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ABSTRACT: Recent research efforts in optical computing have gravitated
toward developing optical neural networks that aim to benefit from the
processing speed and parallelism of optics/photonics in machine learning
applications. Among these endeavors, Diffractive Deep Neural Networks
(D2NNs) harness light-matter interaction over a series of trainable surfaces,
designed using deep learning, to compute a desired statistical inference task as
the light waves propagate from the input plane to the output field-of-view.
Although earlier studies have demonstrated the generalization capability of
diffractive optical networks to unseen data, achieving, e.g., >98% image
classification accuracy for handwritten digits, these previous designs are in
general sensitive to the spatial scaling, translation, and rotation of the input
objects. Here, we demonstrate a new training strategy for diffractive networks
that introduces input object translation, rotation, and/or scaling during the
training phase as uniformly distributed random variables to build resilience in their blind inference performance against such object
transformations. This training strategy successfully guides the evolution of the diffractive optical network design toward a solution
that is scale-, shift-, and rotation-invariant, which is especially important and useful for dynamic machine vision applications in, e.g.,
autonomous cars, in vivo imaging of biomedical specimen, among others.
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Motivated by the success of deep learning1,2 in various
applications,3−16 optical neural networks have gained an

important momentum in recent years. Although optical neural
networks and related optical computing hardware are relatively
at an earlier stage in terms of their inference and generalization
capabilities, when compared to the state-of-the-art electronic
deep neural networks and the underlying digital processors,
optics/photonics technologies might potentially bring signifi-
cant advantages for machine learning systems in terms of their
power efficiency, parallelism, and computational speed.17−30

Among different physical architectures used for the design of
optical neural networks,17,22−25,27,31,32 Diffractive Deep Neural
Networks (D2NNs)31,33−39 utilize the diffraction of light
through engineered surfaces/layers to form an optical network
that is based on light-matter interaction and free-space
propagation of light. D2NNs offer a unique optical machine
learning framework that formulates a given learning task as a
black-box function approximation problem, parametrized
through the trainable physical features of matter that control
the phase and/or amplitude of light. One of the most
convenient methods to devise a D2NN is to employ multiple
transmissive and/or reflective diffractive surfaces/layers that
collectively form an optical network between an input and
output field-of-view. During the training stage, the complex-
valued transmission/reflection coefficients of the layers of a
D2NN are designed for a given statistical (or deterministic)
task/goal, where each diffractive feature (i.e., neuron) of a

given layer is iteratively adjusted during the training phase
using, e.g., the error back-propagation method.30,40,41 After this
training and design phase, the resulting diffractive layers/
surfaces are physically fabricated using, e.g., 3D printing or
lithography, to form a passive optical network that performs
inference as the input light diffracts from the input plane to the
output. Alternatively, the final diffractive layer models can also
be implemented by using various types of spatial light
modulators (SLMs) to bring reconfigurability and data
adaptability to the diffractive network, at the expense of, e.g.,
increased power consumption of the system.
Since the initial experimental demonstration of image

classification using D2NNs that are composed of 3D-printed
diffractive layers,31,36 the optical inference capacity of
diffractive optical networks has been significantly improved
based on, e.g., differential detection scheme, class-specific
designs, and ensemble-learning techniques.33,34 Owing to these
systematic advances in diffractive optical networks and training
methods, recent studies have reported classification accuracies
of >98%, >90%, and >62% for the data sets of handwritten
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digits (MNIST), fashion products (Fashion-MNIST), and
CIFAR-10 images, respectively.33,34 Beyond classification tasks,
diffractive networks were also shown to serve as trainable
optical front-ends, forming hybrid (optical-electronic) machine
learning systems.35 Replacing the conventional imaging-optics
in machine vision systems with diffractive optical networks has
been shown to offer unique opportunities to lower the
computational complexity and burden on back-end electronic
neural networks as well as to mitigate the inference accuracy
loss due to pixel-pitch limited, low-resolution imaging
systems.35 Furthermore, in a recent study, diffractive optical
networks have been trained to encode the spatial information
on input objects into the power spectrum of the diffracted
broadband light, enabling object classification and image
reconstruction using only a single-pixel spectroscopic detector
at the output plane, demonstrating an unconventional, task-
specific, and resource-efficient machine vision platform.36 This
extension of diffractive optical networks and the related
training models to conduct inference based on broadband light
sources could also be important for processing colorful objects

or images at multiple spectral bands, covering, e.g., red, green,
and blue channels in the visible part of the spectrum.
In all of these existing diffractive optical network designs, the

inference accuracies are in general sensitive to object
transformations such as, e.g., lateral translation, rotation,
and/or scaling of the input objects that are frequently
encountered in various machine vision applications. In this
work, we quantify the sensitivity of diffractive optical networks
to these uncertainties associated with the lateral position, scale
and in-plane orientation/rotation angle of the input objects
(see Figure 1). Furthermore, we demonstrate a D2NN design
scheme that formulates these object transformations through
random variables used during the deep learning-based training
phase of the diffractive layers. In this manner, the evolution of
the layers of a diffractive optical network can adapt to random
translation, scaling and rotation of the input objects and,
hence, the blind inference capacity of the optical network can
be maintained despite these input object uncertainties. The
presented training strategy will enable diffractive optical
networks to find applications in machine vision systems that

Figure 1. (a) The layout of the diffractive optical networks trained and tested in this study. (b) The object transformations modeled during the
training and testing of the diffractive optical networks presented in this work.
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require low-latency as well as memory- and power-efficient
inference engines for monitoring dynamic events. Beyond
diffractive networks, the outlined training scheme can be
utilized in other optical machine learning platforms as well as
in deep learning-based inverse design problems to create
robust solutions that can sustain their target performance
against undesired/uncontrolled input field transformations.

■ RESULTS AND DISCUSSION

In a standard D2NN-based optical image classifier,31,33−35,42

the number of optoelectronic detectors positioned at the
output plane is equal to the number of classes in the target data
set, and each detector uniquely represents one data class (see
Figure 1a). The final class decision is based on the max
operation over the collected optical signals by these class
detectors. According to the diffractive network layout
illustrated in Figure 1a, the input objects (e.g., handwritten

MNIST digits) lie within a predefined field-of-view (FOV) of
53.33λ × 53.33λ, where λ denotes the wavelength of the
illumination light. The center of the FOV coincides with the
optical axis passing through the center of the diffractive layers.
The size of each diffractive layer is chosen to be 106.66λ ×
106.66λ, i.e., exactly 2× the size of the input FOV on each
lateral axis. The smallest diffractive feature size on each D2NN
layer is set to be ∼0.53λ; i.e., there are 200 × 200 trainable
features on each diffractive layer of a given D2NN design. At
the output plane, each detector is assumed to cover an area of
6.36λ × 6.36λ and they are located within an output FOV of
53.33λ × 53.33λmatching the input FOV size.
On the basis of these design parameters, a 5-layer diffractive

optical network with phase-only modulation at each neuron
achieves a blind testing accuracy of 97.64% for the
classification of amplitude-encoded MNIST images illuminated
with a uniform plane wave. Figure 2a illustrates the thickness

Figure 2. Thickness profiles of the designed diffractive layers constituting (a) the standard design (Δtr = ζtr = θtr = 0); (b) the shift-invariant design
trained with Δtr = 8.48λ (purple curve shown in Figure 3); (c) the scale-invariant design trained with ζtr = 0.4 (purple curve shown in Figure 5);
(d) the rotation-invariant design trained with θtr = 20° (purple curve shown in Figure 6).
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profiles of the resulting 5 diffractive layers, constituting this
standard D2NN design. To quantify the sensitivity of the blind
inference accuracy of this D2NN design against uncontrolled
lateral object translations, we introduced an object displace-
ment vector (Figure 1b), D = (Dx, Dy), that has two
components, defined as independent, uniformly distributed
random variables:

∼ −Δ ΔD U( , )x x x (1a)

∼ −Δ ΔD U( , )y y y (1b)

The standard diffractive network model (shown in Figure
2a) was trained (tr) with Δx = Δy = Δtr = 0, and was then
tested under different levels of input object position shifts by
sweeping the values of Δx = Δy = Δtest from 0 to 33.92λ with
steps of 0.53λ. Stated differently, the final test accuracy
corresponding to each Δtest value reflects the image
classification performance of the same diffractive network
model that was tested with 10 000 different object positions
randomly chosen within the range set by Δtest (see Figure 3a
for exemplary test objects). This analysis revealed that the
blind inference accuracy of the standard D2NN design (Δtr =
0) which achieves 97.64% under Δtest = 0 quickly falls below
90% as the input objects starts to move within the range ±3.5λ
(blue curve in Figure 3, defined with Δtr = 0). As the area
covered by the possible object shifts is increased further, the
inference accuracy of this native network model decreases
rapidly (see Figure 3).
In this conventional design approach, the optical forward

model of the diffractive network training assumes that the
input objects inside the sample FOV are free-from any type of
undesired geometrical variations, i.e., Δtr = 0. Hence, the
diffractive layers are not challenged to process optical waves
coming from input objects at different spatial locations,
possibly overfitting to the assumed FOV location. As a result,
the inference performance of the resulting diffractive network
model becomes dependent on the relative lateral location of

the input object with respect to the plane of the diffractive
layers and the output detectors.
To mitigate this problem, we adopted a training strategy

inspired by data augmentation techniques used in deep
learning. According to this scheme, each training image sample
in a batch is randomly shifted, based on a realization of the
displacement vector (D), and subsequently, the loss function is
computed by propagating these randomly shifted object fields
through the diffractive network (see the Methods for details).
Using this training scheme, we designed 5 different diffractive
network models based on different ranges of object displace-
ment, i.e., Δx = Δy = Δtr = 2.12λ, 4.24λ, 8.48λ, 16.96λ, and
33.92λ (see eq 1). Figure 3 illustrates the MNIST image
classification accuracies provided by these 5 new diffractive
network models as a function of Δtest. Comparison between the
diffractive network models trained with Δtr = 0 (blue) and Δtr
= 2.12λ (red) reveals that due to the data augmentation
introduced by the small object shifts during the training, the
latter can achieve an improved inference accuracy of 98.00%
for MNIST digits under Δtest = 0. Furthermore, the diffractive
network trained with Δtr = 2.12λ can maintain its classification
performance when the input objects are randomly shifted
within a certain lateral range (see the right shift of the red
curve in Figure 3). Similarly, training a diffractive network
model with Δtr = 4.24λ (yellow curve in Figure 3) also results
in a better classification accuracy of 97.75% when compared to
the 97.64% achieved by the standard model (Δtr = 0) under
Δtest = 0. In addition, this new diffractive model exhibits further
resilience to random shifts of the objects within the input FOV,
which is indicated by the stronger right shift of the yellow
curve in Figure 3. For example, for Δtest = 3.71λ in Figure 3,
the input test objects are randomly shifted in x and y by an
amount determined by Dx ∼ U(−3.71λ, 3.71λ) and Dy ∼
U(−3.71λ, 3.71λ), respectively, and this results in a
classification accuracy of 97.07% for the new diffractive
model (Δtr = 4.24λ), whereas the inference accuracy of the
standard model (Δtr = 0) decreases to 89.88% under the same
random lateral shifts of the input test objects.

Figure 3. Shift-invariant diffractive optical networks. (a) Randomly shifted object samples from the MNIST test data set. Green frame around each
object demonstrates the size of the diffractive layers (106.66λ × 106.66λ). (b) The blind inference accuracies provided by six different diffractive
network models trained with Δx = Δy = Δtr, taken as 0.0λ (blue), 2.12λ (red), 4.24λ (yellow), 8.48λ (purple), 16.96λ (green), 33.92λ (light-blue)
when they were tested under different levels random object shifts with the control parameter, Δx = Δy = Δtest, swept from 0.0λ to 33.92λ.
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Further increasing the range of the object location
uncertainty, e.g., to Δtr = 8.48λ (purple curve in Figure 3),
we start to observe a trade-off between the peak inference
accuracy and the resilience of the diffractive network to
random object shifts. For instance, the diffractive optical
network trained with Δtr = 8.48λ can achieve a peak
classification accuracy of 95.55%, which represents a ∼2%
accuracy compromise with respect to the native diffractive
network model (Δtr = 0) tested under Δtest = 0. However,
using such a large object location uncertainty in the training
phase also results in a rather flat accuracy curve over a much
larger Δtest range as shown in Figure 3; in other words, this
design strategy expands the effective input object FOV that can
be utilized for the desired machine learning task. For example,
if the test objects were to freely move within the area defined
by Δx = Δy = Δtest = 6.89λ, the diffractive network model
trained with Δtr = 8.48λ (purple curve in Figure 3) brings a
>30% inference accuracy advantage compared to the standard
model (blue curve in Figure 3). The resulting layer thickness
profiles for this diffractive optical network design trained with
Δtr = 8.48λ are also shown in Figure 2b.
For the case where Δtr was set to be 16.96λ, the mean test

classification accuracy over the range 0 < Δtest < Δtr is observed
to be 90.46% (see the green curve in Figure 3b). The relatively
more pronounced performance trade-off in this case can be
explained based on the increased input FOV. Stated differently,
with larger Δtr values, the effective input FOV of the diffractive
network is increased, and the dimensionality of the solution
space37 provided by a diffractive network design with a limited
number of layers (and neurons) might not be sufficient to
provide the desired solution when compared to a smaller input
FOV diffractive network design. The use of wider diffractive
layers (i.e., larger number of neurons per layer) can be a
strategy to further boost the inference accuracy over larger Δtr
values (or larger effective input FOVs), which will be further
discussed and demonstrated later in our analysis below (see
Figure 4b).
As an alternative design strategy, the detector plane

configuration shown in Figure 1a can also be replaced with a
differential detection scheme33 to mitigate this relative drop in
blind inference accuracy for designs with large Δtr. In this
scheme, instead of assigning a single optoelectronic detector
per class, we designate two detectors to each data class and
represent the corresponding class scores based on the

normalized difference between the optical signals collected
by each detector pair. Figure 4a illustrates a comparison
between the blind classification accuracies of standard (solid
curves) and differential (dashed curves) diffractive network
designs, when they were trained with random lateral shifts of
the input objects. For all of these designs, except the Δtr =
33.92λ case, the differential diffractive networks achieve higher
classification accuracies throughout the entire testing range,
showing their superior robustness and adaptability to input
field variations compared to their nondifferential counterparts.
For example, the peak inference accuracy (95.55%) achieved
by the diffractive optical network trained with Δtr = 8.48λ
(solid purple curve in Figure 4a) increases to 97.33% using the
differential detection scheme (dashed purple curve in Figure
4a). As another example, for Δtr = 16.96λ, the mean
classification accuracy of the differential diffractive network
over 0 < Δtest < Δtr yields 93.38%, which is ∼3% higher
compared to the performance of its nondifferential counterpart
for the same test range.
On the other hand, enlarging the uncertainty in the input

object translation further, e.g., Δtr = 33.92λ, starts to balance
out the benefits of using differential detection at the output
plane (see the solid and dashed blue curves in Figure 4, which
closely follow each other). In fact, when Δx and Δy in eq 1 are
large enough, such as Δtr = 33.92λ, the effective input FOV
increases considerably with respect to the size of the diffractive
layers; as we discussed earlier, the use of wider diffractive layers
with larger numbers of neurons per layer could be used to
mitigate this and improve inference performance of D2NN
designs that are trained with relatively large Δtr values. To shed
more light on this, using Δtr = 33.92λ we trained two
additional diffractive optical network models with wider
diffractive layers that cover m = 4 and m = 9 fold larger
number of neurons per layer compared to the standard design
(m = 1) that has 40K neurons per diffractive layer; stated
differently, each diffractive layer of these two new designs
contain (2 × 200) × (2 × 200) = 4 × 40K and (3 × 200) × (3
× 200) = 9 × 40K neurons per layer, covering 5 diffractive
layers, same as the standard D2NN design. The comparison of
the blind classification accuracies of these 5-layer D2NN
designs with m = 1, 4, and 9, all trained with Δtr = 33.92λ,
reveals that an increase in the width of the diffractive layers not
only increases the input numerical aperture (NA) of the
diffractive network, but also significantly improves the

Figure 4. Different design strategies that can improve the performance of shift-invariant diffractive optical networks. (a) The comparison between
the inference accuracies of standard (solid curves) and differential (dashed curves) diffractive optical networks trained using various Δtr values. (b)
Blind testing classification accuracies of three nondifferential, 5-layer D2NN designs that have m × 40K optical neurons per layer, with m = 1, 4, and
9. All these diffractive optical networks were trained using Δtr = 33.92λ. The diffractive network designs with wider diffractive layers and more
neurons per layer can generalize more effectively to random object translations.
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classification accuracies even under large Δtest (see Figure 4b).
For example, the D2NN design with Δtr = 33.92λ and m = 4
achieves classification accuracies of 83.08% and 85.76% for the
testing conditions, Δtest = 0.0λ and Δtest = Δtr = 33.92λ,
respectively. With the same Δtest values, the diffractive network
with m = 1, i.e., 40K neurons per layer can only achieve
classification accuracies of 79.23% and 81.98%, respectively.
The expansion of the diffractive layers to accommodate 9 ×
40K neurons per layer (m = 9), further increases the mean
classification accuracies over the entire Δtest range, as illustrated
in Figure 4b.
Next, we expanded the presented training approach to

design diffractive optical network models that are resilient to
the scale of the input objects. To this end, similar to eqs 1a and
1b, we defined a scaling parameter, K ∼ U(1 − ζ, 1 + ζ),
randomly covering the scale range (1 − ζ, 1 + ζ) determined
by the hyperparameter, ζ. According to this formulation, for a
given value of K, the physical size of the input object is scaled
up (K > 1) or down (K < 1); see Figure 5a. On the basis of this
formulation, in addition to the standard D2NN design with ζtr
= 0, we trained 4 new diffractive network models with ζtr = 0.1,
0.2, 0.4, and 0.8. The resulting diffractive network models were
then tested by sweeping ζtest from 0 to 0.8 with steps of 0.02
and for each case, the classification accuracy on testing data
attained by each diffractive model was computed (see Figure
5b). This analysis reveals that the resulting diffractive network
designs are rather resilient to random scaling of the input
objects, maintaining a competitive inference performance over
a large range of object shrinkage or expansion (Figure 5b).
Similar to the case shown in Figure 3, the relatively small
values of ζtr, e.g., 0.1 (red curve in Figure 5b) or 0.2 (yellow
curve in Figure 5b), effectively serve as data augmentation and
the corresponding diffractive network models achieve higher
peak inference accuracies of 97.84% (ζtr = 0.1) and 97.88% (ζtr
= 0.2) compared to the 97.64% achieved by the standard

design (ζtr = 0). Furthermore, the comparison between the
shift- and scale-invariant diffractive optical network models
trained with Δtr = 16.96λ (green curve in Figure 3b) and ζtr =
0.8 (green curve in Figure 5b) is highly interesting since the
effective FOVs induced by these two training parameters at the
input/object plane are quite comparable, resulting in ∼1.87×
and 1.8× of the FOV of the standard design (Δtr = ζtr = 0),
respectively. Despite these comparable effective FOVs at the
input plane, the diffractive network trained against random
scaling, ζtr = 0.8, achieves nearly ∼6% higher inference
accuracy compared to the shift-invariant design, Δtr = 16.96λ;
in general, lateral random shifts of the input object with respect
to a fixed diffractive network width seems to lower the
inference accuracy of the diffractive models more than random
object scaling, which indicates the physical importance of the
trainable pixels/neurons within the central region of a
diffractive network and the effectiveness of their optical
communication with the neighboring layers. The mean
classification accuracy provided by this scale-invariant
diffractive optical network model (ζtr = 0.8) over the entire
testing range, 0 < ζtest < 0.8, is found to be 96.57% (Figure 5b),
which is only ∼1% lower than that of the standard diffractive
design tested in the absence of random object scaling (ζtest =
0).
To explore if there is a large performance gap between the

classification accuracies attained for demagnified and magnified
input objects, next we separately tested the diffractive optical
network models in Figure 5b for the case of expansion-only,
i.e., K ∼ U(1, 1 + ζ) and shrinkage-only, i.e., K ∼ U(1 − ζ, 1);
see Figure 5c. A comparison of the solid (expansion-only) and
the dashed (shrinkage-only) curves in Figure 5c reveals that, in
general, diffractive networks’ resilience toward object ex-
pansion and object shrinkage is similar. For instance, for the
case of ζtr = 0.4 (purple curves in Figure 5c) the mean
classification accuracy difference observed between the

Figure 5. Scale-invariant diffractive optical networks. (a) Randomly scaled object examples from the MNIST test data set. Green frame around
each object demonstrates the size of the diffractive layers. (b) The blind inference accuracies provided by five different D2NN models trained with ζ
= ζtr, taken as 0.0 (blue), 0.1 (red), 0.2 (yellow), 0.4 (purple), and 0.8 (green); the resulting models were tested under different levels random
object scaling with the parameter, ζ = ζtest, swept from 0.0 to 0.8. (c) The classification performance of the diffractive networks in (b) for the case of
expansion-only (solid curves) and shrinkage-only (dashed curves).
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Figure 6. Rotation-invariant diffractive optical networks. (a) Randomly rotated object examples from the MNIST test data set. Green frame around
each object demonstrates the size of the diffractive layers. (b) The blind inference accuracies provided by five different diffractive network models
trained with θ = θtr, taken as 0° (blue), 5° (red), 10° (yellow), 20° (purple), 30° (green), and 60° (light-blue) when they were tested under
different levels of random object rotations with the parameter, θ = θtest, swept from 0° to 60°, covering both clockwise and counterclockwise image
rotations.

Table 1. Blind Inference Accuracy of the D2NN Models Trained against the Combinations of the Three Object Field
Transformations Investigated in This Work: (Upper) Shift-Rotation, (Middle) Shiftscaling, (Lower) Rotation-Scaling
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expansion-only vs shrinkage-only testing is only 0.04% up to
the point that the testing range is equal to that of the training,
i.e., ζtest = ζtr. Similarly, for ζtr = 0.8 the mean classification
accuracy difference observed between the expansion-only vs
shrinkage-only testing is ∼0.75%. When analyzing these results
reported in Figure 5c, one should carefully consider the fact
that for a fixed choice of ζ parameter there is an inherent
asymmetry in expansion and shrinkage percentages; for
example, for ζtest = 0.8, K can take values in the range (0.2,
1.8), where the extreme cases of 0.2 and 1.8 correspond to 5×
shrinkage and 1.8× expansion of the input object, respectively.
Therefore, the curves reported in Figure 5c for expansion-only
vs shrinkage-only testing naturally contain different percen-
tages of scaling with respect to the original size of the input
objects.
Next, we expanded the presented framework to handle input

object rotations. Figure 6 illustrates an equivalent analysis as in
Figure 3, except that the input objects are now rotating, instead
of shifting, around the optical axis, according to a uniformly
distributed random rotation angle, Θ ∼ U(−θ, θ), where Θ < 0
and Θ > 0 correspond to clockwise and counterclockwise
rotation as depicted in Figure 1b, respectively. In this
comparative analysis, six different diffractive network models
trained with θtr values taken as 0° (standard design), 5°, 10°,
20°, 30°, and 60° were tested as a function of θtest taking values
between 0° and 60° with a step size of 1°, i.e., Θ ∼ U(−θtest,
θtest). Similar to the case of scale-invariant designs reported in
Figure 5, these diffractive network models trained with
different θtr values can build up strong resilience against
random object rotations, almost without a compromise in their
inference. In fact, training with θtr ≤ 20° (red, yellow, and
purple curves in Figure 6b) improves the peak inference
accuracy over the standard design (θtr = 0°). When θtr = 30°
(green curve in Figure 6b), the inference of the diffractive
optical network is relatively flat as a function of θtest, achieving
a classification accuracy of 97.51% and 96.68% for θtest = 0°
and θtest = 30°, respectively, clearly demonstrating the
advantages of the presented design framework.
Finally, we investigated the design of diffractive optical

network models that were trained to simultaneously
accommodate two of the three commonly encountered input
objects transformations, i.e., random lateral shifting, scaling,
and in-plane rotation. Table 1 reports the resulting
classification accuracies of these newly trained D2NN models,
where the inference performance of the corresponding
diffractive optical network was tested with the same level of
random object transformation as in the training, i.e., Δtr = Δtest,
ζtr = ζtest, θtr = θtest. The results in Table 1 reveal that these
diffractive network designs can maintain their inference
accuracies over 90%, building up resilience against unwanted,
yet practically inevitable object transformations and variations.
The thickness profile of the diffractive layers constituting the
D2NN designs trained with the object transformation
parameter pairs: (Δtr = 2.12λ, θtr = 10°), (Δtr = 2.12λ, ζtr =
0.4), and (θtr = 10°, ζtr = 0.4) reported in Table 1 are
illustrated in Figure S1 of the Supporting Information. The
confusion matrices provided by these three diffractive network
models computed under Δtr = Δtest, ζtr = ζtest, and θtr = θtest, are
also reported in Figure S2.

■ CONCLUSIONS
In conclusion, we have quantified the sensitivity of diffractive
optical networks against three fundamental object trans-

formations (lateral translation, scaling, and rotation), that are
frequently encountered in various machine vision applications.
Moreover, a new design scheme that formulates these input
field transformations through uniformly distributed random
variables as part of the optical forward model has been
presented in deep learning-based training of D2NNs. Our
analyses reveal that this training strategy significantly increases
the robustness of diffractive networks against undesired object
field transformations. Although we have taken input object
classification as our target inference task, the presented ideas
and the underlying methods can be extended to other optical
machine learning tasks. As the presented training scheme
enables the diffractive optical networks to achieve significantly
higher inference accuracies in dynamic environments, we
believe that this study will potentially expand the utilization of
diffractive networks to a plethora of new applications that
demand real-time monitoring and classification of fast and
dynamic events.

■ METHODS
D2NN framework formulates the all-optical object classifica-
tion problem from the point-of-view of training the physical
features of matter inside a diffractive optical black-box. In this
study, we modeled each D2NN using 5 successive modulation
layers, each representing a two-dimensional, thin modulation
component (Figure 1a). The optical modulation function of
each diffractive layer was sampled with a period of 0.53λ over a
regular 2D grid of coordinates, with each point representing
the transmittance coefficient of a diffractive feature, i.e., an
optical “neuron”. Following earlier work,36,38,39,42 we selected
the material thickness, h, as the trainable physical parameter of
each neuron,
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According to eq 2, the material thickness over each
diffractive neuron is defined as a function of an auxiliary
variable, ha. The function, Qn(.), represents the n-bit
quantization operator and hm, hb denote the predetermined
hyperparameters of our forward model determining the
allowable range of thickness values, [hb, hm]. The thickness
in eq 2 is related to the transmittance coefficient of the
corresponding diffractive neuron through the complex-valued
refractive index (τ) of the optical material used to fabricate the
resulting D2NN, i.e., τ(λ) = n(λ) + jκ(λ), with λ denoting the
wavelength of the illumination light. On this basis, we can
express the transmission coefficient, t(xq, yp, zk), of a diffractive
neuron located at (xq, yp, zk) as
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where hq,p
k refers to the material thickness over the

corresponding neuron computed using eq 2, and ns is the
refractive index of the medium, surrounding the diffractive
layers; without loss of generality, we assumed ns = 1 (air). On
the basis of the earlier demonstrations of diffractive optical
networks,31,36,38,39,42 we assumed the optical modulation
surfaces in our diffractive optical networks are made of a
material with τ = 1.7227 + j0.031. Accordingly, the hm and hb
were selected as 2λ and 0.66λ, respectively, as illustrated in
Figure 2 and Figure S1.
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The 2D complex modulation function, T(x, y, zk), of a
diffractive surface, Sk, located at z = zk, can be written as

∑ ∑= − −T x y z t x y z P x qw y pw z( , , ) ( , , ) ( , , )k
q p

q p k x y k

(4)

where the wx and wy denote the width of a diffractive neuron in
x and y directions, respectively (both taken as 0.53λ). P(x, y,
zk) represents the 2D interpolation kernel which we assumed
to be an ideal rectangular function in the following form,
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The light propagation in the presented diffractive optical
networks were modeled based on the digital implementation of
the Rayleigh−Sommerfeld diffraction equation, using an
impulse response defined as
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where = + +r x y z2 2 2 . On this basis, the wave field
synthesized over a surface at z = zk+1, U(x, y, zk+1), by a
trainable diffractive layer, Sk, located at z = zk, can expressed as

= ′ * −+ +U x y z U x y z w x y z z( , , ) ( , , ) ( , , )k k k k1 1 (7)

where U′(x, y, zk) = U(x, y, zk)T(x, y, zk) is the complex wave
field immediately after the diffractive layer, k, and * denotes
the 2D convolution operation. In this optical forward model,
the layer-to-layer distances were taken as 40λ for the diffractive
network architectures that have 40K neurons on each
diffractive layer to induce optical connections between all the
neurons of two successive diffractive layers based on eq 6. To
provide a fair comparison, for the diffractive network
architectures with m = 4 and m = 9 fold larger diffractive
layers as depicted in Figure 4b, the layer-to-layer distances
were also accordingly increased to be (m)0.5 × 40λ, preserving
the all-optical connections set by the diffraction cone angle
between successive layers of these network models. Therefore,
the improvement in inference accuracy for randomly shifting
objects demonstrated in Figure 4b comes at the expense of
using larger diffractive layers separated with larger distances,
increasing both the lateral and the axial size of the diffractive
network.
On the basis of the above outlined optical forward model, if

we let the complex-valued object transmittance, T(x, y, z0),
over the input FOV be located at a surface defined with k = 0,
then the complex field and the associated optical intensity
distribution at the output/detector plane of a 5-layer diffractive
optical network architecture shown in Figure 1a, can be
expressed as U(x, y, z6) and I = |U(x, y, z6)|

2, respectively. In
our forward training model, we assumed that each class
detector collects an optical signal, Γc, that is computed through
the integration of the output intensity, I, over the
corresponding detector active area (6.4λ × 6.4λ per detector).
For a given data set with C classes, the standard D2NN
architecture in Figure 1a employs C detectors at the output
plane, each representing a data class; C = 10 for MNIST data
set. Accordingly, at each training iteration, after the
propagation of the input object to the output plane (based

on eqs 6 and 7), a vector of optical signals, Γ, is formed and
then normalized to get Γ′ using the following relationship:

Γ Γ
Γ

′ =
{ }

× T
max s

(8)

where Ts is a constant temperature parameter.43,44 Next, the
class score of the c-th data class, c, is computed as

=
Γ′

∑ Γ′ϵ

exp( )
exp( )c

c

c C c (9)

In eq 9, Γc′ denotes the normalized optical signal collected by
the detector, c, computed as in eq 8. At the final step, the
classification loss function, , in the form of the cross-entropy
loss defined in eq 10 is computed for the subsequent error-
backpropagation and update of the diffractive layers:

∑= −
ϵ

g log( )
c C

c c
(10)

where g denotes the one-hot ground truth label vector.
For the digital implementation of the diffractive optical

network training outlined above, we developed a custom-
written code in Python (v3.6.5) and TensorFlow (v1.15.0,
Google Inc.). The backpropagation updates were calculated
using the Adam45 optimizer with its parameters set to be the
default values as defined by TensorFlow and kept identical in
each model. The learning rate was set to be 0.001 for all the
diffractive network models presented here. The training batch
sizes were taken as 50 and 20 for the diffractive network
designs with 40K neurons per layer and wider diffractive
networks reported in Figure 4b, respectively. The training of a
5-layer diffractive optical network with 40K diffractive neurons
per layer takes ∼6 h using a computer with a GeForce GTX
1080 Ti Graphical Processing Unit (GPU, Nvidia Inc.) and
Intel Core i7−8700 Central Processing Unit (CPU, Intel Inc.)
with 64 GB of RAM, running Windows 10 operating system
(Microsoft). The training of a wider diffractive network
presented in Figure 4b, on the other hand, takes ∼30 h based
on the same system configuration due to the larger light
propagation windows used in the forward optical model. Since
the investigated object transformations were implemented
through a custom-developed bilinear interpolation code
written based on TensorFlow functions, it only takes ∼50 s
longer to complete an epoch with the presented scheme
compared to the standard training of D2NNs.
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