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In an age where digitization is widespread in clinical and preclinical workflows, pathology is still predominantly practiced by
microscopic evaluation of stained tissue specimens affixed on glass slides. Over the last decade, new high throughput digital
scanning microscopes have ushered in the era of digital pathology that, along with recent advances in machine vision, have
opened up new possibilities for Computer-Aided-Diagnoses. Despite these advances, the high infrastructural costs related to
digital pathology and the perception that the digitization process is an additional and nondirectly reimbursable step have
challenged its widespread adoption. Here, we discuss how emerging virtual staining technologies and machine learning can help
to disrupt the standard histopathology workflow and create new avenues for the diagnostic paradigm that will benefit patients
and healthcare systems alike via digital pathology.

1. Introduction

The application of computational techniques to biomedical
imaging is almost a century-old practice. One field that made
a relatively quick transition to the digital age is radiology,
where imaging modalities such as computed tomography
(CT) and magnetic resonance imaging (MRI) adopted
digitization and computation for storage, reconstruction, and
display of medical images. However, until very recently, the
field of pathology has not demonstrated similar progress
toward digitization. Pathologic diagnoses are based on visual
interpretations of very thin slices of tissue specimens that have
been affixed to glass slides and stained. These tissue sections
are the fundamental diagnostic material of pathology and can-
not be as readily digitized as a radiologic film study, which has
delayed the adoption of many computational techniques in
pathology. Recently, automated slide scanners have been
developed, which allow pathology slides to be scanned using
optical microscopy and produce digital image files, referred

to as whole slide images (WSIs). TheseWSIs bring a wide vari-
ety of potential advantages such as improving workflow,
enabling telemedicine to perform rapid expert consultations
from anywhere in the world, and opening up the possibility
of Computer-Aided-Diagnoses (CAD) to improve patient care
and speed up the diagnostic process. However, due to signifi-
cant infrastructural implementation costs, along with some
technical and practical limitations, the pathology industry
has been slow to undergo a large-scale digital transformation.
Therefore, if the digitization process can reduce operating
costs, the impact on the rate of digital adoption in pathology
could be substantial.

While much of the initial push toward slide digitization
came from interest in research and development toward, e.g.,
machine learning-assisted diagnosis [1], recent advancements
in imaging technologies, and image reconstruction and trans-
formation algorithms have created new opportunities that
have the potential to change the landscape of how pathology
is practiced. These emerging technologies, which will be
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discussed in this article, aim to disrupt the histopathology
process from the surgery room to the pathology lab, all the
way to the telepathology diagnostic portal.

2. Microscopic Contrast in Tissue Imaging

Before microscopic tissue examination can take place, the
sampled tissue undergoes multiple preparation and process-
ing stages that comprise the histopathology workflow. Any
examination begins with the extraction of tissue using one
of the various forms of tissue sampling such as a fine needle
aspiration biopsy of a discrete lesion or surgical excision of
a large mass during surgery. Once the tissue is extracted, it
is stained to bring contrast to various microscopic features
of tissue. While there are a wide variety of different histolog-
ical stains, the standard stain used by pathologists is the
hematoxylin and eosin stain (H&E), and there are two main
workflows used to produce it.

The primary histopathology workflow involves tissue
fixation (usually in formalin, a formaldehyde-based solution),
followed by processing the formalin-fixed tissue using
reagents to embed it within paraffin blocks. After the paraffin
embedding stage, the paraffinized tissue block is cut using a
microtome to produce sections that are typically 2-4 microns
thick. Once the tissue sections are cut, the paraffin blocks are
carefully placed in long-term storage, per College of American
Pathologists guidelines [2]. The thin sections cut from the
paraffin block are hydrated and placed on a microscope slide,
and then deparaffinized and finally stained to provide the col-
oring and contrast that is necessary for slide examination. The
final step is the application of a coverslip to the slide which
protects the tissue and allows for permanent storage after
review by a pathologist. This embedding and staining process
takes approximately 2 hours for standard H&E staining.

The second important histopathology workflow is rapid
H&E fixation and staining, which is necessary to support clin-
ical decision-making during, e.g., surgery, when the surgeon
needs to understand the nature of the tissue to determine
whether more sampling is needed or not. In this scenario,
the pathologic evaluation requires rapid creation of the H&E
slide. The process to quickly evaluate a tissue specimen for
pathologic analysis is called a “frozen section” (as the tissue
is frozen in a block of optimal cutting temperature compound
rather than a paraffin block), and the slide staining is a swift
process (freezing and staining takes approximately 10-15
minutes). However, this process is labor intensive and typi-
cally results in a lower quality stain in comparison to those
generated through paraffinized tissue processing. Part of the
decreased H&E stain quality is due to variability in staining
by different technicians, difference in tissue size on the slides,
and potential changes in the concentration of the staining
reagents throughout the day.

As described above, histopathology tissue processing can
be a laborious and delicate process but is a prerequisite to the
process of histological staining. Most tissues demonstrate
exceptionally low contrast when examined under a bright-
field microscope, necessitating the staining step. By applying
chemicals, different chromophores (dyes) are attached to
different tissue constituents, highlighting these features to

allow the microscopic examination of tissue with sufficiently
rich and useful contrast.

Histological staining in various forms has been in use for
the last 150 years and is still universally applied in the
histopathologic assessment of every disease study in tissues.
For example, the H&E stain is used as the primary stain for
all cancer diagnoses. H&E results in high contrast for the
nucleus, cytoplasm, and extracellular constituents, all in shades
of blue (hematoxylin) or red (eosin). Other staining methods,
called special stains, can provide a particular contrast for
specific tissue or cellular components, which can provide an
extra diagnostic dimension that is sometimes necessary to
complete the pathologic evaluation process. Special stains
include, e.g., periodic acid Schiff (PAS), Masson’s trichrome
(MT), Jones’ methenamine silver (JMS), and reticulin silver
(RS) stains, which are used routinely in the evaluation of
kidney, liver and skin diseases, among many others [3]. More
advanced categories of staining include, e.g., immunohisto-
chemistry (IHC) and fluorescence in situ hybridization (FISH)
that provide molecular information on antigenic and genotypic
features of tissue sections [3].

As effective as the histopathology process is, it has several
known drawbacks. For example, it is destructive in nature
andmay exhaust the tissue sample, requiring repeat tissue sam-
pling (e.g., extra biopsies); furthermore, the tissue processing is
time consuming and laborious, especially if special stains or
advanced stains are involved. Therefore, in recent years, many
attempts have been made to change and modernize the current
histopathology workflow. The common denominator for these
methods is the use of an optical instrument which generates an
alternative contrast to standard histological staining. The adop-
tion of these alternative contrast mechanisms along with novel
computational methods should provide the clinicians (or com-
puter algorithms) a result that is of similar or superior quality
in comparison to the gold standard for diagnosis [4–6].

The optical imaging methods with alternative contrast
that were explored over the last two decades all aimed to alter
parts of the current histopathology tissue processing work-
flow. Many of these methods were targeted at eliminating
the tissue fixation step and provide an intraoperative or
bedside instrument that can be used for tumor margin assess-
ment during surgery, in lieu of the current workflow, as what
is also known as “slide-free” histopathology. Some of these
methods utilized completely label-free imaging, including,
e.g., multimodal nonlinear microscopy [7, 8], stimulated
Raman spectroscopy [9], and photoacoustic microscopy
[10]. Other methods have used a rapid staining procedure
involving, e.g., acridine orange to enhance the nuclear con-
tent and differentiate it from connective tissue. Some of these
methods include surface UV excitation [11], single-photon
light-sheet absorption microscopy [12], and two-photon
absorption microscopy [13]. In addition to these, optical
coherence tomography [14, 15], reflectance confocal micros-
copy [16], and nonlinear optical endomicroscopy [17] have
also been demonstrated for in vivo imaging. It is worth not-
ing that many of these methods were demonstrated primarily
for depth (volumetric) imaging [10, 12, 14, 16], while other
methods have been demonstrated for surface imaging on
the excised specimen [7, 9, 11, 13].
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Some of these methods have also augmented their results
with a postprocessing step that generates an H&E-like image.
These synthetic H&E images [9, 11, 12, 18] usually require
multimodal imaging (e.g., one image for the nuclear content
and another for the extracellular constituents). The resulting
image enables the visualization of the nuclear organization in
an H&E-like fashion. This type of H&E postprocessing is
important for a few reasons. For example, it can facilitate a
better interpretation experience, as pathologists are typically
trained to work with thin-sectioned histologically stained spec-
imen. In addition to this, automated image segmentation and
whole slide disease classification, which represent annotated
[1] or weakly supervised [19] machine learning cases, have
shown great promise to support pathology practitioners and
these efforts have mainly focused on cancer diagnosis using
H&E stained slides. However, the quality of these pseudo-
H&E images usually lags behind the quality that pathologists
are used to work with and has limitations in representing
pigments. An additional drawback is that this type of pseudo
staining is much more challenging to apply to other types of
stains beyond H&E. Another limitation of the abovemen-
tioned synthetic staining methods is that they use a pixel-to-
pixel mapping function (between the input and output images)
[9, 12, 20], and in this sense, they ignore the microscopic
texture information of an acquired input image.

Other than these methods, alternative contrast imaging
has also been investigated for fixed, thin-sectioned, label-free
slides [4, 5, 21]. Unlike the manually-tuned pixel-to-pixel
color mappings discussed earlier, these techniques utilized
data-driven learnable staining algorithms. For example, a
multilayer perceptron model was used to map a spectroscopic
feature vector from a single location on the tissue sample
(obtained using, e.g., Fourier-transform-infrared spectroscopy
[21]), into a single output vector that represents the target
color of that pixel, corresponding to RGB or any other color
space. This approach also ignores the microscopic texture
information of the tissue as this color output is independently
performed at each location of the sample, pixel-by-pixel.

As will be discussed in the next section, recent studies
have also demonstrated the use of modern deep learning
methods to perform texture-to-texture based image transfor-
mations to virtually stain label-free tissue sections, without a
reduction in image quality.

3. Deep Learning-Based Virtual Staining

Modern deep learning methods typically rely upon the
optimization of multilayered convolutional neural networks
(CNNs) for a machine learning task [22]. Each layer of the
network contains tens to hundreds of convolution kernels
(filters). Each of these convolutional layers is regulated by a
nonlinear activation function before transferring the infor-
mation to the next layer. Deep neural networks require a
one-time training effort to optimize these layers, where one
of the most popular training paradigms is known as super-
vised learning. Supervised learning is especially the method
of choice when there is access to a sufficiently large amount
of training data, which contain the inputs to the network
along with the matching “gold standard” ground truth infor-

mation. Using this dataset, the network and its weights are
then trained iteratively to minimize the difference between
its prediction (i.e., the output signal, which results from a
given input) and the corresponding ground truth.

Following the training process, the deep network can be
used to rapidly perform its inference task in a single
forward-pass, without the need for any further iterations or
optimization. Both this blind inference step, as well as the
training of the neural network take advantage of the availabil-
ity of modern computer hardware such as graphical process-
ing units (GPUs) and specially designed application-specific
integrated circuits (ASICs) as well as tailored coding and opti-
mization environments [23, 24]. In recent years, CNNs have
proven to be very effective for implementing machine vision
tasks such as image classification[25–27], annotation [28],
and segmentation [29]. One of the notable advantageous
properties of CNNs for handling/processing images is their
shift-equivariance (or filter sharing) property, which allows
them to be identically applied to arbitrary regions of interest
or fields-of-view, without being limited to specific image sizes
or positions.

When considering the application of deep learning-based
methods to the problem of virtual staining of label-free tissue,
the input to the staining network needs to demonstrate some
form of meaningful contrast, presenting cues to the network
for it to learn the transformation to the desired histochemical
contrast. Various imaging modalities have been used to gen-
erate the needed contrast based on endogenous agents within
label-free tissue to enable deep learning-based virtual stain-
ing; some examples include autofluorescence imaging [4],
quantitative phase imaging [5, 30], hyperspectral imaging
[31], and others [32, 33]. These deep learning-based methods
successfully demonstrated virtual staining of multiple organs
with H&E as well as some of the special stains (e.g., Masson’s
trichrome and Jones stain) [4, 5], which provide additional
channels of diagnostic information, on top of H&E.

Unlike the previously described synthetic tissue staining
methods (Section 2) that perform a pixel-to-pixel transforma-
tion, CNN-based virtual staining methods learn to map/trans-
form an input image patch to the desired target histological
stain patch, by learning the relationships between the input
and output data structures and distributions. The input distri-
bution is determined by the used contrast mechanism, the
microscopy technique, and the tissue type, while the output
distribution is determined by the combination of the target
stain and tissue type. As previously mentioned, the learning
process between the input and target images involves the
adjustment of the filter weights of the deep neural network
to minimize a predefined cost function that compares the net-
work output image and the desired target image. While hand-
crafted cost-functions provide a good solution for many cases,
they can also become data adaptive by training the network
using the GAN framework [34]. In a GAN framework, two
“competing” deep neural networks are trained simultaneously.
The first network is known as the Generator network, which
performs the desired image transformation (virtual staining),
while the second network, the Discriminator (or the “Critic”),
learns to discriminate between the generated images (i.e., the
virtually stained images created by the Generator) and the
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histologically stained images that constitute the ground truth.
The cost function of the Discriminator is then used as part of
the Generator’s cost function. In that way, the Generator gets
feedback from the Discriminator regarding the similarity of
the virtual staining distribution to the histological staining
distribution. This pushes the Generator to create images that
will drive the Discriminator to not be able to differentiate
between the generated images from the label-free specimen
and those that originate from the actual histological staining
process. This property of the GAN training is the source of
its data-adaptive optimization.

One general criticism of GANs is that they can mislead the
Generator network when being used to mimic a sought target
distribution. In other words, the output microscopic image
can look like it was generated from the target distribution,
and therefore, it is susceptible to hallucinations [35]. To
mitigate this, one approach is to constrain the cost function
to be dependent not just on the Discriminator loss (that makes
the image to lookmore like the target distribution), but also on
a more standard per-pixel (i.e., structural) loss term [36]. This
combined cost function regularizes the GAN training and
helps to mitigate possible hallucinations at the network out-
put. To achieve this, however, high precision registration
between the input and target images is required (also known
as paired images). To accurately pair the input and output
images during the training phase, an extensive registration
process is typically required. However, from the authors’
own experience[4, 5, 36–40], this one-time image registration
effort is necessary to allow the network to learn the virtual
staining-related transformation and not be affected by pixel
misalignments or image registrations errors. For this goal,
optical microscopy has major advantages in comparison to
photography or lower resolution medical imaging techniques
such as MRI or ultrasound, as it permits the user a high degree
of control and nanoscopic precision over the specimen, illumi-
nation, and the microscope hardware, which have been crucial
for accurate registration (or pairing) between the input and
target images during the training phase of virtual staining
networks. This training process, involving precise image regis-
tration protocols, is a one-time effort and does not constitute a
major obstacle for wide-scale use of virtual staining technolo-
gies as it is not required in the blind inference, testing phase.

An example of the integrated image processing workflow
used to prepare a training dataset for virtual staining is
shown in Figure 1. The multistep image registration process
begins with a global, coarse registration at the slide level,
which is improved to be accurate at the local patch level over
a series of steps. First, a correlation-based algorithm can be
used to extract the matching region of interest from the
brightfield image. Then, a multimodal registration algorithm
can be used to perform a rigid registration that accounts for
shifts, rotations, and scaling differences [41]. Using these
roughly matched images, an initial “style transfer” network
can be trained. Due to substantial mismatches in the image
registration, this network will not perform an accurate virtual
staining. However, this network can transform the label-free
image into an intermediate image which highly resembles the
histologically stained image. This image can then be used as a
reference for a more accurate, pixel-level, elastic registration

[38]. This elastic registration accounts for any other source
of misalignments, including spherical aberrations from
different objective lenses and the shrinkage/expansion of
the tissue caused by the chemical staining procedure.

Following this multistep registration procedure, the accu-
rately paired input and target image patches are used for the
training of the Generator CNN. The Generator will ideally be
trained using a combination of pixel-based loss functions and
a distribution matching loss function (Figure 1(c)). The
pixel-based loss function (e.g., mean absolute error between
the images) penalizes the error on the pixel level, while the
distribution matching portion of the loss (i.e., the GAN loss)
ensures that the images generated by the network are sharp
and accurately match the distribution of the histochemically
stained tissue images. At the end of the training process,
which is a one-time effort, the network can be used to blindly
output virtually stained tissue images of new cases that were
previously not seen by the network.

Once the training is complete, the quality of the virtual
stains that are generated by the network must be extensively
quantified and validated. While several pixel-based metrics
such as mean-squared error (MSE) and structural similarity
index (SSIM) can be used during the network training phase
to estimate the structural loss of the network, these still cannot
replace the evaluations performed by expert pathologists.
Critical assessment of the virtual staining results by board-
certified pathologists is currently the most comprehensive
way to study the efficacy of virtual staining approaches. For
example, Ref. [4] performed two types of blinded studies
where expert pathologists were asked to perform diagnosis
using virtually and histologically stained H&E slides and were
also asked to rank/score the stain quality of histological and
virtual MT and JMS stains on liver and kidney tissue sections,
respectively. In this blinded study, a group of pathologists were
randomly assigned to histologically stained and virtually
stained images without an indicator of which one is which.
The results demonstrated 100% nonmajor discordance in
diagnosis between the virtually and histologically stained
tissue sections. While this former study was focused on virtual
staining of paraffin-fixed tissue sections, a similar performance
level for virtual staining of label-free frozen tissue sections has
also been demonstrated by the authors (see Figure 2), that can
be used in, e.g., telepathology settings.

3.1. Transformative Advantages of Virtual Staining. Deep
learning-based virtual staining opens up many exciting new
avenues in digital pathology. For example, it allows for the
generation of multiple virtual stains from the same physical
slide section, as demonstrated in Figure 3. This capability
offers numerous advantages, as the pathologists will be able
to integrate information from multiple stains on the same
field-of-view, which can be better used to highlight different
features that are relevant for diagnosis. For example, in
Figure 3, the same section (label-free tissue) is virtually stained
with H&E, MT, and JMS stains, allowing the pathologist to
integrate information regarding the tubulointerstitium. The
H&E stain reveals tubulointerstitial inflammation, but it is
suboptimal for evaluating the degree of scarring (interstitial
fibrosis and tubular atrophy) and the location of the
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Figure 1: Training and inference processes of deep neural network-based virtual staining. (a) Initial coarse registration steps used to match
the images of the label-free tissue sections with the corresponding images of the histologically stained tissue sections. This image
coregistration is performed by first extracting the region with the maximum correlation and then applying a multimodal rigid registration.
(b) Procedure used to train the neural networks using a conditional GAN-based loss function, where α denotes a weight that balances
between the per-pixel penalty and the global distribution loss. (c) Steps used to fine-tune the image coregistration and ensure that pixel-
level coregistration accuracy is achieved through the use of an elastic transformation. The autofluorescence images are passed through a
style-transfer network which can be used as an intermediate image to perform a correlation-based elastic coregistration. (d) Following its
training, the network can virtually stain new cases that were never seen by the network before, by simply passing them through the deep
neural network.
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lymphocytic infiltrate. The MT stain can reveal how much
interstitial fibrosis is present, and the JMS stain can reveal
how much tubular atrophy is present. In contrast, unless the
stain (dye) is washed away and the same sample is restained
(which further adds to the labor of the histopathology work-
flow), the exiting tissue block will have to be cut again and
additional tissue sections will need to be stained, reducing
the ability to correlate features among stains, and depleting
the fixed specimen. The latter can especially be a challenge
in cases with tissue exhaustion as the patient might be required
to undergo yet another biopsy, especially if additional tissue is
needed for ancillary cancer testing.

Another exciting feature that virtual staining enables is
stain blending, as well as region-of-interest or microstructure
straining [6]. To exhibit these capabilities, a deep neural
network that is capable of outputting multiple virtual stains
was trained, where a “digital staining matrix” which repre-
sents a spatial stain map was used as part of the input to
the deep network, to spatially condition the virtual stain
generation. This concept is demonstrated in Figure 4(a),

where a digital staining matrix on demand selects the stains
to be applied for each subregion and structure of the field-
of-view. Another opportunity that this framework creates is
virtual stain fusion and blending as demonstrated in
Figure 4(b). This technique digitally synthesizes new stains
and can be used to optimize the staining process by utilizing
the unique features of different stains [6].

An inherent property of any deep neural network that
performs virtual staining is its ability to standardize the stain
being generated [4]. In other words, the virtual staining
network performs a uniform and consistent stain, avoiding
the high level of variations commonly observed among histo-
technicians or within laboratories and whole slide imaging
systems [42]. This major advantage is clearly demonstrated
in Figure 5, where we compare a set of kidney tissue sections
stained by histotechnicians at UCLAHealth against the typical
fields of view that are generated by the virtual staining
network, exhibiting substantially less variability from image
to image. Such staining variations make the diagnostic process
more challenging for clinicians as well as machine learning

Label-free autofluorescence
image (DAPI)

Virtual staining
network

1 mm

Virtually stained
tissue (H&E)

Histochemically stained
tissue (H&E)

Figure 2: Virtual staining of a frozen section. Virtual H&E staining performed on an intraoperative consultation using rapid preparation
(frozen section) of an ovarian tumor tissue section.

Label-free autofluorescence images
(network inputs)

DAPI

500 𝜇m

Texas red H&E

Virtual staining results

Masson’s Trichrome JMS

Figure 3: Virtual staining enables multiple stains on the same tissue section. Demonstration of multiple virtual stains (H&E, Masson’s
Trichrome and Jones’ stain) applied on the same label-free kidney tissue section (needle biopsy).
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algorithms, as staining variability presents an important learn-
ing challenge for both humans and algorithms.

3.2. Stain-to-Stain Transformations. In addition to perform-
ing virtual staining of label-free tissue, there is great interest
in transforming images of tissue already labeled in one man-
ner into images labeled in another stain using deep learning.
This stain-to-stain transformation capability will allow
pathologists to evaluate different tissue constituents without
requiring additional stains to be performed. Such an image
transformation could be from a rapid stain to H&E, or from
H&E to another type of stain, in which pathologists or
researchers can use to perform their analysis. By transform-
ing already existing images of histochemically stained slides,
pathologists can access this additional information channel
virtually, without making any changes to their existing work-
flow. Furthermore, many of the other benefits of previously
discussed virtual staining techniques such as stain normaliza-
tion also apply here for stain-to-stain transformations.

Stain transformation networks have been trained using a
variety of methods, including, e.g., distribution matching
losses such as CycleGANs [43]. Such distribution matching
losses allow neural networks to learn how to perform trans-
formations between imaging modalities using unmatched
(or unpaired) data. Using this technique is beneficial for stain
transformations due to the difficulty in creating a matched
image dataset, as it can be difficult to physically/chemically
convert an existing tissue from one stain to another. Several
stain-to-stain transformations have been demonstrated using
these techniques. For example, H&E stained tissue images

have been digitally transformed into equivalent MT, fibro-
blast activation protein (FAP), and cytokeratin (CK) duplex
stained images using CycleGANs [44].

Stain-to-stain transformations are also applicable beyond
direct diagnosis. For example, by generating IHCs, they can
also be used to improve the accuracy of segmentation net-
works [45, 46]. Similar techniques can also be used to simply
normalize the color and contrast of stained tissue samples
using CycleGANs [47, 48]. By performing this normaliza-
tion, the consistency of the stains can be digitally improved,
allowing the resulting images to be more easily used by both
human diagnosticians as well as other deep neural networks,
e.g., image classification.

While unpaired image datasets used by distribution
matching losses are easy to generate in comparison to the
matched dataset-based image preprocessing that was previ-
ously described (Figure 4), networks trained using these loss
functions such as CycleGANs can be prone to hallucinations
[35]. When distribution matching losses are used with
unpaired image data, it can be difficult to balance the dataset
and ensure that the source domain and target domain have
the same distribution of features. In addition to this, it is also
difficult to ensure that the transformation learned by the net-
work is always correct.

One method used to generate a matched stain-
transformation dataset and avoid the necessity of using a dis-
tribution matching loss has been to wash off the stain of the
tissue sample used as the network input and to create a phys-
ically restained tissue as the matching ground truth. Using this
technique, H&E stained tissue images have been used to

(network inputs)
Label-free autofluorescence images

DAPI Texas red

Diagnostician
labelling

500𝜇m

Virtually stained H&E
with mask overlay

Microstructured
output

Histochemically
stained tissue

(a)

Label-free autofluorescence images
(network inputs)

DAPI Texas red

Stain blending
network

Virtually stained
H&E

Stain blended
H&E and Jones

Virtually stained
Jones

50 𝜇m

(b)

Figure 4: Virtual staining enables special stain region-of-interest highlight and stain blending. Virtual staining allows to highlight different
regions of a single label-free tissue with multiple stains, simultaneously. (a) For example, the glomerular regions can be instantly stained with
Jones’ stain, on top of the virtual H&E staining of the background tissue. This way, label-free tissue samples can be virtually stained with a
panel of stains, following a predefined microstructure map that is decided by, e.g., a diagnostician. (b) An example of a ROI stained using
H&E, Jones, and a mixture of both H&E and Jones stains (performing stain blending).
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generate virtually stained phosphohistone-H3 (PHH3) tissue
images [49]. As an alternative to restaining of the same tissue
section, a different network has also been trained to transform
images of H&E stained tissue into MT stained images by
coregistering adjacent slices, each stained with one of the
two different stains [50].

4. Discussion and Outlook

As hospitals, doctors, and researchers look to exploit the
many benefits of digital histology, the financial challenges
involved with transforming histology review platforms from
microscope-based to purely digital will continue to exist as
a barrier to wide-scale adoption for some more time. While
there are some exceptions, the majority of pathologists rely
on standard microscopes to examine glass slides for their
daily work. To transition every pathology practice from
traditional glass slide workflows to fully digital workflows
with all the necessary infrastructure, including, e.g., auto-
mated whole slide scanners, servers, storage space, data
backup, and information technology (IT) support, would
cost many millions of dollars. By eliminating the slide stain-
ing and reducing the slide preparation steps, virtual staining
can strongly support this digital transition by introducing
substantial cost savings for all laboratories and therefore
make the investment worthwhile. Therefore, part of the solu-
tion to this challenge may involve using holistic analysis to
understand the enterprise-wide benefits to digitizing the
pathology workflow. This may reveal improvements in diag-
nostic turn-around-time (TAT), shorter hospital stays, and
easier larger-scale histology image access for researchers
and educators. This analysis will likely be institution-specific,
making the accumulation of this information laborious and
expensive. However, by introducing significant laboratory
cost savings, virtual staining will have very easy to measure
direct benefits that can offset much of the costs for digitizing
the histology laboratory.

While the applications of using deep learning to perform
virtual staining of label-free tissue and stain transfer have
attracted much interest from pathologists, researchers and
optical microscopy developers, some of its roots can be
tracked to efforts over the last two decades aiming to image
tissue with alternative contrast mechanisms. These initial
efforts mainly focused on the applications of intraoperative
slide-free imaging, which was followed by work to create
H&E-like interpretations of the obtained images for easier
analysis by pathologists. While most of these methods offer
“frozen section” quality that can be good enough for uses
such as assessment of tumor margins, they fall behind the
quality and complexity that are available to modern histopa-
thology practitioners in terms of both staining performance
and variety.

The novel algorithmic approaches that are starting to
bridge this gap have shown promise for histopathology appli-
cations involving thin tissue sections, and one of the next
steps is to adapt them to the task of intraoperative settings,
where special and advanced stains can be virtually created
in almost real-time to augment the diagnostic process. By
implementing a virtual staining workflow, the TAT for both
paraffin processing and intraoperative frozen section pro-
cessing can be greatly reduced and the image quality of the
stains can be standardized. This will optimize the pathologic
assessment of the tissue sections and improve the ability of
deep learning algorithms to achieve Computer-Aided-
Diagnoses. The transition from chemical staining to virtual
staining will also reduce histology laboratory operating costs,
exposure to toxic chemicals as well as sensitivity to their
supply chain and quality assurance.

As discussed earlier, virtual staining technology has
many advantages, such as tissue preservation by using less
tissue material for analysis, which accordingly reduces the
need for further biopsies by saving tissue for advanced
molecular analysis. By enabling both virtual staining and
molecular analysis to be performed on the exact same section
of tissue, there will be a perfect correlation with advanced

Histologically H&E stained kidney tissue sections

50 𝜇m

Virtually H&E stained tissue kidney tissue sections

Figure 5: Virtual staining standardizes histological staining. Staining variability observed in histological staining performed by
histotechnologists in comparison to deep learning-based virtual staining results.
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molecular studies. Furthermore, the ability to easily perform
multiple stains on the same tissue section and region-of-
interest analysis in real-time would be a game-changer for
both patients and histopathologists, enabling clinicians to
develop a treatment plan much quicker and shorten the time
to definitive treatment.

Before this virtual staining technology can be used in
clinical practice, the effectiveness of the technology must be
thoroughly proven at a large scale. An appropriate clinical
trial to compare the quality of the virtually stained tissue
images, including the lack of diagnoses inferiority in compar-
ison to current technology, will be required. This study
should demonstrate the technology on a multitude of sam-
ples to be tested across several different independent medical
centers. Furthermore, to ensure widespread adoption, the
technology must be scaled to a point where it can be
effectively used at a throughput required by large healthcare
systems and to be easily used by technicians with limited
training.

The emerging developments discussed in this paper
illuminate new avenues for pathology and incentivize the
adoption of digital pathology by changing the perception of
digital pathology as merely another laborious step in the
histopathology process into a significant workflow improve-
ment with laboratory cost savings. Therefore, we believe that
the implementation of virtual staining will present a para-
digm shift for how surgical tissue samples are processed
and eventually analyzed.

5. Materials and Methods

Human samples were obtained from the Translational Pathol-
ogy Core Laboratory and were prepared by the Histology
Laboratory at UCLA under IRB 18-001029 (UCLA). All of
the tissue sections were obtained after the deidentification of
patient-related information and were prepared from existing
(i.e., archived) specimens. Therefore, this work did not
interfere with standard practices of care or sample-collection
procedures; the original tissue specimens were archived before
this work and were not collected specifically for this research.
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