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ABSTRACT: Environmental factors such as temperature, nutrients,
and pollutants affect the growth rates and physical characteristics of
microalgae populations. As algae play a vital role in marine
ecosystems, the monitoring of algae is important to observe the
state of an ecosystem. However, analyzing these microalgae
populations using conventional light microscopy is time-consuming
and requires experts to both identify and count the algal cells, which in
turn considerably limits the volume of the samples that can be
measured in each experiment. In this work we use a high-throughput
and field-portable imaging flow cytometer to perform automated label-
free phenotypic analysis of marine microalgae populations using image
processing and deep learning. The imaging flow cytometer provides
color intensity and phase images of microalgae contained in a liquid
sample by capturing and reconstructing the lens-free color holograms
of the continuously flowing liquid at a flow rate of 100 mL/h. We extracted the spatial and spectral features of each algal cell in a
sample from these holographic images and performed automated algae identification using convolutional neural networks. These
features, alongside the composition and growth rate of the algae within the samples, were analyzed to understand the interactions
between different algae populations as well as the effects of toxin exposure. As proof of concept, we demonstrated the effectiveness of
the system by analyzing the impact of various concentrations of copper on microalgae monocultures and mixtures.
KEYWORDS: imaging flow cytometry, microalgae, deep learning, phenotypic analysis

Microalgae are vital to ecosystems around the world, as
they provide approximately half of the primary

production of our planet and form the basis of the oceanic
food chain.1 Various environmental factors such as high or low
temperature, deficiency of nutrients, and pollutants (e.g., heavy
metals and nano/micro plastics) affect the growth pattern and
overall health of these organisms. Exposure to toxic
compounds not only harm microalgae populations, but also
their effects propagate through the food web affecting higher-
level organisms such as zooplankton, invertebrates, fish, aquatic
mammals and birds, and humans. Through the process of
bioaccumulation, pollutants build up in algal tissues over time
as algae absorb them from the aquatic environment. This in
turn affects the higher-level organisms through biomagnifica-
tion, which occurs as the contaminated algae are consumed
and the pollutants become more heavily concentrated in the
consumers’ tissue with increased severity at higher levels in the
food chain.2

There is large variability between species in their response
and tolerance to different pollutants,3 and the effect of these
pollutants on microalgae is not fully explored and is
continuously being studied. One of the main types of

pollutants occurring in marine environments is heavy metals
such as copper, mercury, and lead.4 They induce oxidative
stress in microalgae by preventing the inactivation of reactive
oxygen species, which can damage tissues.3 While copper is
important for algal metabolism as it serves an essential role as a
redox cofactor for enzymes, it can become toxic at higher
concentrations. Copper compounds can easily enter aquatic
ecosystems through surface runoff from urban sources such as
automobile brake emissions, sidings, and roofs,5 as well as
copper mining.6 In these ecosystems, the effects of copper can
be highly dependent on the types of algae affected; different
species demonstrate highly varying levels of sensitivity to
copper with tolerance levels ranging over 3 orders of
magnitude7 in concentration.

Received: February 8, 2021

Articlepubs.acs.org/journal/apchd5

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acsphotonics.1c00220
ACS Photonics XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

A
yd

og
an

 O
zc

an
 o

n 
M

ar
ch

 1
0,

 2
02

1 
at

 1
9:

39
:0

1 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="C%CC%A7ag%CC%8Catay+Is%CC%A7%C4%B1l"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kevin+de+Haan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zolta%CC%81n+Go%CC%88ro%CC%88cs"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hatice+Ceylan+Koydemir"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Spencer+Peterman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Baum"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Baum"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fang+Song"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thamira+Skandakumar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Esin+Gumustekin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aydogan+Ozcan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsphotonics.1c00220&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00220?ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00220?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00220?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00220?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00220?fig=tgr1&ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acsphotonics.1c00220?ref=pdf
https://pubs.acs.org/journal/apchd5?ref=pdf
https://pubs.acs.org/journal/apchd5?ref=pdf


A variety of studies have been used to analyze the effects of
copper on algae biodiversity.7−9 For example, a study by
Gustavson et al. found that species richness and dominance in
microalgal enclosures fell in response to increased copper
exposure, while species evenness rose.8 By analyzing uptake
and internalization of copper, growth rate inhibition has been
related not only to copper uptake rates, but also to cell
detoxification characteristics of microalgae.9 Moreover, two
algae species, that is, Dunaliella tertiolecta (D. tertiolecta) and
Minutocellus polymorphus have been stated as one of the most
copper-tolerant and copper-sensitive microalgae species,
respectively.7 As copper is usually used in pesticide
formulation, its ecotoxicological effects upon microalgae have
been investigated, and the critical side effects of pesticides for
the entire food web have also been reported.10 Furthermore, it
has been shown that communities of algae can develop
pollution-induced community tolerance (PICT) if exposed to
contaminants such as copper.8 According to PICT, pollutants
remove species that are sensitive to them; therefore, exerting a
selective pressure that induces the ecological community to
take on a new structure that has a higher tolerance of the
pollutant.8 It was also shown that various algae species can
change their metabolism to become more tolerant to
contaminants.11

Microalgae form a particularly rich source of information
about the long-term effects of pollution on biodiversity in the

marine environment due to their short generation times and
high sensitivity to changing environmental conditions.12

However, studying the effects of pollutants on algae is
challenging due to the labor-intensive nature of repeatedly
sampling, imaging, and counting the various species in a
mixture over time. To analyze these effects on algae, high-
throughput imaging flow cytometry can be used to automati-
cally image individual microalgae in a liquid sample.13 Existing
imaging flow cytometer systems such as CytoSense14

(Cytobouy b.v.), Flowcam15 (Fluid Imaging Technologies),
and Imaging Flowcytobot16 (McLane Research Laboratories)
are relatively expensive (costing ∼$40000−100000), bulky and
heavy (9−30 kg), partially limiting their accessibility to
researchers. Furthermore, most of them are not portable
enough for field use, which can limit the types of studies that
can be performed.
Recently, we have developed a lightweight, high-throughput,

and field-portable imaging flow cytometer system.17,18 This
label-free imaging cytometer (shown in Figures 1 and S1) has
the dimensions of 19 cm × 19 cm × 16 cm, weighs 1.6 kg, and
has an assembly cost of ∼$2500. This holographic imaging
flow cytometer is based on color lens-free in-line holography,
which is a computational imaging technique that uses partially
coherent illumination light to capture holograms of flowing
micro-objects on an image sensor, without the use of any
lenses. These holograms are then digitally refocused and

Figure 1. Overview of holographic imaging flow cytometry system and the processing workflow used for monitoring algae populations. The algae
sample can be automatically analyzed by the imaging flow cytometer without the need for sample preparation or external labeling. The device
captures in-line holograms of the contents of continuously flowing water samples at a throughput of 100 mL/h. Each frame has a field-of-view of 30
mm2 and contains the holograms of the flowing objects. These acquired holograms of individual objects are automatically detected, extracted, and
reconstructed to provide the phase and intensity images of the detected objects at red, green, and blue illumination channels. Convolutional neural
networks and traditional feature extraction algorithms are then used to automatically analyze and quantify the composition of the algae samples.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://dx.doi.org/10.1021/acsphotonics.1c00220
ACS Photonics XXXX, XXX, XXX−XXX

B

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.1c00220/suppl_file/ph1c00220_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00220?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00220?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00220?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00220?fig=fig1&ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://dx.doi.org/10.1021/acsphotonics.1c00220?ref=pdf


reconstructed computationally to generate color images of the
objects within the sample, revealing both the amplitude and
the phase information of the objects at three different color
channels (red, green and blue). This field-portable imaging
cytometer analyzes the objects within a water sample of
interest in real time at a throughput of 100 mL/h with a half-
pitch spatial resolution of <2 μm.
Here, we demonstrate new analysis methods that utilize this

imaging flow-cytometer to perform an automated and high-
throughput phenotypic inspection of microalgae populations in
the presence of pollutants within the water sample. Figure 1
shows an overview of our methods. To enable the automated
phenotypic analysis of microalgae populations, two different
methods have been developed to analyze the algae passing
through the flow cytometer. The first method directly performs
a feature analysis (based on a few hand-crafted features) of the
objects that the flow cytometer detects. By observing the
statistical changes in these automatically extracted features, we
can sense changes to the makeup of the algae passing through
the cytometer. The second method classifies the species
passing through the system using a set of three deep neural
networks. This allows the system to accurately count the
number of each algae species in a sample containing a mixture
of algae species. Using these methods, the flow cytometer can
be used to analyze microalgae populations under different
environmental conditions.
We experimentally validated the performance of these

methods by imaging four different species of algae passing
through our label-free imaging cytometer under various culture
conditions. The holographic images of these algae populations
were analyzed by extracting features such as color intensity
ratio, area, and circularity that were quantified to understand
the effects of external perturbations due to different
concentrations of copper. Interactions among different algae
species were also analyzed using a medium perturbed by
different copper concentrations, and the number of each algae
species within the sample was estimated using a set of deep
neural networks. While we performed these analyses using
various toxic concentrations of copper to perturb the samples,
the presented technique is broadly applicable to measuring the
effects of other toxins/chemicals and other forms of
perturbations (including e.g., mechanical) upon microalgae
populations.

■ METHODS
Holographic Imaging Flow Cytometer Hardware. The

holographic imaging flow cytometer facilitates a variable
sample flow rate (1−100 mL/h) using a built-in peristaltic
pump (Instech p625).17,18 The continuously flowing liquid
sample is illuminated by red (630 nm), green (530 nm), and
blue (450 nm) light-emitting diodes (LED) that are pulsed
(120 μs), and the holographic signatures of the flowing
microalgae are recorded on a 14-megapixel image sensor
(Basler aca4600-10uc) running in global reset release mode
and triggering the LEDs. The housing of the camera was
modified to allow the sample carrying flow channel (Ibidi,
#80191, uncoated, channel height: 0.8 mm) to come into
direct contact with the image sensor. The temporal and spatial
coherence of the illumination is adjusted by a pair of triple
bandpass filters (Edmund Optics #87-246, Chroma Inc.
69015m) and a convex mirror (Edmund Optics #64-061),
respectively. The short illumination pulse necessitates a high-
power LED (Ledengin LZ4-04MDPB), with driving currents

ranging from 2 to 5 A, depending on the color. These
components were attached to a custom-designed PCB. The
brightness of the LEDs can be set by the user to reach
adequate white balance, and the intensity is kept constant
using a constant current LED driver (LT3797, Linear
Technologies). The charge for these rapid, high current pulses
is provided by three electrolyte capacitors with a total
capacitance of 0.3 F charged to 12 V using a capacitor charge
controller IC (LT3750, Linear Technologies). The light pulses
are synchronized by the flash signal provided by the image
sensor. The full field of view holograms are captured at a rate
of three frames per second, and the default liquid flow speed
used for all experiments was 100 mL/h. The controlling circuit
is powered by a 5 V power source, and the power consumption
of the device is ∼2.2 W. The image sensor is powered by the
USB connection to the controlling computer and consumes an
additional 2.8 W during the imaging operation.

Hologram Reconstruction. Due to the lens-free and in-
line nature of the holographic imaging setup, the field of view
of our device is the same as the area of the image sensor (∼30
mm2).16,17 Each frame contains the holographic signatures of
the algae flowing above the image sensor. The holographic
signatures of static objects in the channels are digitally
removed by subtracting the background hologram, which is
calculated as the average of the 20 preceding lens-free frames.
The holograms of the individual objects are detected using the
circular Hough transform.17 The individual colors are extracted
from the raw Bayer pattern image using a noninterpolation
based demosaicking technique.19 The focus height for each
detected object is determined by a complex edge sparsity-
based focus metric.20 The three-dimensional location of each
object in the field of view is tracked over consecutive frames
and objects detected and reconstructed previously are removed
from the list of objects of interest to avoid reconstructing and
counting the same algae twice. The holograms of the
remaining objects are up-sampled by a factor of 4 and
reconstructed using the angular spectrum method.21,22 During
this reconstruction, the slight difference in the incidence angles
of the illumination wavelengths and the dispersion of the
materials in the optical path are taken into account by the
transfer function. This process yields an in-focus color phase
and amplitude image from each object entering the field of
view.
In-line digital holographic reconstructions contain noise in

their reconstructions, termed twin-image artifact, arising from
the unknown phase distribution of the field at the hologram
plane. In order to remove the twin image noise and provide
accurate phase and intensity reconstructions of each object,
our system uses a convolutional neural network (CNN) to
perform the image reconstructions.17 Once generated, these
denoised color phase and intensity images are used to classify
the algae populations, and after extraction of various selected
features, to track the spatial and spectral changes of various
algae populations.

Safety. All experimental work involving the algae cultures
was performed in a Biosafety Level 2 (BSL2) laboratory and
within a biosafety cabinet following the environmental, health,
and safety rules of UCLA.

Culturing of Algae Species. We purchased the axenic
algae species D. tertiolecta (CCMP1320), Nitzschia
(CCMP1698), Bacillariophyceae (CCMP2024), and Thalas-
siosira (CCMP2929) from Bigelow National Center for Marine
Algae and Microbiota (NCMA; Maine, U.S.A.) and used L1
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medium as the growth media (Table S1).23 Axenic starter
cultures of the species were used to ensure sample purity. L1
medium was prepared using a kit (product no. MKL150L,
Bigelow NCMA, Maine, U.S.A.) according to the instructions
of the manufacturer. This process involves adding 1 mL from
each stock solution, except the vitamin stock (i.e., added 0.5
mL) into filtered seawater (product no. SEABH20L, Bigelow
NCMA, Maine, U.S.A.), after which the pH of the medium was
adjusted to 8.0, and the medium was sterilized. The species
were incubated at 25 ± 0.4 °C on a custom-designed shaker
incubator at 100 rpm under continuous illumination of white
LED array lighting at ∼90 μE/m2/s.
Design of the Incubator for Algae Growth. The

incubator used to grow the algae is a shaker incubator (product
no. 31412, Genesee Scientific, California, U.S.A.) with the
door removed, and replaced with a custom-designed acrylic
door. The acrylic panels were cut and patterned using a laser
cutter (Speedy 100, Trotec Laser Inc., Michigan, U.S.A.) and
glued to each other to form a custom-designed door. The door
had an opening on top which held an LED array (product no.
B079J5YCHT, Amazon Inc., U.S.A.) for uniform illumination,
two fans (product no. B0119SLG18, Amazon Inc.) on the
sides, and holes for air circulation.
Sample Preparation. We used cultured species that are

4−7 days old to prepare algae samples. The test solution
volume was 15 mL and contained within a 25 mL vial. The test
solutions were not renewed unless otherwise stated (in other
words, the tests were static nonrenewal). We used copper(II)
chloride dihydrate (CuCl2·H2O; product no. C3279−100G,
Sigma-Aldrich) to analyze the effect of copper on the growth of
algae species. A total of 0.170 g of CuCl2·H2O was added in
reagent grade water and then the suspension was diluted using
L1 medium to have different concentrations of copper (Cu2+)
containing medium. The copper concentrations used were 0.63
(0.0006 ppm), 63.6 (0.0636 ppm), 630 (0.63 ppm), and 6300
μg/L (6.3 ppm), depending on the experiment being
performed. Copper is one of the essential components of the
L1 medium, therefore, 0.63 μg/L concentration was used as
the control concentration of Cu2+ throughout this study. The
initial concentration of algae in the test samples was adjusted
to 104 cells/mL using a count obtained from a hemocytometer.
The added algae stock volume to each test flask was not more
than 1 mL at all measurements. We added 14 mL of medium
and 1 mL of algae stock into each flask and mixed the
suspension gently.
We diluted 500 μL from each test flask into 9.5 mL of L1

medium for each test sample. The experiments with a single
copper exposure were conducted in duplicate for algae
monoculture experiments (except Day 1−63 μg/L of D.
tertiolecta that was performed a single time due to experimental
error), and all mixture experiments with a single copper
exposure were performed in triplicate. The experiments with
multiple copper exposures were all conducted in triplicate.
Each of the flasks was rotated daily to ensure uniform
illumination and temperature in the custom-made shaker
incubator.
Image Segmentation and Feature Extraction. Analysis

of the spatial and spectral features of algae passing through the
cytometer was used to investigate the effects of different
perturbations to the algae cultures as well as to probe the
interactions between different algae species. To perform this
analysis, an automated workflow was implemented in
MATLAB R2018a (see Figure S2). This workflow begins

with the application of an adaptive segmentation algorithm to
the reconstructed intensity and phase images containing
individual objects. The features used for analysis of the algae
are then extracted using the resulting segmentation map. To
perform this adaptive segmentation, Canny edge detection was
first applied to the intensity and phase images.24 Canny edge
detection smoothens the image with a Gaussian filter that has a
specified standard deviation (in our case, it is selected as 2.4
pixels). Using the smoothed image, the intensity gradients are
computed. After applying nonmaximal suppression to make the
edges thinner, a double threshold ([0.1, 0.12]) is used to
obtain more accurate edges. Finally, edge linking is performed
to find the weak edge pixels that are connected to the strong
edge pixels. The edge maps of the reconstructed intensity and
phase images alongside their combination with a bitwise “OR”
operation are used to obtain three distinct segmentation maps
by applying a 10 pixel dilation, filling holes using the flood-fill
algorithm,25 and 10 pixel erosion, respectively. These
segmentation maps are combined with a bitwise “OR”
operation to obtain the final segmentation result.
Using the resulting segmentation maps, several spatial

features (e.g., area, perimeter, circularity, eccentricity, axis
ratio (major/minor axis)) and spectral features (e.g., bright-
ness, color intensity ratios (blue/green and red/green)) of
algae or nonalgae objects are extracted. For each image,
average red, green, and blue intensities for segmented regions
are obtained from intensity images and normalized with
respect to the average background brightness. These values are
used to obtain the color intensity ratios and brightness. Several
spatial features including eccentricity, major and minor axis
lengths are obtained by using an ellipse that has the same
normalized second central moments as the segmented
region.26 Eccentricity is determined as the ratio of the distance
between the foci of the ellipse and its major axis length.
Therefore, this eccentricity ratio is between 0 (ideal circle) and
1 (line segment). Major and minor axis lengths of the ellipse
are used to obtain the axis ratio. Area and perimeter of the
detected algae are also directly quantified by using the
segmented images. Moreover, circularity of each object is
obtained by using the following equation:

circularity 4 area
perimeter2

π= ·
(1)

which is defined to give a value of 1 for completely circular
objects and smaller values for noncircular objects. However,
since the perimeter is not approximated well in digital images,
the equation might give values slightly higher than 1.27

Normalization of Histograms. The reported histograms
were normalized to obtain probability density functions
(PDFs) using the following equation:

v
c

N wi
i

i
=

· (2)

where vi denotes the value of ith bin in a histogram, ci
represents the number of elements in the bin, wi represents
the width of the bin, and N represents the number of total
elements in the histogram.

Quantification of Similarity between Measured PDFs.
Kullback−Leibler (KL) divergence (DKL) was used to quantify
the similarity between the measured PDFs,28 defined as

D p x q x p x
p x
q x

( ( ) ( )) ( )ln
( )
( )x X

KL ∑|| =
∈ (3)
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where p(x) and q(x) are probability distributions. As KL
divergence is a nonsymmetric distance metric, its symmetric
counterpart (Jeffreys divergence) was used for the analysis.29

Jeffreys divergence is defined as

D p x q x D q x p xSymKL 0.5 ( ( ( ) ( )) ( ( ) ( )))KL KL= × || + ||
(4)

As symmetric KL divergence ranges between 0 and infinity, it
was normalized between 0 and 1 using the equation below to
make the KL divergence easier to visually compare:

eKL 1 SymKL= − − (5)

Classification of Algae Using Convolutional Neural
Networks. A set of three deep neural networks were used in
conjunction to perform the classification of the microalgae
population in each sample and differentiate between different
algae species. Each of these neural networks was used to
classify a specific type of algae. In other words, each trained
neural network differentiates between two classes: (1) the
algae species corresponding to that network and (2) every
other object (i.e., other algae types, nonalgae particles, and
severely damaged algae from other species). When training
each network, only healthy algae of the type corresponding to
the network were classified as part of the first class (i.e., the
network should identify only the algae species corresponding
to that network). A mixture of “other” objects, consisting of the
other algae types (both healthy and damaged by a high
concentration of copper), alongside other nonalgae objects
(e.g., dirt, dust), was used as the second class. This training

regime is necessary as generating labels, for example, marking
damaged and dead algae is an intractable problem due to the
variations in the amount of damage that can be done to algae
within a sample, in addition to the natural variations observed.
These ground truth labels were used by a softmax cross-
entropy loss function to train each one of these algae specific
neural networks. Using these labels, the loss for the network
corresponding to algae N can be described as follows:

L y p y plog( ) log( )N c N c N c calgae algae algae other other= − −= = = =

(6)

where yc is a one-hot encoded binary encoding of the label,
which has a value of one when the object belongs to that class,
and zero otherwise. The pc probabilities were calculated by
passing the network output through the softmax function
below, where k is the class index:

p
z

z

exp( )

exp( )c
c

k c k1
2=

∑ = = (7)

pc represents the probabilities estimated by the neural network
that the object being classified belongs to the class
corresponding to c.
When classifying individual species in a mixture, all of these

networks are applied at the same time. If one of the networks
classifies the object as the algal cell, it is marked as the algae
type corresponding to that network. If none of the networks
classify it is as algal cell, the object is marked as nonalgal cell.
In the case where multiple networks classify an object as the

Figure 2. Effects of copper exposure on four different algae monocultures monitored over time using the holographic imaging flow cytometer.
Various concentrations of copper are introduced into the algae monocultures at day 0, and the samples are measured at regular time intervals by the
imaging flow cytometer. The device analyses ∼5000−15000 individual algae images per measurement. Two of the monitored features, color
intensity ratio (blue/green) and circularity, are displayed here to visualize the effect of various copper concentrations over time. The median values
of the measured features for each day and copper concentration are shown. The error bars indicate the standard deviation from repeated runs of the
experiments. As the spiked copper concentration increases from the typical 0.63 μg/L in the growth medium (blue), an increased divergence from
the control sample can be seen.
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alga, the cell is classified according to whichever network had
the highest confidence in its inference. A block diagram

outlining the operation of the three networks is reported in
Supporting Information, Figure S2.

Figure 3. Normalized histograms (measured PDFs) of the circularity, color intensity ratio, and area of the imaged algae (Dunaliella tertiolecta) as a
function of copper concentration. The PDFs of three features (i.e., circularity, blue/green color intensity ratio and area of algae) are displayed to
help visualizing the effect of the copper concentration over time. For this species, a significant divergence from the histogram of the control sample
can be observed for higher copper concentrations.

Figure 4. KL divergence analysis on the impact of copper concentration over time. The normalized symmetric KL divergence values are shown to
quantitatively measure the difference between the measured PDFs of the selected features for the control (0.63 μg/L copper concentration) and the
higher copper concentrations. Blue color represents a small difference, while red color corresponds to a large difference. This figure also highlights
the difference in copper sensitivity among species.
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All of the networks use the same architecture (densenet-
12130) and are used to classify 256 × 256 pixel-sized images
containing the algae. Each of these image patches contains six
unique information channels, three amplitude and three phase
channels, corresponding to the red, green, and blue channels.
The D. tertiolecta network was trained for 140 epochs using
14057 images of this algae type and 25180 images of other
algae and nonalgae. The Nitzschia network was trained for 129
epochs using 9258 images of this algae type and 32952 images
of other algae and nonalgae. Finally, the Thalassiosira network
was trained for 160 epochs using 7787 images of this algae type
and 34423 images of other algae and nonalgae. A total of 80%
of the images in each case were used for training, while the
remaining 20% were used for validation. The classification
networks were trained and implemented using Python version
3.6.2 and using Pytorch version 1.2 using a Nvidia GTX
1080Ti GPU.

When the three networks are used in conjunction, they
misclassified 5.5%, 3.3%, and 2.4% of the D. tertiolecta,
Nitzschia, and Thalassiosira algae, respectively. These tests
were performed on 1000 blindly tested objects from the same
monoculture samples.

■ RESULTS

Effect of Copper Exposure to Microalgae Mono-
cultures. The flow cytometer system utilizing the feature
extraction algorithm was tested on algae monocultures from
four different species (D. tertiolecta, Nitzschia, Thalassiosira,
and Bacillariophyceae), which were selected according to their
purity, shape, and size. Their individual responses to copper
exposure at various concentration levels over time were
analyzed by comparing different features such as circularity,
eccentricity, area, and blue/green color intensity ratio extracted

Figure 5. Algae mixture experiments (D. tertiolecta, Nitzschia, and Thalassiosira). (a) A comparison of the PDFs for color intensity ratio (blue/
green) and area as a function of the copper concentration over time. (b) Normalized KL divergence between different copper concentrations and
the control (0.63 μg/L copper concentration). (c) Number of detected algae for each algae species within the mixtures. D. tertiolecta eventually
dominated the mixture due to its superior copper tolerance and growth rate.
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by the feature extraction algorithm. The time evolution of the
median values of two features (i.e., circularity and blue/green
color intensity ratio) at various initially spiked copper
concentrations are illustrated in Figure 2. These two features
were found to be the most sensitive indicators of copper
exposure, while other features were affected by the spiked
copper to varying lesser degrees (the effects of copper on other
features are reported in Figures S3 and S4). Small standard
deviations between the median values of these features across
repeated experiments demonstrate the repeatability of the
overall method, which stems from the high throughput nature
of our lens-free imaging flow cytometer, enabling it to image
and analyze thousands of algae from each sample.
To better visualize and quantify the effect of copper

exposure on the algae, we also performed both a direct
comparison of the normalized histograms of these features (see
Figures 3 and S5−S7) as well as a KL divergence analysis of
these histograms (see Figure 4). This analysis can be used to
measure the dissimilarity between the control samples
containing 0.63 μg/L copper and the samples spiked with
higher concentrations of copper. Analyzing KL divergence
values can give more accurate and sensitive comparisons than
simply analyzing changes to the median feature values as it is
computed using the entire set of data rather than relying upon
a single-point estimation.
Our measurements and related analyses reveal that D.

tertiolecta7 is the most copper-tolerant of the four algae species
tested (see Figures 2a, 3a, and 4). For this type of algae, we
only detect changes at the higher copper concentrations (i.e., a
small change can be seen for 630 μg/L exposure and a larger
change can be seen for 6300 μg/L exposure). Furthermore, on
the 10th day, the observed features returned to the same state
as the control samples. This is likely due to the copper
concentration diminishing over time as the metal adsorbs to
the cell surface of the dead algae, and the surviving algae
multiplying to repopulate the sample. The species D. tertiolecta,
Nitzschia, and Thalassiosira also appear to be less susceptible to

lower copper concentrations as indicated by the relatively small
deviations observed in the tracked features (see Figures 2a−c
and 4). At the highest copper concentration level, the observed
features of Nitzschia and Thalassiosira did not return to the
same state as the control samples within the 10-day
experiment, indicating that these algae species continue to be
affected by the copper after a longer period than D. tertiolecta.
The remaining algae species, Bacillariophyceae, showed a
slower response time to the same copper concentrations and
appeared to be more susceptible to the lower copper
concentrations, as shown by Figures 2d and 4.

Observation of Microalgae Features and Population
Dynamics in Mixed Cultures. The individual response of an
algae species to different copper concentration levels in a
mixed culture is different than that of a monoculture due to the
interactions among different species in the mixture. Therefore,
the flow cytometer utilizing the feature extraction and deep
learning-based classification algorithms was used to analyze the
effects of different copper concentrations on algae species
within a mixed culture. For this, mixed cultures of microalgae
populations composed of three species of algae, D. tertiolecta,
Nitzschia, and Thalassiosira, at three different copper
concentrations (0.63 (control), 630, and 6300 μg/L) were
used. For this mixture experiment, the sample composition was
analyzed both by the feature extraction algorithm used to
analyze the algae monocultures and by using our deep
learning-based algae classification algorithm (see Methods).
This algae classification was used to detect relative changes in
the populations as well as the growth of different species over
time. This deep learning-based technique classifies individual
algae species in the mixture using three CNNs in conjunction,
where each of the network models works as a binary classifier
for each of three species in the mixture. Using this method, the
networks can be trained to classify healthy algae correctly,
while marking severely damaged or dead algae as nonalgae.
Using our approach, damaged algae are considered to be
nonalgae when all the three classification networks rate them as

Figure 6. Impact of multiple copper exposure over time for Dunaliella tertiolecta and algae mixture. A comparison of the PDFs of algae area as a
function of the copper concentration over time. (a and b) Area of the objects measured in the Dunaliella tertiolecta monoculture at the control
concentration (0.63 μg/L) and the highest copper concentration (6300 μg/L), respectively. (c and d) Area of the objects measured in the mixture
sample (Dunaliella tertiolecta, Nitzschia, and Thalassiosira) at the control concentration (0.63 μg/L) and the highest copper concentration (6300
μg/L), respectively. For the algae mixture, the change in area measured by the system due to the second exposure is larger than that of the
Dunaliella tertiolecta monoculture, even though Dunaliella tertiolecta makes up nearly the entire sample on day 10.
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more closely matching the sample distribution of “non-algae”
class. Therefore, the need for the correct labeling of the
damaged algae is eliminated altogether.
Using both the feature extraction and classification

techniques, we were able to show that D. tertiolecta eventually
dominates the other species regardless of the copper
concentration being studied. This is revealed both by the
classification of the objects passing through the cytometer
(Figure 5c) as well as the histograms of algae size (Figure 5a).
As Thalassiosira is a larger species than D. tertiolecta and
Nitzschia, which have similar sizes (see Table S1), the
disappearing (right) peak in Figure 5a corresponds to a
relative reduction in the concentration of Thalassiosira. In this
experiment, the copper tolerance and higher growth rate of D.
tertiolecta allowed it to eventually make up the majority of the
algae within the system. Note that, at the highest copper
concentration (6300 μg/L), the domination of D. tertiolecta
within the mixture occurred faster. The KL divergence analysis
for the mixture experiments shown in Figure 5b further
supports these observations.
Impact of a Second Exposure to Copper on Micro-

algae Cultures. The effects of a second copper exposure to
both an algae monoculture and an algae mixture were analyzed
using the same methods described above. As in the case of the
previous mixture experiment, this algae mixture contained
three species (D. tertiolecta, Nitzschia, and Thalassiosira), while
D. tertiolecta was used for the monoculture experiments. In all
these experiments, in addition to the initial 6300 μg/L spiking
of copper (using the same process as previously described
experiments), the test samples were further spiked with copper
for a second time on Day 10.
Similar to the mixture experiments discussed in the previous

section, D. tertiolecta dominated the other two algae 10 days
after exposure. When the copper concentration of the mixed
culture was brought to 6300 μg/L for a second time, we
observed large changes in the extracted features, which
indicates that the algae did not develop any significant
tolerance to copper (Figure S9a,b). When the same experiment
was performed for a monoculture containing only D. tertiolecta,
as seen in Figure S8, the second copper exposure has a smaller
effect upon the median feature values for this monoculture.
Furthermore, the changes are much smaller for the
monoculture than for the algae mixture. To visualize the
effects of the second exposure on D. tertiolecta and algae
mixture, histograms of the area of algae over time are shown in
Figure 6, which reveal that the second copper exposure affects
the algae mixture more than the algae monoculture. This
indicates that the D. tertiolecta algae grown in the mixture
develop less of a resistance to copper than those grown in a
monoculture, possibly due to the other two more affected algae
types absorbing some of the initially spiked copper. Histograms
showing the same effects for additional features are further
reported in Figures S10 and S11.

■ DISCUSSION
This presented imaging flow-cytometer is capable of perform-
ing high-throughput analysis of microscopic objects, which
allows a 10 mL sample to be measured in ∼6 min.
Consequently, when used in conjunction with feature
extraction and deep learning-based algae classification
methods, as demonstrated in this work, our cost-effective
and field-portable flow cytometer outperforms commonly used
cell counting methods such as hemocytometers in terms of

time savings, accuracy, and ease of use. In addition, manual
counting using a hemocytometer has limitations on the sample
concentration that can be measured. For instance, while the
lowest concentration that can be measured by traditional
hemocytometers is around 104 cells/mL, a concentration of 2.5
× 105 cells/mL is usually considered as the lower limit for
accurate counting of cells using this method.31 Our flow
cytometer provides a high-throughput method to detect and
count cells in a suspension, also covering much lower
concentrations.32 Another major advantage of using our flow-
cytometer over manual counting is that it can image, detect,
and count motile cells such as D. tertiolecta, as the illumination
pulse during frame capture is only ∼0.1 ms. Manual counting
of motile specimens under a benchtop microscope is difficult
to perform and can be inaccurate as they move in and out of
focus and the imaging field of view.
In contrast to traditional imaging flow cytometers, which use

a fluorescent trigger to image cells of interests, our device does
not rely on fluorescence or other labels to facilitate image
capture, consequently, it images every object in the liquid
sample. There is no need for fluorescence tagging, or any
chemical pretreatment, and the technique works, regardless of
whether the sample of interest has autofluorescence or not.
This allows it to measure both live and remnants of dead algae,
and due to its ability to capture both the intensity and phase
images, it can detect and image otherwise transparent objects
such as the shells of diatoms. Furthermore, since our device
does not require any sample preparation and can image/
analyze the water sample under test without modifying it, it is
nondestructive and nonpolluting. Consequently, it can release
the sample back to the environment after analysis, which
makes our technology able to ultimately be deployed in the
field to monitor a body of natural water remotely and
automatically. The cost-effective nature and the low hardware
complexity of the technology make it especially promising to
serve as an element of an interconnected, distributed sensor
network to monitor a larger area.
Through our experiments and analyses, we demonstrated

that our method can measure and track the response of algae
populations to perturbations such as the addition of toxic levels
of copper. Changes in the algae composition, count, and the
measured spatial/spectral features can be used to indicate the
presence of any arbitrary contaminant affecting the population.
This contrasts with more traditional sensors that are specific
for an individual analyte. This nonspecific nature of our
detection system makes our technique applicable to detect
unknown perturbations to the healthy state of the environ-
ment, making it ideal for an early warning system to direct
more specific monitoring efforts to an area in cases where a
major deviation from the natural state is detected. We believe
that with enough experimental data it may be possible to
distinguish the effects of various contaminants on the algae
population from each other, thus, increasing the specificity of
our technique.
Our device relies on computational imaging to obtain the

phase and amplitude images of the flowing samples without the
need for any lenses. Real-time operation is achieved by using
the massively parallel computing capability of the controlling
laptop’s Nvidia graphics processing unit (GPU). The image
quality and imaged volume per frame are determined by the
pixel size and field-of-view of the image sensor, whereas the
throughput is connected to the processing power of the GPU.
Both of these key hardware components are evolving at a rapid
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pace, fueled by the growth and demand of the consumer
electronics industry. Therefore, the capabilities of our imaging
cytometer technology have the potential to further improve at
a similar pace.
In summary, in this proof of principle study, we used a low-

cost, field-portable, and high-throughput imaging flow
cytometer to perform phenotypic analysis of microalgae
populations using feature extraction and deep learning-based
classification methods. Fully automated analysis was performed
by extracting the spatial and spectral features of the
reconstructed holographic images of the algae to observe and
track the effects of any perturbations on these features as well
as counting and classification of the algae within the sample
using a set of CNNs. The effectiveness of this technique was
experimentally proven by detecting perturbations caused by
different copper concentrations within microalgae monocul-
tures and mixtures of three algae species. By achieving
automated phenotypical analysis of microalgae suspensions at
a flow rate of 0.1 L/h without any labels or any damage/
contamination to the sample, we believe that this imaging flow
cytometry powered with deep learning provides a unique
analytical tool for high-throughput inspection of water samples,
even in field settings.
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1. Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Holographic imaging flow cytometer. The imaging flow cytometer automatically analyzes 

the algae within water samples at a throughput of 100 mL/h. A laptop is used for system control and 

data processing. Inset shows the main components of the system.  
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Figure S2. Image processing pipeline and neural network-based classification.  The raw holograms 
pass through a multi-step image processing procedure which first backpropagates and removes twin 
image artifacts on both the phase and intensity images. Using these reconstructed images, features 
are extracted to perform statistical analyses.  Images that have been backpropagated are used to 
classify the algae species. Scale bars: 20 µm. 
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Figure S3 - Effects of copper exposure on four different algae monocultures monitored over time 

using the holographic imaging flow cytometer. Various concentrations of copper are introduced to 

the algae monocultures at day 0, and the samples are measured at regular time intervals using the 

imaging flow cytometer. The device analyses ~5000-15000 individual algae images per 

measurement. Three of the monitored features - color intensity ratio (Red/Green), eccentricity, and 

area - are displayed here to visualize the effect of various copper concentrations over time. The 

median values of the measured PDFs of the corresponding features for each day as well as the 

copper concentration are shown. Error bars indicate the standard deviation across repeated 

experiments.  

 



5 
 

 

 

 

 

 

 

 

Figure S4 - Effects of copper exposure on four different algae monocultures monitored over time 

using the holographic imaging flow cytometer. Various concentrations of copper are introduced to 

the algae monocultures at day 0, and the samples are measured at regular time intervals by the 

imaging flow cytometer. The device analyses ~5000-15000 individual algae images per 

measurement. Plots of three of the monitored features- brightness, axis ratio, and perimeter- are 

used to visualize the effect of various copper concentrations over time. The median values of the 

measured PDFs of the corresponding features for each day as well as the copper concentration are 

shown. Error bars indicate the standard deviation across repeated experiments.  



6 
 

 

 

 

 

 

 

 

 

Figure S5 - Normalized histograms (measured PDFs) of color intensity ratio, circularity, and area of 

algae at different copper concentrations for Nitzschia.   
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Figure S6 - Normalized histograms (measured PDFs) of color intensity ratio, circularity, and area of 

the algae at different copper concentrations for Thalassiosira.  
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Figure S7 - Normalized histograms (measured PDFs) of color intensity ratio, circularity, and area of 

algae at different copper concentrations for Bacillariophyceae.   
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Figure S8 - Effects of multiple copper exposure on Dunaliella tertiolecta. Three different features 

are compared as a function of time at two different copper concentrations. The algae are exposed to 

copper for a second time on day 10.  
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Figure S9 - Effects of multiple copper exposure on an algae mixture containing Dunaliella 

tertiolecta, Nitzschia, and Thalassiosira. a) A comparison of different features at different copper 

concentrations over time is shown for the algae mixture. The median values of the measured 

features are plotted. The error bars indicate the standard deviation across repeated experiments.   

b) Estimated average number of algae from each species within the sample.  
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Figure S10 - Effects of multiple copper exposure on the PDFs of color intensity ratio feature for 

Dunaliella tertiolecta and an algae mixture (Dunaliella tertiolecta, Nitzschia, Thalassiosira). a) and 

b) show PDFs of the B/G color intensity ratio for Dunaliella tertiolecta grown at the control 

concentration (0.63 µg/L) and the highest concentration (6300 µg/L), respectively. c) and d) show PDFs 

of the B/G color intensity ratio for the mixture (containing Dunaliella tertiolecta, Nitzschia, 

Thalassiosira) grown at the control concentration (0.63 µg/L) and the highest concentration (6300 

µg/L), respectively.  
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Figure S11 - Effects of multiple copper exposure over time on the PDFs of circularity feature for 

Dunaliella tertiolecta and an algae mixture (Dunaliella tertiolecta, Nitzschia, Thalassiosira). a) and 

b) show PDFs of the circularity of Dunaliella tertiolecta grown at the control concentration (0.63 

µg/L) and the highest concentration (6300 µg/L), respectively. c) and d) show PDFs of the circularity 

of the mixture (containing Dunaliella tertiolecta, Nitzschia, Thalassiosira) grown at the control 

concentration (0.63 µg/L) and the highest concentration (6300 µg/L), respectively. 
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2. Supplementary Table 

Table S1. The algae species used in our experiments and their properties1. 

 

CCMP1320 

Dunaliella 
tertiolecta  

CCMP2929 

Thalassiosi
ra sp.  

CCMP1698 

Nitzschia 
sp. 

CCMP2024 

Bacillariophyceae 

Growth media L1 L1 L1 L1 

Known 
temperature range 

11 - 28°C 22 - 26°C 22-26°C 22 - 26°C 

Cell length (min) 6 10 6 27 

Cell length (max) 9 14 30 30 

Cell width (min) 0 9 3 5 

Cell width (max) 0 14 6 7 

 

Reference 

(1)  NCMA at Bigelow Laboratory https://ncma.bigelow.org/ (accessed Sep 8, 2020). 

 

 

Figure S12 - Images of studied algae species captured using a regular brightfield microscope. a) 

D. tertiolecta (CCMP1320) (40x – 0.95 NA), b) Nitzschia (CCMP1698) (40x – 0.95 NA), c) 

Thalassiosira (CCMP2929) (40x – 0.95 NA), and d) Bacillariophyceae (CCMP2024) (20x – 0.75 NA). 

Scale bar is 20 µm. 
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