0.75NA objective lens using the Texas 

Red channel. To get the optimal performance, a Deep-Z network was trained with transfer 

learning (initialized with the original bead network) using 6 image stacks (2048 × 2048 pixels) 

captured from one of the samples. Another 54 non-overlapping image stacks (1536 × 1536 

pixels) were used for blind testing; within each image stack, 41 axial planes spanning +/- 10 µm 

with 0.5 µm step size were used as ground truth (mechanically-scanned), and the middle plane 

(z=0 µm) was used as the input image to Deep-Z, which generated the virtually refocused output 

image stack, spanning the same depth range as the ground truth images. Thresholding was 

applied to the ground truth and Deep-Z output image stacks, where each connected region after 

thresholding represents a 300 nm bead. Supplementary Figure 13a illustrates the input images 

and the maximal intensity projection (MIP) of the ground truth image stack as well as the Deep-Z 

output image stack corresponding to some of the non-overlapping sample regions used for blind 

testing. At lower particle concentrations (below 0.5×106 µL-1), the Deep-Z output image stack 

results match very well with the mechanically-scanned ground truth results over our training 

range of +/- 10 µm axial defocus. With larger particle concentrations, the Deep-Z output 

gradually loses its capability to refocus and retrieve all the individual beads, resulting in under-

counting of the fluorescent beads.  

In fact, this refocusing capability of Deep-Z not only depends on the concentration of the 

fluorescent objects, but also depends on the refocusing axial distance. To quantify this, we plot in 
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Supplementary Figure 13b-e the fluorescent particle density measured using the mechanically-

scanned ground truth image stack as well as the Deep-Z virtually refocused image stack as a 

function of the axial defocus distance, i.e., ±2.5 µm, ±5 µm, ±7.5 µm and ±10 µm from the input 

plane (z=0 µm), respectively. For example, for a virtual refocusing range of ±2.5 µm, the Deep-Z 

output image stack (using a single input image at z=0 µm) closely matches the ground truth 

results even for the highest tested sample density (~ 4×106 µL-1); on the other hand, at larger 

virtual refocusing distances Deep-Z suffers from some under-counting of the fluorescent beads 

(see e.g., Supplementary Figures 13c-e). This is also consistent with our analysis reported earlier 

(e.g., Supplementary Figures 11-12), where the increased density of the beads in the sample 

results in axial occlusions and partially affects the virtual refocusing fidelity of Deep-Z.  

In our analysis reported so far, we mainly focused on fluorescent particles to be able to quantify 

different trade-off mechanisms in Deep-Z inference; in these examples that we reported, the 

training image data did not include strong variations in the signal intensities of the particles or 

axial occlusions that existed in the testing data; this was an important disadvantage for Deep-Z. 

However, we believe that a Deep-Z model that is trained with the correct type of samples 

(matching the test sample type and its 3D structure) will have an easier task in its blind inference 

and virtual refocusing performance since the training images will naturally contain relevant 3D 

structures, better representing the feature distribution expected in the test samples. 
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Supplementary Note 7: Additional analysis on C. elegans neuron segmentation  

As summarized in Supplementary Table SN1, using an additional neuron segmentation algorithm 

(named TrackMate10) that is based on the Laplacian of Gaussian (LoG) method, resulted in 147 

neurons for the Deep-Z output, 175 neurons in the target image stack (mechanically scanned) and 

169 in the Deep-Z merged stack (only 2 axial planes used as input images) for the same worm 

shown in Supplementary Figure 14d-i, revealing a close match between Deep-Z results and the 

results obtained with a mechanically scanned image stack, with a relatively small depth 

difference (Δz = -0.243 ± 0.706 µm; see Supplementary Table SN1). The neuron segmentation 

results obtained by TrackMate (Supplementary Table SN1), in comparison to the ones shown in 

Table 1 in the main text, also show some inconsistency in the neuron segmentation itself 

(meaning that there might not be a single ground truth method). Furthermore, as shown in 

Supplementary Table SN1, a change in the center plane of the image stack (i.e., z ൌ 0	μm v.s. 

z ൌ െ2.5	μm, where both image stacks cover the entire body of the worm) also changes the 

resulting number of segmented neurons, even for the ground truth, using M = 41 mechanically 

scanned images; this once again illustrates the challenging nature of the neuron segmentation 

task itself.  

Neuron locations in Supplementary Figure 14 were compared by first matching the pairs of 

neurons from two different methods (e.g., Deep-Z results vs. mechanically-scanned ground 

truth). Matching two groups of segmented neurons (Ωଵ, Ωଶ), represented by their spatial 

coordinates, was considered as a bipartite graph minimal cost matching problem, i.e.: 

argmin
୶

cୣ ⋅ xୣ
ୣ

 

s. t.  xୣ
ୣ∈δሺ୳భሻ

ൌ 1,			for	∀uଵ ∈ Ωଵ 
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 xୣ
ୣ∈δሺ୳మሻ

 1,				for	∀uଶ ∈ Ωଶ 

xୣ ∈ ሼ0, 1ሽ 
 

where ݔ ൌ 1 represents that the edge between the two groups of neurons  (Ωଵ, Ωଶሻ were 

included in the match. The cost on edge ݁ ൌ ሺݑଵ,  ଶሻ is defined based on the Manhattan distanceݑ

between ݑଵ ∈ Ωଵ, ݑଶ ∈ Ωଶ, i.e., ܿ ൌ ଵݔ| െ |ଶݔ  ଵݕ| െ |ଶݕ  ଵݖ| െ  ଶ|. Because the problemݖ

satisfies totally unimodular condition, the above integer constraint ݔ ∈ ሼ0,1ሽcan be relaxed to 

linear constraint ݔ  0 without changing the optimal solution, and the problem was solved by 

linear programming using Matlab function linporg. Then the axial distances between each paired 

neurons (Δz) were calculated and their distributions were plotted and reported.  

 

Supplementary Table SN1. Neuron segmentation results for a C. elegans worm using TrackMate 10. 

Two image stacks each spanning +/- 10 µm were used here, one centered at z = 0 µm and the other at z = 

-2.5 µm, respectively. Both of these image stacks cover the entire body of the worm, and are axially 

shifted with respect to each other by 5 frames. TrackMate was used to segment neurons with identical 

parameters on both sets of 3D image stacks. The segmented neuron locations were also compared against 

the ground truth (i.e., the corresponding mechanically scanned image stack, M = 41), reporting the axial 

error, Δz, as well as the absolute axial error, |Δz|, in the form of mean ± standard deviation (std), 

respectively. 
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Supplementary Note 8:  Deep-Z based aberration correction using spatially non-uniform 

DPMs  

To evaluate the limitations of Deep-Z based aberration correction using spatially non-uniform 

DPMs, we quantified the 3D surface curvature that a DPM can have without generating artifacts. 

For this, we used a series of DPMs that consisted of 3D sinusoidal patterns with lateral periods of 

D = 1, 2, …, 256 pixels along the x-direction (with a pixel size of 0.325 µm) and an axial 

oscillation range of 8 µm, i.e., a sinusoidal depth span of -1 µm to -9 µm with respect to the input 

plane. Each one of these 3D sinusoidal DPMs was appended on an input fluorescence image that 

was fed into the Deep-Z network. The network output at each sinusoidal 3D surface defined by 

the corresponding DPM was then compared against the images that were interpolated in 3D 

using an axially-scanned z-stack with a scanning step size of 0.5 µm, which formed the ground 

truth images that we used for comparison. As summarized in Supplementary Figure SN1, the 

Deep-Z network can reliably refocus the input fluorescence image onto 3D surfaces defined by 

sinusoidal DPMs when the period of the modulation is > 100 pixels (i.e., > 32 µm in object 

space). For faster oscillating DPMs, with periods smaller than 32 µm, the network output images 

at the corresponding 3D surfaces exhibit background modulation at these high-frequencies and 

their harmonics as illustrated in the spectrum analysis reported in Supplementary Figure SN1. 

These higher harmonic artifacts and the background modulation disappear for lower frequency 

DPMs, which define sinusoidal 3D surfaces at the output with a lateral period of > 32 µm and an 

axial range of 8 µm.    
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Supplementary Figure SN1.  DPM surface curvature analysis. (a) A fluorescent sample 

consisting of 300 nm fluorescent beads was digitally refocused to a plane 5 µm above the sample 

by appending a DPM with uniform entries. The ground truth is captured using mechanical 

scanning at the same plane. Vertical average (i.e., the pixel average along the y-axis of the 

image) and its spatial frequency spectrum (i.e., the Fourier transform of the vertical average with 

the zero-frequency removed) are shown next to the corresponding images. (b) Digital refocusing 

of the same input fluorescence image by appending a DPM that defines a sinusoidal 3D surface 

with varying periods, from 0.65 µm to 130 µm along the x-axis, with an axial oscillation range of 

8 µm, i.e., a sinusoidal depth span of -1 µm to -9 µm with respect to the input plane. The ground 

truth images were bicubic-interpolated in 3D from a z-scanned stack with 0.5 µm axial spacing. 

Vertical average of each DPM and the corresponding spatial frequency spectrum are shown 

below each DPM. Vertical average of the difference images (i.e., the resulting Deep-Z image 

minus the reference Deep-Z image in (a) as well as the ground truth image minus the reference 

ground truth image in (a)) and the corresponding spectra are shown below each image. (c-f) 

Correlation coefficient (Corr. Coeff.), structural similarity index (SSIM), mean absolute error 

(MAE) and mean square error (MSE) were used to compare Deep-Z output images against the 

ground truth images (calculated for a single imaging FOV of 1024×1024 pixels) at the same 3D 

sinusoidal surfaces defined by the corresponding DPMs, with varying periods from 0.65 µm to 

170 µm along the x-axis. Reliable Deep-Z focusing onto sinusoidal 3D surfaces can be achieved 

for lateral modulation periods greater than ~32 µm (corresponding to ~ 100 pixels), as marked by 

the black arrows in (c-f). the same conclusion is also confirmed by our results and spatial 

frequency analysis reported in (b). (c-f) was calculated from a single image FOV.  
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Supplementary Note 9: Generator and discriminator network structures used in Deep-Z 

 

Supplementary Figure SN2.  Generator and discriminator network structures used in 

Deep-Z. ReLU: rectified linear unit. Conv: convolutional layer. 
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Supplementary Note 10: Cross-modality z-stack registration 

 

Supplementary Figure SN3. Deep-Z+ training phase: the registration of a wide-field 

fluorescence z-stack against a confocal z-stack. (a) Registration in the lateral direction. Both 

the wide-field and the confocal z-stacks were first self-aligned and extended depth of field (EDF) 

images were calculated for each stack. The EDF images were stitched spatially and the stitched 

EDF images from wide-field were aligned to those of confocal microscopy images. The spatial 

transformations, from stitching to the EDF alignment, were used as consecutive transformations 

to associate the wide-field stack to the confocal stack. (b) Non-empty wide-field ROIs of 

256×256 pixels and the corresponding confocal ROIs were cropped from the EDF image, which 

were further aligned. The image here shows an example overlay of the registered image pair, 

with wide-field image in magenta and the corresponding confocal image in green. (c) To align 

the wide-field and confocal stacks in the axial direction, focus curves in the wide-field stack and 
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the confocal stack were calculated and compared based on the corresponding SSIM values (see 

Methods for details).   
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 Supplementary Video Captions: 

Supplementary Video 1. Deep-Z inference comparison against the images captured using a 

mechanical axial scan of a C. elegans sample.  

Left: a single fluorescence image of the C. elegans was captured at the reference plane (z = 0 

µm), used as the Deep-Z input. Middle: the input image was appended with different DPMs and 

passed through the trained Deep-Z network to digitally refocus the input image to a series of 

planes, from -10 µm to 10 µm (with a step size of 0.5 µm) with respect to the reference plane. 

Right: mechanical axial scan of the same C. elegans at the same series of planes, used for 

comparison.  

 

Supplementary Video 2. 3D visualization of a C. elegans using Deep-Z inference.  

Left: a single fluorescence image of a C. elegans was captured and used as Deep-Z input. Middle: 

the input fluorescence image was digitally refocused using Deep-Z to a series of planes, from -10 

µm to 10 µm (with an axial step size of 0.5 µm) to generate a 3D stack. This 3D stack was 

rotated around the vertical axis of the input image, spanning 360 with a step size of 2. 

Maximum intensity projection of the 3D volume at each rotated angle is shown in the video, 

which was generated using the ImageJ plugin “Volume Viewer”. Right: the same 3D stack was 

deconvolved using the Lucy-Richardson deconvolution regularized by total variation in ImageJ 

plugin “DeconvolutionLab2”. The deconvolved 3D stack was rotated and displayed in the same 

way as the middle video. 
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Supplementary Video 3. Deep-Z 3D inference from a 2D video containing four moving C. 

elegans.  

A fluorescence video containing four C. elegans was recorded at a single plane (z = 0 µm) at 10 

frames per second for 10 seconds. Each frame was digitally refocused using Deep-Z to a series of 

planes at z = -6, -4, -2, 2, and 4 µm away from the input plane, generating virtual videos at these 

different depths in 3D. The input video and the Deep-Z generated videos were played 

simultaneously at one frame per second, i.e., 10-fold slowed down. 

 

Supplementary Video 4. Deep-Z 3D inference from a 2D video containing a defocused 

moving C. elegans.  

A fluorescence video was captured at a single focal plane (z = 0 µm) at 3 frames per second for a 

duration of 18 seconds. Each frame was digitally refocused using Deep-Z to a series of planes at 

z = 2, 4, 6, 8 and 10 µm away from the input focal plane, generating virtual videos at these 

different depths in 3D. In the input video, the worm was mostly defocused due to sample drift 

and motion. Using Deep-Z, neurons are rapidly refocused at these virtual planes in 3D. 

 

Supplementary Video 5. Deep-Z based refocusing of spatio-temporally modulated bead 

images.  

Videos contain two groups of 300 nm bead emitters (sinusoidally-modulated at 1 Hz and 2 Hz, 

respectively). Deep-Z was used to digitally refocus the defocused videos to virtually reach z = 0 

µm plane. An example region of interest containing six pairs of such emitters was cropped and 

shown in this video. Also see Supplementary Figure 10.  
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Supplementary Video 6. Tracking of neuron calcium activity events in 3D from a single 2D 

fluorescence video.  

A fluorescence video containing a fixed C. elegans was recorded at a single focal plane (z = 0 

µm) at ~3.6 frames per second for ~35 seconds. The video contained two color channels: the red 

channel represents the Texas Red fluorescence targeting the RFP-tagged neuron nuclei and the 

green channel represents the FITC fluorescence targeting the GFP-tagged neuron activities. Each 

frame was digitally refocused using Deep-Z to a series of planes from -10 to 10 µm with 0.5 µm 

step size, for each one of the fluorescence channels. MIP was applied along the axial direction to 

generate an extended depth of field image for each frame. 2× zoom-ins of the head and tail 

regions were shown for better visualization. The input video and the Deep-Z generated MIP 

video were played simultaneously at ~3.6 frames per second. 

 

Supplementary Video 7. Locations of the detected neurons in 3D.  

Individual neuron locations were isolated from the Deep-Z inferred 3D stack of the neuron 

calcium activity video. The isolated neuron locations were plotted in 3D. A rough shape of the 

worm was also plotted, which was generated by thresholding the auto-fluorescence of the worm 

in the Deep-Z generated 3D stack. The 3D plot was rotated around the z-axis at one degree steps 

for 360 degrees, and viewed at 15 degrees tilt. Each neuron was color-coded according to its 

depth (z) location, as indicated by the color-bar on the right.  
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Supplementary Video 8. Deep-Z based 3D structural imaging of C. elegans at 100 Hz.  

A C. elegans worm was imaged using a 20×/0.8NA objective lens under the Texas Red channel 

to capture its tag-RFP signal, labeling the neuron nuclei. A fluorescence video was captured at a 

single focal plane (z = 0 µm) at 100 full frames per second for a duration of 10 seconds using the 

stream mode of the camera. Each frame was digitally refocused using Deep-Z to a series of 

planes at z = -2, 2, 4, 6, 8 and 10 µm away from the input focal plane, generating virtual videos 

at these different depths in 3D, as well as a corresponding MIP video (over an axial depth range 

of +/- 10 µm).  

 

Supplementary Video 9. Deep-Z based 3D functional imaging of C. elegans at 100 Hz.  

A C. elegans worm was imaged using a 20×/0.8NA objective lens under the FITC channel to 

capture its GFP signal that labels its calcium activity. A fluorescence video was captured at a 

single focal plane (z = 0 µm) at 100 full frames per second for a duration of 10 seconds using the 

stream mode of the camera. Each frame was digitally refocused using Deep-Z to a series of 

planes at z = -2, 2, 4, 6, 8 and 10 µm away from the input focal plane, generating virtual videos 

at these different depths in 3D, as well as a corresponding MIP video (over an axial depth range 

of +/- 10 µm).  

 

 



 
 

32 
 

Supplementary Video 10. Deep-Z based refocusing of microscopic objects imaged with a 3D 

engineered point-spread function (PSF).  

Left: a single fluorescence image of 300 nm red fluorescence beads with a 3D engineered 

double-helix PSF was captured at the reference plane (z = 0 µm), which was used as the Deep-Z 

input. Middle: the input image on the left was appended with different DPMs and passed through 

a trained Deep-Z network to digitally refocus the input image to a series of planes, from -13 µm 

to 10 µm (with a step size of 0.2 µm) with respect to the reference plane. Right: mechanical axial 

scan of the same sample at the same corresponding planes, used for comparison.  
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