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Abstract: As an optical machine learning framework,
Diffractive DeepNeural Networks (D2NN) take advantage of
data-driven training methods used in deep learning to
devise light–matter interaction in 3D for performing a
desired statistical inference task. Multi-layer optical object
recognition platforms designed with this diffractive
framework have been shown to generalize to unseen image
data achieving, e.g., >98% blind inference accuracy for
hand-written digit classification. The multi-layer structure
of diffractive networks offers significant advantages in
terms of their diffraction efficiency, inference capability
and optical signal contrast. However, the use of multiple
diffractive layers also brings practical challenges for the
fabrication and alignment of these diffractive systems for
accurate optical inference. Here, we introduce and exper-
imentally demonstrate a new training scheme that signifi-
cantly increases the robustness of diffractive networks
against 3Dmisalignments and fabrication tolerances in the
physical implementation of a trained diffractive network.
Bymodeling the undesired layer-to-layer misalignments in
3D as continuous random variables in the optical forward

model, diffractive networks are trained to maintain their
inference accuracy over a large range ofmisalignments; we
term this diffractive network design as vaccinated D2NN (v-
D2NN). We further extend this vaccination strategy to the
training of diffractive networks that use differential de-
tectors at the output plane as well as to jointly-trained
hybrid (optical-electronic) networks to reveal that all of
these diffractive designs improve their resilience to mis-
alignments by taking into account possible 3D fabrication
variations and displacements during their training phase.

Keywords: diffractive optical networks; optical computing;
optical machine learning; optical networks.

1 Introduction

Deep learning has been redefining the state-of-the-art for
processing various signals collected and digitized by
different sensors, monitoring physical processes for, e.g.,
biomedical image analysis [1–4], speech recognition [5, 6]
and holography [7–10], among many others [11–17].
Furthermore, deep learning and related optimization tools
have been harnessed to find data-driven solutions for
various inverse problems arising in, e.g., microscopy [18–
22], nanophotonic designs and plasmonics [23–25]. These
demonstrations and others have been motivating some of
the recent advances in optical neural networks and related
optical computing techniques that aim to exploit the
computational speed, power-efficiency, scalability and
parallelization capabilities of optics for machine intelli-
gence applications [26–45].

Toward this broad goal, Diffractive Deep Neural Net-
works (D2NN) [36–39] have been introduced as a machine
learning framework that unifies deep learning-based
training of matter with the physical models governing
light propagation to enable all-optical inference through a
set of diffractive layers. The training stage of a diffractive
network is performed using a computer and relies on deep
learning and error backpropagation methods to tailor the
light–matter interaction across a set of diffractive layers
that collectively perform a given machine learning task,
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e.g., object classification. Previous studies on D2NNs have
demonstrated the generalization capability of these multi-
layer diffractive network designs to new, unseen image
data. For example, using a 5-layer diffractive network ar-
chitecture, >98% and >90% all-optical blind testing accu-
racies have been reported [38] for the classification of the
images of handwritten digits (MNIST) [46] and fashion
products (Fashion-MNIST) [47] that are encoded in the
amplitude and phase channels of the input plane, respec-
tively. Successful experimental demonstrations of these
all-optical classification systems have been reported using
3D-printed diffractive layers that conduct inference by
modulating the incoming object wave at terahertz (THz)
wavelengths.

Despite the lack of nonlinear optical elements in these
previous implementations, diffractive optical networks
have been shown to offer significant advantages in terms of
(1) inference accuracy, (2) diffraction efficiency and (3)
signal contrast, when the number of successive diffractive
layers in the network design is increased [37]. A similar
depth advantage was also demonstrated in [39], where
instead of a statistical inference task such as image clas-
sification, the D2NN framework was utilized to solve an
inverse design problem to achieve, e.g., spatially-
controlled wavelength de-multiplexing of a broadband
source. While these multi-layer diffractive architectures
offer significantly better performance for generalization
and application-specific design merits, they also pose
practical challenges for the fabrication and opto-
mechanical assembly of these trained diffractive models.

Here, we present a training scheme that substantially
increases the robustness of diffractive optical networks
against physical misalignments and fabrication toler-
ances. Our schememodels and introduces these undesired
system variations and layer-to-layer misalignments as
continuous random variables during the deep learning-
based training of the diffractive model to significantly
improve the error tolerance margins of diffractive optical
networks; this process of introducing random mis-
alignments during the training phase will be termed as
vaccination of the diffractive network, and the resulting
designs will be referred to as vaccinated D2NNs (v-D2NNs).
To demonstrate the efficacy of our strategy, we trained
diffractive network models composed of five diffractive
layers for all-optical classification of handwritten digits,
where we utilized in the training phase independent and
uniformly distributed displacement/misalignment vectors
for x, y, and z directions of each diffractive layer. Our re-
sults indicate that v-D2NN framework enables the design of
diffractive optical networks that can maintain their object
recognition performance against severe layer-to-layer

misalignments, providing nearly flat blind inference ac-
curacies within the displacement/misalignment range
adopted in the training.

To experimentally demonstrate the success of v-D2NN
framework, we also compared two 3D-printed diffractive
networks, each with five diffractive layers that were
designed for hand-written digit classification under
monochromatic THz illumination (λ = ∼0.75 mm): the first
network model was designed without the presence of any
misalignments (non-vaccinated) and the second one was
designed as a v-D2NN. After the fabrication of each dif-
fractive network, the third diffractive layer was on purpose
misaligned to different 3D positions around its ideal loca-
tion. The experimental results confirmed our numerical
analysis to reveal that the v-D2NN design can preserve its
inference accuracy despite a wide range of physical mis-
alignments, while the standard D2NN design frequently
failed to recognize the correct data class due to these pur-
posely introduced misalignments.

We also combined our v-D2NN framework with the dif-
ferential diffractive optical networks [38] and the jointly-
trained optical-electronic (hybrid) neural network systems.
Differential diffractive classification systems assign a pair of
detectors (generating one positive and one negative signal)
for each data class to mitigate the strict non-negativity
constraint of optical intensity and were demonstrated to
offer superior inference accuracy compared to standard
diffractive designs [38]. When trained against mis-
alignments using the presented v-D2NN framework, differ-
ential diffractive networks are also shown to preserve their
performance advantages for all-optical classification.
However, both differential and standard diffractive net-
works fall short in matching the adaptation capabilities of a
hybrid diffractive network system that uses a modest,
single-layer fully connected architecture with only 110
learnable parameters in the electronic domain, following
the diffractive optical front-end.

In addition to misalignment-related errors, the pre-
sented vaccination framework can also be adopted to
mitigate other error sources in diffractive network models,
e.g., detection noise and fabrication imperfections or ar-
tefacts, provided that the approximate analytical models
and the probability distributions of these factors are uti-
lized during the training stage. We anticipate that v-D2NNs
will be the gateway of diffractive optical networks and the
related hybrid neural network schemes toward practical
machine vision and sensing applications, by mitigating
various sources of error between the training forward
models and the corresponding physical hardware imple-
mentations. Furthermore, the presented methodology of
designing misalignment and noise resilient physical
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machine learning models can be broadly applicable to
other optical learning platforms, regardless of their phys-
ical dimensions and selected operation wavelengths.

2 Results

Figure 1 illustrates three different types of diffractive opti-
cal network-based object recognition systems investigated
in this work. We focused on 5-layer diffractive optical

network architectures as shown in Figure 1 that are fully-
connected, meaning that the half cone angle of the sec-
ondary wave created by the diffractive features (neurons)
of size, e.g., δ = 0.53 λ, is large enough to enable commu-
nication between all the features on two successive dif-
fractive layers that are placed, e.g., 40 λ apart in axial
direction. On the transverse plane, each diffractive layer
extends from−100×δ to 100×δ on x and y directions around
the optical axis, and therefore the edge length of each
diffractive surface in total is 200×δ (∼106.66 λ). With this

Figure 1: Different types of D2NN-based im-
age classification systems. (A) Standard
D2NN framework trained for all-optical
classification of handwritten digits. Each
detector at the output plane represents a
data class. (B) Differential D2NN trained for
all-optical classification of handwritten
digits. Each data class is represented by a
pair of detectors at the output plane, where
the normalized difference between these
detector pairs represents the class scores.
(C) Jointly-trained hybrid (optical-elec-
tronic) network system trained for classifi-
cation of handwritten digits. The optical
signals collected at the output detectors
are used as inputs to the electronic neural
network at the back-end, which is used to
output the final class scores. (D) Phase
profiles computed by the deep learning-
based training for a 5-layer diffractive op-
tical network that is vaccinated against
both lateral and axialmisalignments for the
task of handwritten digit classification. The
layers of this diffractive network were
fabricated using 3D printing as shown in
Figure 5D and experimentally tested using
the setup shown in Figure 5E. (E) Same asD,
except the diffractive network represents a
non-vaccinated, error-free design.
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outlined diffractive network architecture, the standard
D2NN training routine updates the trainable parameters of
the diffractive layers at every iteration based on the mean
gradient computed over a batch of training samples with
respect to a loss function, specifically tailored for the
desired optical machine learning application, e.g., cross-
entropy for supervised object recognition systems [37],
until a convergence criterion is satisfied. Since this con-
ventional training approach assumes perfect alignment
throughout the training, the sources of statistical varia-
tions in the resulting model are limited to the initial con-
dition of the diffractive network parameter space and the
sequence of the training data introduced to the network.

2.1 Training and testing of v-D2NNs

The training of vaccinated diffractive optical networks
mainly follows the same steps as the standard D2NN
framework; except, it additionally incorporates system
errors, e.g., misalignments, based on their probability
distribution functions into the optical forward model. In
this work, we modeled each orthogonal component of the
undesired 3D displacement vector of each diffractive layer,
D = (Dx, Dy, Dz), as uniformly distributed, independent
random variables as follows;

DX ∼ U(−Δx,  Δx) (1a)

DY ∼ U(−Δy,  Δy) (1b)

DZ ∼ U(−Δz ,  Δz) (1c)

where Δ* denotes the shift along the corresponding axis,
(*), reflecting the uncertainty in our physical assembly/
fabrication of the diffractive model. During the training,
the random displacement vector of each diffractive layer,
D, takes different values sampled from the probability
distribution of its components, Dx, Dy and Dz, for each
batch of training samples. Consequently, the location of
layer l at ith iteration/batch, L(l,i), can be expressed as;

L(l,i) � (L1
x,  L

1
y,  L

1
z) + (D(l,i)

x ,  D(l,i)
y ,  D(l,i)

z ) (2)

where the first and the second vectors on the right-hand
side denote the ideal location of the diffractive layer l, and
a random realization of the displacement vector, D(l,i), of
layer l at the training iteration i, respectively. The
displacement vector of each layer is independently
determined, i.e., each layer of a diffractive network model
can move within the displacement ranges depicted in Eq.
(1) without any dependence on the locations of the other
diffractive layers.

Opto-mechanical assembly and fabrication systems, in
general, use different mechanisms to control the lateral
and axial positioning of optical components. Therefore, we
split our numerical investigation of the vaccination process
into two: the lateral and axial misalignment cases. For the
vaccination of diffractive optical network models against
layer-to-layer misalignments on the transverse plane, we
assumed Dx and Dy are i.i.d random variables during the
training, i.e., they are independent with a parameter of Δx =
Δy = Δtr, and D was set to be 0. The axial case, on the other
hand, sets Δtr to be 0 throughout the training leaving
Dz∼U(−Δz,tr,Δz,tr) as the only source of inter-layer
misalignments.

Following a similar path with the training, the blind
testing of the presented diffractive network models up-
dates the random displacement vector of each layer l, D(l,m),
for each test samplem. The reported accuracies throughout
our analyses reflects the blind testing accuracies computed
over the 10K image test set of MNIST digits where each test
sample propagates through a diffractive network model that
experiences a different realization of the random variables
depicted in Eq. (1) for each diffractive layer, i.e., there are
10K different configurations that a diffractive network model
was misaligned throughout the testing stage. Furthermore,
similar to the training process, during the blind testing
against lateral misalignments, it was assumed that Dx and
Dy are i.i.d random variables with Δx = Δy = Δtest, and
similarly, the axial displacements or misalignments were
determined by Dz ∼ U(−Δz, test, Δz, test).

2.2 Misalignment analysis of all-optical and
hybrid diffractive systems

Figure 2A and D illustrate the blind testing accuracies
provided by the standard diffractive optical network ar-
chitecture (Figure 1A) trained against various levels of
undesired axial and lateral misalignments, respectively.
Focusing on the testing accuracy curve obtained by the
error-free design (dark blue) in Figure 2A and D, it can be
noticed that the diffractive optical networks are more
susceptible to lateral misalignments compared to axial
misalignments. For instance, when Δtest is taken as 2.12 λ,
inducing random lateral fluctuations on each diffractive
layer’s location around the optical axis, the blind testing
accuracy achieved by the non-vaccinated standard dif-
fractive optical network decreases to 38.40% from 97.77%
(obtained in the absence of misalignments). As we further
increase the level of lateral misalignments, the error-free
diffractive optical network almost completely loses its
inference capability by achieving, e.g., 19.24% blind
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inference accuracy for Δtest = 4.24λ (i.e., the misalignment
range in each lateral direction of a diffractive layer is −8δ to
8δ). On the other hand, when the diffractive layers are
randomly misaligned on the longitudinal direction alone,
the inference performance does not drop as excessively as
the lateral misalignment case; for example, even when
Δz,test becomes as large as 19.2 λ, the error-free diffractive
network manages to obtain an inference accuracy of
49.8%.

As demonstrated in Figure 2D, the rapid drop in the
testing accuracy of diffractive optical classification systems
under physical misalignments can be mitigated by using
the v-D2NN framework. Since v-D2NN training introduces
displacement errors in the training stage, the diffractive
optical networks can adopt to those variations preserving
their inference performance over large misalignment
margins. As an example, the 38.40%blind testing accuracy
achieved by the non-vaccinated diffractive design with a
lateral misalignment range of Δtest = 2.12 λ, can be

increased to 94.44% when the same architecture is trained
with a similar error range using the presented vaccination
framework (see the purple line in Figure 2D). On top of that,
the vaccinated design does not compromise the perfor-
mance of the all-optical object recognition systems when
the ideal conditions are satisfied. Compared to the 97.77%
accuracy provided by the error-free design, this new
vaccinated network (purple line in Figure 2D) obtains
96.1% in the absence of misalignments. In other words, the
∼56% inference performance gain of the vaccinated dif-
fractive network under physical misalignments comes at
the expense of only 1.67% accuracy loss when the opto-
mechanical assembly perfectly matches the numerical
training model. In case the level of misalignment-related
imperfections in the fabrication of the diffractive network is
expected to be even smaller, one can design improved v-
D2NN models that achieve, e.g., 97.38%, which corre-
sponds to only 0.39% inference accuracy loss compared to
the error-free models at their peak (perfect alignment case)

Figure 2: The sensitivity of the blind
inference accuracies of different types of
D2NN-based object classification systems
against various levels ofmisalignments. (A)
Standard D2NN systems trained for all-
optical handwritten digit classificationwith
and without vaccination were tested
against various levels of axial mis-
alignments, determined by Δz,test. (B) Same
as A, except for differential D2NN architec-
tures. (C) Same as A and B, except for
hybrid (D2NN-FC) systems comprised of a
jointly-trained 5-layer D2NN optical front-
end and a single-layer fully-connected
neural network at the electronic back-end,
combined through 10 discrete opto-
electronic detectors (see Figure 1C). The
comparison of these blind testing results
reveals that as the axial misalignment in-
creases during the training, ΔZ,tr, the
inference accuracy of these machine vision
systems decrease slightly but at the same
time they are able to maintain their per-
formance over a wider range of mis-
alignments during the blind testing, Δz,test.
(D) Standard D2NN systems trained for all-
optical handwritten digit recognition with
and without vaccination were tested
against various levels of lateral misalign-
ment levels, determined by Δtest. (E) Same
as D except for differential D2NNs architec-
tures. (F) Same as E and F, except for hybrid

object recognition systems comprised of a jointly-trained 5-layer D2NN optical front-end and a single-layer fully-connected neural network at
the electronic back-end, combined through 10 discrete opto-electronic detectors. The proposed vaccination-based training strategy improves
the resilience of these diffractive networks to uncontrolled lateral and axial displacements of the diffractive layers with amodest compromise
of the inference performance depending on the misalignment range used in the training phase.
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while at the same time providing >4% blind testing accu-
racy improvement under mild misalignment, i.e., Δtest =
0.53 λ. Similarly, when we compare the blind inference
curves of the error-free and vaccinated network designs in
Figure 2A, one can notice that the v-D2NN framework can
easily recover the performance of the diffractive digit
classification networks in the case where the displacement
errors are restricted to be on the longitudinal axis. For
example, with Δz,test = 2.4 λ, the inference accuracy of the

error-free diffractive network (dark blue) is reduced to
94.88%, while a vaccinated diffractive network that was
already trained against the same level of misalign-
ment, Δz,tr = 2.4 λ (yellow), retains 97.39% blind inference
accuracy under the same level of axial misalignment.

Next, we combined our v-D2NN framework with the
differential diffractive network architecture: the blind
testing results of various differential handwritten digit
recognition systems under axial and lateral misalignments

Figure 3: Comparison of different types of
D2NN-based object classification systems
trained with the same range of mis-
alignments. (A) Comparison of error-free
designs, Δz,tr = 0.0 λ, for standard (blue),
differential (red) and hybrid (yellow) object
classification systems against different
levels of axial misalignments, Δz,test. (B)
Comparison of standard (blue), differential
(red) and hybrid (yellow) object classifica-
tion systems against different levels of
axial misalignments when they are trained
withΔz,tr = 1.2 λ. C, D, E and F are same asB,
except during the training of the diffractive
models the axial misalignment ranges are
determined by Δz,tr, taken as 2.4, 4.8, 9.6
and 19.2 λ, respectively. (G) Comparison of
error-free designs, Δtr = 0.0 λ, for standard
(blue), differential (red) and hybrid (yellow)
object recognition systems against
different levels of lateral misalignments,
Δtest. (H) Comparison of standard (blue),
differential (red) and hybrid (yellow) object
classification systems against different
levels of lateral misalignments when they
are trained with Δtr = 0.53 λ. I,J,K and L are
same as H, except the lateralmisalignment
ranges during the training are determined
by Δtr, taken as 1.06, 2.12, 4.24 and 8.48 λ,
respectively.
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are reported in Figure 2B and E, respectively. Figure 3 also
provides a direct comparison of the blind inference accu-
racies of these two all-optical diffractive machine learning
architectures under different levels of misalignments.
Figure 3A and G compare the error-free designs of differ-
ential and standard diffractive network architectures,
which reveal that although the differential design achieves
slightly better blind inference accuracy, 97.93%, in the
absence of alignment errors, as soon as the misalignments
reach beyond a certain level, the performance of a differ-
ential design decreases faster than the standard diffractive
network. This means that they are more vulnerable against
the system variations that they were not trained against.
Since the number of detectors inside an output region-of-
interest is twice asmany in differential diffractive networks
compared to the standard diffractive network architecture
(see Figure 1A, B), the detector signals are more prone to
have cross-talk when the diffractive layers are experi-
encing uncontrolled mechanical displacements. With the
introduction of vaccination during the training phase,
however, differential diffractive network models can adapt
to these system variations as in the case of standard dif-
fractive optical networks. Compared to standard diffractive
optical networks, the differential counterparts that are
vaccinated generate higher inference accuracies when the
misalignment levels are small. In Figure 3H, for instance,

the vaccinated differential design (red curve) achieves
97.3% blind inference accuracy while the vaccinated
standard diffractive network (blue curve) can provide
96.91% for the case Δtr = Δtest = 0.53λ. In Figure 3I, where
the vaccination range on x and y axis is twice as large
compared to Figure 3H, the differential network reveals the
correct digit classes with an accuracy of 96.18% when it is
tested at an equal displacement/misalignment uncertainty
to its vaccination level; on the other hand, the standard
diffractive network can achieve 95.79% under the same
training and testing conditions. Beyond this level of
misalignment, the differential systems slowly lose their
performance advantage and the standard diffractive net-
works starts to perform on par with their differential
counterparts. One exception to this behavior is shown in
Figure 3K, where the misalignment range of the diffractive
layers during the training causes cross-talk among the
differential detectors at a level that hurts the evolution of
the differential diffractive network, leading to a consis-
tently worse inference performance compared to the
standard diffractive design. A similar effect also exists for
the case illustrated in Figure 3L; however, this time, the
standard diffractive optical network design also experi-
ences a similar level of cross-talk among the class detectors
at the output plane. Therefore, as demonstrated in
Figure 3L, the differential diffractive optical network

Figure 4: Summary of the numerical results
for vaccinated D2NNs. (A) The inference
accuracy of the non-vaccinated (Δtr = 0.0 λ)
and the vaccinated (Δtr > 0.0 λ) differential
D2NN systems trained for all-optical hand-
written digit recognition quantified at
different levels of testing misalignment
ranges. The v-D2NN framework allows the
all-optical classification systems to pre-
serve their inference performance over a
large range of misalignments. (B) Same as
A, except for hybrid (D2NN-FC) systems
comprised of a jointly-trained 5-layer D2NN
optical front-end and a single-layer fully-
connected neural network at the electronic
back-end combined through 10 discrete
opto-electronic detectors (see Figure 1C).
(C) Vaccination comparison of three dif-
fractive network-based machine learning
architectures depicted in Figure 1;
Δtr = Δtest.
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recovers its performance gain thriving over the standard
diffractive network design with a higher optical classifi-
cation accuracy. This performance gain of the differential
design depicted in Figure 3L, can be translated to the
smaller misalignment cases, e.g., Δtr = Δtest = 4.24λ, simply
by increasing the distance between the detectors at the
output plane for differential diffractive optical network
designs, i.e., setting the region-of-interest covering the
detectors to be larger compared to the standard diffractive
network architecture.

Figure 3 also outlines a comparison of the differential
and standard diffractive all-optical object recognition
systems against hybrid diffractive neural networks under
various levels of misalignments. For the hybrid neural
networkmodels presented here, we jointly trained a 5-layer
diffractive optical front-end and a single-layer fully-con-
nected electronic network, communicating through
discrete detectors at the output plane. To provide a fair
comparison with the all-optical diffractive systems, we
used 10 discrete detectors at the output plane of these
hybrid configurations, same as in the standard diffractive
optical network designs (see Figures 1A and C). The blind
inference accuracies obtained by these hybrid neural
network systems under different levels of misalignments
are shown in Figure 2C and F. When the opto-mechanical
assembly of the diffractive network is perfect, the error-
free, jointly-optimized hybrid neural network architecture
can achieve 98.3% classification accuracy surpassing the
all-optical counterparts as well as the all-electronic per-
formance of a single-layer fully-connected network, which
achieves 92.48% classification accuracy using >75-fold
more trainable connections without the diffractive optical
network front-end. As the level ofmisalignments increases,
however, the error-free hybrid network fails to maintain its
performance and its inference accuracy quickly falls. The
v-D2NN framework helps the hybrid neural systems during
the joint evolution of the diffractive and the electronic
networks and makes them resilient to misalignments. For
example, the handwritten digit classification accuracy
values presented for the standard diffractive networks in
Figure 3H (96.91%) and Figure 3I (95.79%) have improved
to 97.92 and 97.15%, respectively, for the hybrid neural
network system (yellow curve), indicating ∼1% accuracy
gain over the all-optical models under the same level of
misalignment (i.e., 0.53 λ for Figure 3H and 1.06 λ for
Figure 3I). As the level of misalignments in the diffractive
optical front-end increases, the cross-talk between the
detectors at the output plane also increases. However, for a
hybrid network design there is no direct correspondence
between the data classes and the output detectors, and
therefore the joint-training under the vaccination scheme

introduced in this work directs the evolution of the elec-
tronic network model accordingly and opens up the per-
formance gap further between the all-optical diffractive
classification networks and the hybrid systems as illus-
trated in Figure 3K and L. A similar comparative analysis,
along the lines of Figures 2 and 3, is also conducted for
phase-encoded input objects (Fashion-MNIST dataset),
which is reported in Supplementary Figures S4 and S5.

2.3 Experimental results

The error-free standard diffractive network design that
achieves 97.77% blind inference accuracy for the MNIST
dataset as presented in Figures 2A, D, 3A and G, offers a
power efficiency of ∼0.07% on average over the blind
testing samples (see Supplementary Information for de-
tails). This relatively low power efficiency is mostly due to
the absorption of our 3D printing material at THz band.
Specifically, ∼88.62% of the optical power right after the
object is absorbed by the five diffractive layers, while
11.17% is scattered around during the light propagation.
Due to the limited optical power in our THz source and the
noise floor of our detector, we trained an error-free stan-
dard diffractive optical network model with a slightly
compromised digit classification performance for the
experimental verification of our v-D2NN framework. This
new error-free diffractive network provides a blind infer-
ence accuracy of 97.19%, and it obtains ∼3× higher power
efficiency of ∼0.2%. In addition to improved power effi-
ciency, this new diffractive network model with 97.19%
classification accuracy also achieves ∼10× better signal
contrast (ψ) [37] between the optical signal collected by the
detector corresponding to the true object label and its
closest competitor, i.e., the second maximum signal (see
Supplementary Information for details). The layers of this
error-free diffractive network are shown in Figure 1E. In
addition, the comparison between the error-free, high-
contrast standard diffractive optical network model and its
lower contrast, lower efficiency counterpart in terms of
their inference performance under misalignments is re-
ported in Supplementary Figure S1A.

Following the same power-efficient design strategy,
we trained another diffractive optical network that is
vaccinated against both the lateral and axial mis-
alignments with the training parameters (Δtr, Δz,tr) taken
as (4.24 λ, 4.8 λ). As in the case of the error-free design, the
inference accuracy of this new vaccinated diffractive
network shown in Figure 5A is also compromised
compared to the standard diffractive networks presented
in Figures 2D and 3K since it was trained to improve power
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efficiency and signal contrast. This design can achieve
89.5% blind classification accuracy for handwritten digits
under ideal conditions, with the diffractive layers re-
ported in Figure 1D. A comprehensive comparison of the
blind inference accuracies of the vaccinated diffractive
networks shown in Figures 2 and 3 and their high-
contrast, high-efficiency counterparts are reported in
Supplementary Figure S1B.

The experimental verification of our v-D2NN frame-
work was based on the comparison of the vaccinated and
the error-free standard diffractive optical network designs
in terms of the accuracy of their optical classification de-
cisions under inter-layer misalignments. To this end, we
fabricated the diffractive layers of the non-vaccinated and
the vaccinated networks shown in Figure 1D–E using 3D
printing. The fabricated diffractive networks are depicted
in Figure 5C–D. In addition, we fabricated six MNIST digits

selected from the blind testing dataset that are numerically
correctly classified by both the vaccinated and the non-
vaccinated diffractive network models without any mis-
alignments. For a fair comparison, we grouped the
correctly classified handwritten digits based on the signal
contrast statistics provided by the non-vaccinated design.
With μSC, σSC, denoting the mean and the standard devia-
tion of the signal contrast generated by the error-free dif-
fractive network over the correctly classified blind testing
MNIST digits, we selected two handwritten digits (Set 1)
that satisfies the condition μSC+σSC < {ψ, ψ′} < μSC+2σSC,
where ψ and ψ′ denote the signal contrasts created by the
error-free and the vaccinated designs for a given input
object, respectively. The condition on ψ and ψ′ for the
second set of 3D printed handwritten digits (Set 2), on the
other hand, is slightly less restrictive, μSC < {ψ,
ψ′} < μSC+σSC. By using this outlined approach, we selected

Figure 5: Experimental testing of v-D2NN
framework. (A) A diffractive optical network
that is vaccinated against misalignments.
This network is vaccinated against both
lateral, Δtr = 4.24 λ, and axial, Δz,tr = 4.8 λ,
misalignments. (B) The location of the third
diffractive layer was on purpose altered
throughout our measurements. Except the
central location, the remaining 12 spots
induce an inter-layer misalignment. (C) The
3D printed error-free design shown in
Figure 1E. (D) The 3D printed vaccinated
design shown in A and Figure 1D. (E) The
schematic of the experimental setup.
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six experimental test objects in total that are equally
favorable for both the vaccinated and non-vaccinated dif-
fractive networks.

To test the performance of the error-free and vacci-
nated diffractive network designs under different levels of
misalignments, we shifted the third layer of both diffractive
systems to 12 different locations around its ideal location as
depicted in Figure 5B. The perturbed locations of the third
diffractive layer covers four different spots on each
orthogonal direction. The distances between these loca-
tions are 1.2 mm (1.6 λ) along x and y, and 2.4 mm (3.2 λ)
along z axes. These shifts cover a total length of 6.4 λ (12
times the smallest feature size) along (x,y) and 12.8 λ
(0.32 × 40 λ) along z axis, respectively.

Figure 5E shows a schematic of our THz setup that was
used to test these diffractive networks and their misalign-
ment performances (see Supplementary Information).
Figure 6 reports the experimentally obtained optical sig-
nals for a handwritten digit ‘0’ fromSet 1 and a handwritten
digit ‘5’ from Set 2, received by the class detectors at the
output plane based on the 13 different locations of the third
diffractive layer of the vaccinated and the error-free net-
works. The first thing to note is that both the vaccinated
and non-vaccinated networks can classify the two digits
correctly when the third layer is placed at its ideal location
within the set-up. As illustrated in Figure 6A, as we perturb
the location of the third layer, the error-free diffractive
network fails at nine locations while the vaccinated

Figure 6: Experimental image classification
results as a function of misalignments. (A)
The experimentally measured class scores
for handwritten digit ‘0’ selected fromSet 1.
(B) Same as A, except the input object is
now a handwritten digit ‘5’ selected from
Set 2. The red dot within the coordinate
system shown on the left-hand side repre-
sents the physical misalignment for each
case (see Figure 5B). Red (green) rectangles
mean incorrect (correct) inference results.
Refer to Supplementary Information (Fig-
ures S2 and S3) for more examples of our
experimental comparisons between these
vaccinated and error-free diffractive de-
signs.
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network correctly infers the object label at all the 13 loca-
tions for the handwritten digit ‘0’. In addition, the vacci-
nated network maintains its perfect record of experimental
inference for the digit ‘5’ despite the inter-layer mis-
alignments as depicted in Figure 6B. The error-free design,
on the other hand, fails at two different locations of its third
layer misalignment (see Figure 6B). The experimental re-
sults for the remaining four digits are presented in Sup-
plementary Figures S2 and S3, confirming the same
conclusions. In our experiments, all the objects were
correctly classified when the third layer was placed at its
ideal location. Out of the remaining 72 measurements (6
objects× 12 shifted/misaligned locations of the third layer),
the error-free design failed to infer the correct object class
in 23 cases, while the vaccinated network failed only two
times, demonstrating its robustness against awide range of
misalignments as intended by the v-D2NN framework.

3 Discussion

As an example of a severe case of lateralmisalignments, we
investigated a scenario where each diffractive layer can
move within the range (−8.48 λ, 8.48 λ) around the optical
axis in x and y directions. As demonstrated in Figures 2D
and 3G,when the error-free design (dark blue) is exposed to
such large lateral misalignments, it can only achieve 12.8%
test accuracy, i.e., it barely surpasses random guessing of
the object classes. A diffractive optical network that is
vaccinated against the same level of uncontrolled layer
movement can partially recover the inference performance
providing 67.53% blind inference accuracy. As the best
performer, the hybrid neural network system composed of
a 5-layer diffractive optical network and a single-layer
fully-connected network can take this accuracy value up to
79.6% under the same level of misalignments, within the
range (−8.48 λ, 8.48 λ) for both x and y direction of each
layer. When we compare the total allowed displacement
range of each layer within the diffractive network
(i.e., 16.96 λ in each direction) and the size of our diffractive
layers (106.66 λ), we can see that they are quite compara-
ble. If we imagine a lens-based optical imaging system and
an associated machine vision architecture, in the presence
of such serious opto-mechanical misalignments, this sys-
tem would also fail due to acute aberrations substantially
decreasing the image quality and the resolution. Our main
motivation to include this severe misalignment case in our
analyses was to test the limits of the adaptability of our
vaccinated systems.

Figure 4A–B further summarize the inference accu-
racies of the differential diffractive networks and hybrid

neural network systems at discrete points sampled from
the corresponding curves depicted in Figure 3G–L. In
Figure 4A, the best inference accuracy is achieved by the
error-free (non-vaccinated) differential diffractive network
model under perfect alignment of its layers. However, its
performance drops in the presence of an imperfect opto-
mechanical assembly. The vaccinated, diffractive all-
optical classification networks provide major advantages
to cope with the undesired system variations achieving
higher inference accuracies despite misalignments. The
joint-training of hybrid systems that are composed of a
diffractive optical front-end and a single-layer electronic
network (back-end) can adapt to uncontrolled mechanical
perturbations achieving higher inference accuracies
compared to all-optical image classification systems. These
results further highlight that, operating with only a few
discrete opto-electronic detectors at the output plane, the
D2NN-based hybrid architectures offer unique opportu-
nities for the design of low-latency, power-efficient and
memory-friendly machine vision systems for various
applications.

On top of the translational layer-to-layer alignment
errors, the presented framework can also be extended to
accommodate 3D rotational misalignments of diffractive
layers. While undesired in-plane rotations of diffractive
layers can be readily addressed based on the 2D coordinate
transformations performed through unitary rotation
matrices incorporated into the optical forward model
detailed in Supplementary Information, handling possible
out-of-plane rotations of diffractive optical network layers
requires further modifications to the formulation of wave
propagation between tilted planes [48, 49]. Beyond mis-
alignments or displacements of diffractive layers, the pre-
sented vaccination framework can also be harnessed to
decrease the sensitivity of diffractive optical networks to
various error sources, e.g., detection noise or fabrication
defects. At its core, the presented framework can be inter-
preted as a training regularization method that avoids
overfitting of a machine learning hardware to the specific
3D physical structure, distances and operational condi-
tions, which are often assumed to be deterministic, precise
and ideal during the training phase. In this respect, beyond
its application to practically improve diffractive optical
neural networks, the core principles introduced in our
work can be extended to train other machine learning
platforms [35, 50, 51] to mitigate various physical error
sources that can cause deviations between the designed
inference models and their corresponding physical
implementations.

In conclusion, we presented a design framework that
introduces the use of probabilistic layer-to-layer
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misalignments during the training of diffractive neural
networks to increase their robustness against physical mis-
alignments. Although the experimental demonstrations of
our vaccinateddesign frameworkwere conductedusing THz
wavelengths and 3Dprinteddiffractive layers, the presented
principles and methods can readily be applicable to dif-
fractive optical networks that operate at other parts of the
electromagnetic spectrum, including, e.g., visible wave-
lengths. In fact, as thewavelength of operation gets smaller,
the impact and importance of the presented framework will
be better highlighted. We believe the presented training
strategy will find use in the design of diffractive optical
network-based machine vision and sensing systems, span-
ning different applications.
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