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the incident light in an optical imaging 
system, the amount of light scattered due 
to the spatial inhomogeneity of the refrac-
tive index is much smaller than the light 
directly passing through, resulting in a 
poor image contrast at the output inten-
sity pattern. One way to circumvent this 
limitation is to convert such phase objects 
into amplitude-modulated samples using 
chemical stains or tags.[2] In fact, for over a 
century, histopathology practice has relied 
on the staining of biological samples for 
medical diagnosis to bring contrast to var-
ious features of the specimen. While these 
methods generally provide high-contrast 
imaging (sometimes with molecular speci-
ficity), they are tedious and costly to per-
form, often involving toxic chemicals and 
lengthy manual staining procedures. More-
over, the use of exogenous stains might 
cause changes in the physiology of living 
cells and tissue, creating practical limita-
tions in various biological applications.[3]

The phase contrast imaging principle, invented by Frits 
Zernike, represents a breakthrough (leading to the 1953 Nobel 
Prize in Physics) on imaging the intrinsic optical phase delay 
induced by transparent, phase objects without using exogenous 
agents.[4] Nomarski’s differential interference contrast (DIC) 
microscopy is another method frequently used to investigate 
phase objects without staining.[5] While both phase contrast 
imaging and DIC microscopy can offer sensitivity to nanoscale 
optical path length variations, they reveal the phase information 
of the specimen in a qualitative manner. On the other hand, 
quantification and mapping of a sample’s phase shift infor-
mation with high sensitivity and resolution allows for various 
biomedical applications.[6–8] To address this broad need, quan-
titative phase imaging (QPI) has emerged as a powerful, label-
free approach for optical examination of, e.g., morphology 
and spatiotemporal dynamics of transparent specimens.[3] The 
last decades have witnessed the development of numerous 
digital QPI methods, e.g., Fourier phase microscopy (FPM),[9] 
Hilbert phase microscopy (HPM),[10] digital holographic 
microscopy (DHM),[11–16] quadriwave lateral shearing interfer-
ometry (QLSI),[17] and many others.[18–27] This transformative 
progress in QPI methods has fostered various applications in, 
e.g., pathology,[12] cell migration dynamics,[6,28] and growth,[29] 
immunology,[30] and cancer prognosis,[31–34] among others.[35–42]

A QPI system, in general, consists of an optical imaging 
instrument based on conventional components such as 
lenses, beamsplitters, as well as a computer to run the image 

Quantitative phase imaging (QPI) is a label-free computational imaging tech-
nique that provides optical path length information of specimens. In modern 
implementations, the quantitative phase image of an object is reconstructed 
digitally through numerical methods running in a computer, often using itera-
tive algorithms. Here, a diffractive QPI network that can perform all-optical 
phase recovery is demonstrated, and the quantitative phase image of an 
object is synthesized by converting the input phase information of a scene 
into intensity variations at the output plane. A diffractive QPI network is a 
specialized all-optical processor designed to perform a quantitative phase-to-
intensity transformation through passive diffractive surfaces that are spatially 
engineered using deep learning and image data. Forming a compact, all-
optical network that axially extends only ≈200–300λ, where λ is the illumina-
tion wavelength, this framework can replace traditional QPI systems and 
related digital computational burden with a set of passive transmissive layers. 
All-optical diffractive QPI networks can potentially enable power-efficient, 
high frame-rate, and compact phase imaging systems that might be useful for 
various applications, including, e.g., microscopy and sensing.
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1. Introduction

Optical imaging of weakly scattering phase objects has been of 
significant interest for decades, resulting in numerous appli-
cations in different fields. For example, the optical examina-
tion of cells and tissue samples is frequently used in biological 
research and medical applications, including disease diagnosis. 
However, in terms of their optical properties, isolated cells, and 
thin tissue sections (before staining) can be classified as weakly 
scattering, transparent objects.[1] Hence, when they interact with 
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reconstruction algorithm that recovers the object phase func-
tion from the recorded interferometric measurements. In 
recent years, QPI methods have also benefited from the 
ongoing advances in machine learning and graphics pro-
cessing unit (GPU)-based computing to improve their digital 
reconstruction speed and spatiotemporal throughput.[43–48] For 
example, it has been shown that feedforward deep neural net-
works can be used for solving challenging inverse problems in 
QPI systems, including, e.g., phase retrieval,[49–51] pixel super-
resolution,[52] and extension of the depth-of-field.[53]

In this work, we report the numerical design of diffractive 
optical networks[54] to replace digital image reconstruction algo-
rithms used in QPI systems with a series of passive optical 
modulation surfaces that are spatially engineered using deep 
learning. The presented QPI diffractive networks (Figure 1) have 
a compact footprint that axially spans ≈240λ and are designed 
using deep learning to encode the optical path length induced 
by a given input phase object into an output intensity distribu-
tion that all-optically reveals the corresponding QPI informa-
tion of the sample. Through numerical simulations, we show 
that these QPI diffractive network designs can generalize not 
only to unseen, new phase images that statistically resemble 
the training image dataset, but also generalize to entirely new 
datasets with different object features.

It is important to emphasize that these QPI diffractive net-
works do not perform phase recovery from an intensity meas-
urement or a hologram. In fact, the input information is the 
phase object itself, and the QPI network is trained to convert 
this phase information of the input scene into an intensity 

distribution at the output plane; this way, the normalized 
output intensity image directly reveals the quantitative phase 
image of the sample in radians.

The diffractive QPI designs reported in this work represent 
proof-of-concept demonstrations of a new phase imaging con-
cept, and we believe that such diffractive computational phase 
imagers can find various applications in on-chip microscopy 
and sensing due to their compact footprint, all-optical computa-
tion speed and low-power operation.

2. Results

Revealing the optical phase delay induced by an input object by 
converting or encoding the sample information into an optical 
intensity pattern at the output plane is a relatively old and well-
known technique.[4] Unlike analog phase contrast imaging 
methods that allow qualitative investigation of the samples, 
modern QPI systems numerically retrieve the spatial map of the 
optical phase delay induced by the sample. However, the fun-
damental idea of encoding the phase information of the object 
function into the output intensity pattern prevails. For instance, 
coherent QPI methods use optical hardware, commonly based 
on conventional optical components such as lenses and beam-
splitters, to generate interference between a reference wave and 
the object wave over an image sensor-array, creating fringe pat-
terns that implicitly describe the phase function of the input 
sample. These QPI systems also rely on a phase recovery step 
implemented in a computer that decodes the object phase 
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Figure 1. Schematic of a diffractive QPI network that converts the optical phase information of an input object into a normalized intensity image, 
revealing the QPI information in radians without the use of a computer or a digital image reconstruction algorithm. Optical layout of the presented 
5-layer diffractive QPI network, where the total distance between the input and output fields-of-view is 240λ.
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information by digitally processing the recorded optical inten-
sity pattern(s), often using iterative algorithms.

To create an all-optical QPI solution without any digital 
phase reconstruction algorithm, we designed diffractive net-
works[54–58] that transform the phase information of the input 
sample into an output intensity pattern, quantitatively revealing 
the object phase distribution through an intensity recording. 
Figure  1 illustrates the schematic of a 5-layer diffractive net-
work that was trained to all-optically synthesize the QPI signal 
of a given input phase object (see the Experimental Section for 
training details). This system can precisely quantify and map 
the optical path length variations at the input, and unlike the 
modern QPI systems, it does not rely on a computationally 
intensive phase reconstruction algorithm or a digital computer.

For a proof-of-concept demonstration, here we considered 
the design of diffractive QPI networks with unit magnifica-
tion, such that the input object features in the phase space 
have the same scale as the output intensity features behind the 
diffractive network. Since the value of the output optical inten-
sity will depend on external physical factors such as, e.g., the 
power of the illumination source and the quantum efficiency of 
the image sensor-array, we used a background region (see the 
Experimental Section) that surrounds the unit magnification 
output image to obtain a reference mean intensity. This mean 
signal intensity value at this background region is used to nor-
malize the output intensity of the diffractive network’s image 
to reveal the quantitative phase information of the sample in 
radians, i.e., IQPI(x,y) [rad]. Therefore, at the output plane of 
the diffractive QPI network, we defined an output signal area 
that is slightly larger than the input sample field-of-view, where 
the edges are used to reveal the intensity normalization factor, 
which makes our diffractive QPI designs invariant to changes 
in the illumination beam intensity or the diffraction efficiency 
of the imaging system, correctly revealing IQPI(x,y), matching 
the quantitative phase information of the input object in 
radians.
Figure 2a shows the phase-only diffractive layers constituting 

a diffractive QPI network that is trained using deep learning. 
In our proof-of-concept numerical experiments, we opted to 
train and test our diffractive network designs on well-known 
image datasets to better benchmark the resulting QPI capabili-
ties. Given a normalized grayscale image from a target dataset, 
φ(x,y), the corresponding function of a phase object at the 
input plane can be written as e jαπφ(x,y) where |φ(x,y)|  ≤ 1. The 
parameter α determines the range of the phase shift induced 
by the input object. The diffractive optical network shown in 
Figure 2a was trained based on φ(x,y) taken from the Tiny-Ima-
genet dataset[59] and the parameter, α, was set to be 1 for both 
training and testing, i.e., αtr  = αtest  = 1. Figure  2b illustrates 
the QPI signals, IQPI(x,y), for exemplary test samples from the 
Tiny-imagenet dataset, never seen by the diffractive network in 
the training phase, along with the corresponding ground truth 
images, φ(x,y). We quantified the success of the QPI signal syn-
thesis performed by the presented diffractive network using the 
Structural Similarity Index Measure (SSIM)[60] and the peak 
signal-to-noise ratio (PSNR). The diffractive network shown in 
Figure 2a provides an SSIM of 0.824 ± 0.050 (mean ± std) and a 
PSNR of 26.43dB ± 2.69 over the entire 10 K test samples of the 
Tiny-Imagenet.

Although our diffractive QPI network design can success-
fully transform the phase information of the samples into 
quantitative optical intensity information, providing a competi-
tive QPI performance without the need for any digital phase 
recovery algorithm, one might argue that the underlying 
phase-to-intensity transformation performed by the diffractive 
network is data-specific. To shed more light on this, we inves-
tigated the generalization capabilities of our diffractive network 
design by further testing its QPI performance over phase-
encoded samples from two completely different image datasets, 
i.e., CIFAR-10 and Fashion-MNIST, that were not used in the 
training phase. As shown in Figure 2c,d, the SSIM and PSNR 
values achieved by the presented diffractive QPI network for 
quantitative phase imaging of CIFAR-10 (and Fashion-MNIST) 
images are 0.917 ± 0.041 (and 0.596 ± 0.116) and 31.98 dB ± 3.15 
(and 26.94 dB ± 1.5), respectively. Interestingly, the QPI signal 
synthesis quality turned out to be higher for CIFAR-10 images 
compared to the performance of the same diffractive network 
on the Tiny-Imagenet test samples, even though CIFAR-10 has 
an entirely different set of objects and spatial features (which 
were never used during the training phase). This could be par-
tially attributed to the difference in the original size of the Tiny-
Imagenet (64 × 64-pixel) and CIFAR-10 (32 × 32-pixel) images. 
Considering that the physical dimensions of the input field-
of-view in our network configuration is 42.4λ × 42.4λ, the size 

of the smallest spatial feature becomes 
42.4

64
0.6625

λ λ=  and  

2 × 0.6625λ for Tiny-Imagenet and CIFAR-10 datasets, respec-
tively; this makes CIFAR-10 test samples relatively easier to 
image through the diffractive QPI network.

Next, we numerically quantified the smallest resolvable 
linewidth and the related phase sensitivity of our diffractive 
QPI network design using binary phase gratings as test objects 
(see Figure 3). Such resolution test targets were not used as part 
of the training, which only included the Tiny-Imagenet dataset. 
The presented diffractive network performs QPI with diffrac-
tive layers of size 106λ  × 106λ that are placed 40λ apart from 
each other and the input/output fields-of-view (see Figure  1). 
This physical configuration reveals that the numerical aperture 

(NA) of our diffractive network is 
λ
λ×



















 ≈−sin tan
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2 40
0.81 , 

which corresponds to a diffraction-limited resolvable linewidth 
of 0.625λ. Our numerical analysis in Figure 3a showed that the 
smallest resolvable linewidth with our diffractive QPI design 
was ≈0.67λ, when the input gratings were 0-π encoded, closely 
matching the resolvable feature size determined by the NA 
of our system; also note that the effective feature size of the 
training samples from Tiny-Imagenet is 0.6625λ. This analysis 
means that our training phase was successful in approximating 
a general-purpose quantitative phase imager despite using rela-
tively lower resolution training images, coming close to the 
theoretical diffraction limit imposed by the physical structure of 
the diffractive QPI network.

The input phase contrast is another crucial factor affecting 
the resolution of QPI achieved by our diffractive network 
design. To shed more light on this, we numerically tested our 
diffractive QPI network on binary gratings with two different 
linewidths, 0.67λ and 0.75λ, at varying levels of input phase 
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contrast, as shown in Figure 3b. Based on the resulting diffrac-
tive QPI signals illustrated in Figure 3a,b, the 0.67λ linewidth 
grating remains resolvable until the input phase contrast falls 
below 0.25π. The last column of Figure 3b suggests that when 

the contrast parameter (αtest) is taken to be 0.1, the noise level 
in the QPI signal generated by the diffractive network increases 
to a level where the 0.67λ linewidth grating cannot be resolved 
anymore. On the other hand, 0.75λ linewidth grating remains 

Adv. Optical Mater. 2022, 2200281

Figure 2. Generalization capability of diffractive QPI networks. a) The phase profiles of the diffractive layers forming the diffractive QPI network trained 
using phase-encoded images from Tiny-Imagenet dataset, φ(x,y). b) Exemplary input object images and the corresponding output QPI signals for the 
test images, never seen by the network during training, taken from the Tiny-Imagenet. Dashed green box indicates that the test images, although not 
seen by the diffractive network before, belong to the same dataset used in the training. c,d) Same as b) except that the test images are taken from 
CIFAR-10 and Fashion-MNIST. Dashed red boxes indicate that these test images are from entirely new datasets compared to the Tiny-Imagenet used in 
the training. The SSIM (PSNR) values achieved by the presented diffractive network are 0.824 ± 0.050 (26.43dB ± 2.69), 0.917 ± 0.041 (31.98dB ± 3.15), 
and 0.596 ± 0.116 (26.94dB ± 1.5) for the test images from Tiny-Imagenet, CIFAR-10 and Fashion-MNIST datasets, respectively.
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to be partially resolvable despite the noisy background, even at 
0–0.1π phase contrast (i.e., αtest = 0.1).

We also conducted a similar analysis on the effect of the 
input phase contrast over the quality of QPI performed by the 
presented diffractive network. By setting the phase contrast 

parameter αtest to 9 different values between 0.1 and 2.0 for all 
three image datasets (Tiny-Imagenet, CIFAR-10, and Fashion-
MNIST), we quantified the resulting SSIM and PSNR values 
for the reconstructed images at the output plane of the dif-
fractive QPI network. Figure 4a–c illustrates the mean and 
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Figure 3. Spatial resolution and phase sensitivity analysis for the diffractive QPI network shown in Figure 2. a) Input phase image and the corresponding 
output diffractive QPI signal for binary, 0–π phase encoded grating objects. The diffractive QPI network can resolve features as small as ≈0.67λ. 
b) Analysis of the relationship between the input phase contrast and the resolvable feature size. The diffractive QPI network can resolve 0.67λ linewidth 
for a phase encoding range that is larger than 0.25π. Below this phase contrast, the resolution slowly degrades; for example, at 0–0.1π phase encoding, 
the background noise shadows the QPI signal of the grating with a linewidth of 0.67λ, while a larger linewidth (0.73λ) grating is still partially resolvable.
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Figure 4. The impact of input phase range on the diffractive QPI signal quality. a) A schematic of the diffractive QPI network that was trained with 
αtr = 1.0, meaning that the training images had [0:π] phase range. b) Pairs of ground-truth input phase images (top rows) and the diffractive QPI 
signal (bottom rows) for different images taken from Tiny-Imagenet (top), CIFAR-10 (middle), and Fashion-MNIST (bottom), at different levels of 
phase encoding ranges dictated by (from left-to-right) αtest = 2, αtest = 1.75, αtest = 1.5, αtest = 1.25, αtest = αtr = 1.0, αtest = 0.75, αtest = 0.5, αtest = 0.25, 
αtest = 0.1. c) The SSIM and PSNR values of the diffractive QPI signals with respect to the ground-truth images as a function of αtest.
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standard deviations of the SSIM and PSNR metrics as a func-
tion of αtest for all three image datasets. A close examination of 
Figure 4a–c reveals that both SSIM and PSNR peaks at αtest = 1,  
which matches the phase encoding range used during the 
training phase, i.e., αtr  = αtest  = 1. To the left of these peaks, 
where αtest <  αtr  = 1, there is a slight degradation in the per-
formance of the presented diffractive QPI network, mainly due 
to the increasing demand in phase sensitivity at the resulting 
image, IQPI(x,y). With αtr = 1 and 8-bit quantization of input sig-
nals, the phase step size that the diffractive QPI network was 

trained with was 
256

0.0123
π =  radians; however, when αtest 

deviates from the training, for instance αtest  = 0.5, then the 
smallest phase step size that the diffractive network is tasked 

to sense becomes 
0.5

256
0.0062

π =  radians. In other words, the 

diffractive network must be 2 × more phase sensitive com-
pared to the level it was trained for, causing some degradation 
in the SSIM and PSNR values as shown in Figure  4a–c for 
αtest < αtr = 1.

On the other hand, when the input phase encoding exceeds 
the [0,π] range used during the training phase, the degra-
dation in diffractive QPI signal quality is more severe. As 
αtest approaches to 2.0, the errors and artifacts created by the 
presented diffractive network in computing the QPI signal 
increase. Interestingly, at αtest = 1.99, the forward optical trans-
formation of the diffractive QPI network starts to act as an 
edge detector. A straightforward solution to mitigate this per-
formance degradation is to train the diffractive network with 
αtr = 2.0 − ε, where ε is a small number, meaning that during 
the training phase, the dynamic range of the phase values at 
the input plane will be within [0,2π). Figure S1 (Supporting 
Information) illustrates an example of this for a 5-layer dif-
fractive QPI network that was trained with αtr = 1.99. This new 
diffractive network has the same physical layout and architec-
ture as the previous one shown in Figure  2. The only differ-
ence between the two diffractive QPI networks is the phase 
range covered by the input samples used during their training 
(αtr = 1.0 vs αtr = 1.99). Since the design evolution of this new 
diffractive QPI network is driven by input samples covering the 
entire [0, 2π) phase range, in the case of αtest  = αtr  = 1.99, it 
provides a much better QPI performance compared to the dif-
fractive network shown in Figure  2. This improved diffractive 
QPI performance can also be visually observed by comparing 
the images shown in Figure 4; and Figure S1 (Supporting Infor-
mation) under the αtest = 1.99 column.

3. Discussion

Compared to earlier works on diffractive optical networks that 
demonstrated amplitude imaging,[54] the presented QPI diffrac-
tive networks report significant advances. While a conventional 
amplitude imaging task requires the diffractive network to 
achieve a point-to-point intensity mapping between the input 
and output fields-of-view, phase-to-intensity transformation 
converts the input phase information of an object into quantita-
tive output intensity variations, and this function (quantitative 
phase-to-intensity transformation) is all-optically approximated 

through a QPI diffractive network. Furthermore, a vital feature 
of the presented diffractive QPI networks is that their operation 
is invariant to changes in the input beam intensity or the power 
efficiency of the diffractive detection system; by using the mean 
intensity value surrounding the output image field-of-view as 
a normalization factor, the resulting diffractive image intensity 
IQPI(x,y) reports the phase distribution of the input object in 
radians. Moreover, the presented diffractive optical networks 
are composed of passive layers, and therefore perform QPI 
without any external power source other than the illumination 
light. It is true that the training stage of a diffractive QPI net-
work takes a significant amount of time (e.g., ≈40 h) and con-
sumes some energy for training-related computing. But this is 
a one-time training effort, and in the image inference stage, 
there is no power consumption per object (except for the illu-
mination), and the reconstructed image reveals the quantitative 
phase information of the object at the speed of light propaga-
tion through a passive network, without the need for a GPU or 
a computer. One should think of a diffractive network’s design, 
training and fabrication phase (a one-time effort) similar to the 
design/fabrication/assembly phase of a digital processor or a 
GPU that we use in our computers.

Another important aspect of the presented diffractive QPI 
framework is its generalization capability over image datasets 
other than the one used in the training phase, as shown in 
Figure 2. To further test the role of the training dataset in the gen-
eralization capability of the diffractive QPI system, we trained a 
new diffractive network with a physical architecture identical to 
that of the QPI diffractive network shown in Figure 2. The only 
difference was that this new diffractive optical network was 
trained using the Fashion-MNIST dataset instead of the Tiny-
Imagenet. Compared to the QPI diffractive network shown in 
Figure  2 (trained with Tiny-Imagenet) that achieved (SSIM, 
PSNR) performance metrics of (0.824 ± 0.050, 26.43dB ± 2.69), 
(0.917 ± 0.041, 31.98dB ± 3.15), and (0.596 ± 0.116, 26.94dB ± 1.5) 
for Tiny-Imagenet, CIFAR-10, and Fashion-MNIST test data-
sets, respectively, this new QPI diffractive network (trained with 
Fashion-MNIST) provided (SSIM, PSNR) performance metrics 
of (0.622 ± 0.085, 19.97dB ± 2.36), (0.699 ± 0.106, 21.38dB ± 2.7), 
and (0.816 ± 0.060, 31.26dB ± 2.12), for the same test datasets, 
respectively. From this comparison, we can conclude that: 1) the 
QPI diffractive network can be trained with other image data-
sets and successfully generalize to achieve phase recovery for 
new types of input test images, and 2) the richness of the phase 
variations in the training images impacts the performance 
and generalization capability of the QPI diffractive network; 
for example, the QPI diffractive network trained with Tiny-
Imagenet achieved relatively better generalization to new phase 
images obtained from CIFAR-10 test dataset when compared to 
the QPI diffractive network trained with Fashion-MNIST image 
data. To further quantify the generalization performance of the 
presented QPI diffractive network shown in Figure  2 (trained 
with Tiny-Imagenet), we blindly tested it with phase images of 
thin Pap (Papanicolaou) smear samples as shown in Figure S2 
(Supporting Information). Although this QPI diffractive net-
work was only trained using the phase-encoded images from 
Tiny-Imagenet, it very well generalized to new types of samples, 
performing quantitative phase retrieval and QPI on the phase 
images of thin Pap smear samples, with output SSIM and 

Adv. Optical Mater. 2022, 2200281
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PSNR values of 0.663 ± 0.047 and 25.55dB ± 1.44, respectively 
(see Figure S2, Supporting Information).

The output power efficiency of the presented QPI networks 
is mainly affected by two factors: diffraction efficiency of the 
resulting network and material absorption. In this study, we 
assumed the optical material of diffractive surfaces has a neg-
ligible loss for the wavelength of operation, similar to the prop-
erties of optical glasses, e.g., BK-7, in the visible part of the 
spectrum. Beyond the material absorption, another possible 
source of power loss in a physically implemented diffractive 
network is surface back-reflections, which might potentially be 
minimized through, e.g., antireflection thin-film coatings.[61] 
For example, the diffractive QPI network reported in Figure 2 
achieves ≈2.9% mean diffraction efficiency for the entire 10 K 
test set of Tiny-Imagenet. It is important to note that during the 
training of this diffractive QPI network, the training cost/loss 
function was purely based on decreasing the QPI errors at the 
output plane, and there was no other loss term or regularizer to 
enforce a more power-efficient operation. In fact, by including 
an additional loss term for regulating the balance between the 
QPI performance and diffraction efficiency (see the Experi-
mental Section), we demonstrated that it is possible to design 
more efficient diffractive QPI networks with a minimal com-
promise on the output image quality; see Figure 5, where all 
the diffractive network designs share the same physical layout 
shown in Figure 1. For example, a more efficient diffractive QPI 
network design with 6.31% power efficiency at the output plane 

offers QPI signal quality with an SSIM of 0.815 ± 0.0491. Com-
pared to the original diffractive QPI network design that solely 
focuses on output image quality, the SSIM value of this new 
diffractive network has a negligible decrease while its diffrac-
tion efficiency at the output plane is improved by more than 
twofold. Further shifting the focus of the QPI network training 
toward improved power efficiency can result in a solution that 
can synthesize QPI signals with >11%  output diffraction effi-
ciency, also achieving an SSIM of 0.771 ± 0.0507 (see Figure 5). 
We should note here that a standard phase contrast microscope 
also contains some filters, apertures, lenses, and other optical 
components that block and/or scatter the sample light, all of 
which also cause some power loss. However, such conventional 
optical components have well-established fabrication technolo-
gies supporting their optimized use in a microscope design. 
With advances in diffractive optical computing, more efficient 
diffractive surface designs[62] can be enabled in the future to 
further increase the output diffraction efficiencies of diffractive 
networks.

Another crucial parameter in a diffractive network design is 
the number of diffractive layers within the system; Figure S3 
(Supporting Information) illustrates the results of our analysis 
on the relationship between the diffractive QPI performance 
and the number of diffractive layers within the system. It has 
previously been shown through both theoretical and empirical 
evidence that deeper diffractive optical networks can compute 
an arbitrary complex-valued linear transformation with lower 
approximation errors, and they demonstrate higher gener-
alization capacity for all-optical statistical inference tasks.[63,64] 
Figure S3 (Supporting Information) confirms the same 
behavior: improved QPI performance is achieved by increasing 
the number of diffractive layers, K. When K = 1, the trained 
diffractive network fails to compute the QPI signal for a given 
input phase object, as evident from the extremely low SSIM 
values and the exemplary images shown in Figure S2b (Sup-
porting Information). On top of that, the diffraction efficiency 
is also very low, ≈1%, with a single-layer diffractive network 
configuration (K = 1). With K = 2 trainable diffractive surfaces, 
the diffraction efficiency stays very low, while the QPI signal 
quality improves. When we have K = 3 diffractive layers in our 
QPI network design, we observe a significant improvement in 
both the diffraction efficiency and the output SSIM compared 
to K = 1 or 2. Beyond K = 3, the structural quality of the output 
QPI signal keeps improving as we add more layers to the dif-
fractive network architecture. However, this improvement does 
not translate into better diffraction efficiency as the training 
loss function does not include a power efficiency penalty term. 
Earlier results reported in Figure 5 clearly show the impact of 
adding such a regularizer term in the training loss function 
for improving the diffraction efficiency of the QPI network, 
reaching >11%  power efficiency with a minor sacrifice in the 
structural fidelity of the output images.

It is also important to note that as the number of diffractive 
layers increases, the system (if the diffractive network is not 
trained accordingly) becomes more sensitive to physical mis-
alignments that might be induced through, e.g., fabrication 
and/or mechanical errors.[65] To shed further light on this, we 
tested the sensitivity of the QPI diffractive network shown in 
Figure 2 against axial misalignments of the sensor array at the 
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Figure 5. Diffractive QPI signal quality and the power efficiency trade-
off. We report 4 different diffractive QPI network models trained using 
[0:π] phase-encoded samples from the Tiny-Imagenet dataset. The SSIM 
on the y-axis reflects the mean value computed over the entire 10 K test 
images of the Tiny-Imagenet dataset. The diffractive QPI network that 
provides the highest SSIM is the network shown in Figure 2, which was 
trained solely based on the structural loss function (Equation (5)) totally 
ignoring the diffraction efficiency of the resulting solution. The loss func-
tion used for the training of the other 3 diffractive QPI networks includes a 
linear superposition of the structural loss function (Equation (5)) and the 
diffraction efficiency penalty term depicted in Equation (7). The multipli-
cative constant γ which determines the weight of the diffraction efficiency 
penalty was taken as 0.1, 0.4, and 5.0 for these 3 diffractive QPI networks, 
providing an output diffraction efficiency of 6.31% , 8.17%, and 11.05%, 
respectively.
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output plane with respect to the diffractive layers. As shown 
in Figure S4 (Supporting Information), the SSIM and PSNR 
values of the all-optical QPI signal exhibit a decrease when 
the output image sensor is placed at a different axial location 
than the correct position assumed in the design of the QPI dif-
fractive network. However, one can introduce misalignment 
resilient diffractive designs with the incorporation of “vacci-
nation” in the training of the diffractive network, where such 
misalignments are randomly introduced during the training 
process, guiding the optimization of the diffractive surfaces 
to build resilience toward uncontrolled misalignments.[65] For 
example, using this vaccination strategy, it has been shown 
that diffractive networks can be trained to provide an extended 
depth-of-field, mitigating performance degradation due to 
object and/or sensor plane misalignments.[66,67] The incorpora-
tion of such vaccination methods into the training of diffractive 
QPI networks would in general result in more robust designs 
against misalignments. Beyond misalignments, another prac-
tical issue regarding the implementation of diffractive QPI sys-
tems that needs to be discussed is the bit depth of the phase 
modulation on the diffractive layers. During the training of 
the QPI diffractive networks, it was assumed that the phase 
modulation over a diffractive surface can take any value in the 
range [0,2π). After its training, when tested under different 
bit depths of diffractive phase modulation, the diffractive QPI 
network shown in Figure  2 could very well maintain its QPI 
performance at the output plane with 6-, 7-, or 8-bits of phase 
quantization, as shown in Figure S5 (Supporting Information).

Although the diffractive networks analyzed and presented 
in this study are designed to achieve the QPI task with unit 
magnification, this is not a limitation of the underlying frame-
work. Depending on the targeted spatial resolution, imaging 
field-of-view and throughput, diffractive QPI systems with a 
magnification larger than 1 can also be devised according to the 
pixel size and the active area of the desired focal-plane-array at 
the output plane. With the wide availability of modern CMOS 
image sensor technology that has submicrometer pixel sizes, 
unit magnification imaging systems provide a fine balance 
between the sample field-of-view and the spatial resolution that 
can be achieved; therefore, unit magnification imaging systems 
enable compact and chip-scale microscopy tools that provide 
a substantial increase in the sample field-of-view and volume 
that can be probed with a decent spatial resolution.[14] In this 
respect, the presented QPI diffractive networks can be inte-
grated with standard CMOS imager chips, operating at, e.g., 
visible and near infrared wavelengths, and the designed diffrac-
tive layers that are closely spaced can be monolithically fabri-
cated using, e.g., two-photon polymerization based 3D nanofab-
rication methods and incorporated on the same platform as the 
imager chip. Such on-chip diffractive designs, illuminated by, 
e.g., a compact laser diode, would also make it easier to align 
the monolithically fabricated diffractive layers with respect 
to the output plane, owing to the small pixel size of standard 
CMOS image sensors.

In summary, the presented diffractive QPI networks con-
vert the phase information of an input object into an intensity 
distribution at the output plane in a way that the normalized 
output intensity reveals the phase distribution of the object 
in radians. Being resilient to input light intensity variations 

and power efficiency changes in the diffractive set-up, this 
QPI network can replace the bulky lens-based optical instru-
mentation and the computationally intensive reconstruction 
algorithms employed in QPI systems, potentially offering 
high-throughput, low-latency, compact, and power-efficient 
QPI platforms which might fuel new applications in on-chip 
microscopy and sensing. In addition, depending on the appli-
cation, they can also be trained to all-optically perform various 
machine learning tasks (e.g., image segmentation[68] and phase 
unwrapping) using the phase information channel describing 
transparent input objects; they can also be integrated with elec-
tronic back-end neural networks to enable multitask, resource-
efficient hybrid machine learning systems.[55,56] Fabrication and 
assembly of such diffractive QPI systems operating in the vis-
ible and near IR wavelengths can be achieved using two-photon 
polymerization-based 3D printing methods as well as optical 
lithography tools.[69–71]

4. Experimental Section
Optical Forward Model of Diffractive QPI Networks: The optical wave 

propagation in air, between successive diffractive layers, was formulated 
based on the Rayleigh–Sommerfeld diffraction equation. According to 
this formulation, the free-space propagation inside a homogeneous and 
isotropic medium is modeled as a shift-invariant linear system with the 
impulse response
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where 2 2 2r x y z= + + . In Equation (1), the parameters n and λ denote 
the refractive index of the medium (n  = 1 for air), and the wavelength 
of the illumination light, respectively. Accordingly, a diffractive neuron, 
i, located at (xi,yi,zi) on kth layer can be considered as the source of a 
secondary wave, ( , , )u x y zi
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where the summation in Equation (2) represents the field generated over 
the diffractive neuron located at (xi,yi,zi) by the neurons on the previous, 
(k − 1)th, layer. From Equation (1), the function wi(x,y, z) in Equation (2) 
can be written as
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with ( ) ( ) ( )2 2 2r x x y y z zi i i= − + − + − . The multiplicative term  
t(xi,yi,zi) in Equation  (2) denotes the transmittance coefficient 
of the neuron, i, which, in its general form, can be written as, 
t (xi,yi,zi) = ai exp (jθi). Depending on the diffractive layer fabrication 
method and the related optical materials, both ai and θi might be a 
function of other physical parameters, e.g., material thickness in 3D 
printed diffractive layers and driving voltage levels in spatial light 
modulators. In earlier works on diffractive networks,[54,55,65,72] it has 
been shown that it is possible to directly train such physical parameters 
through deep learning. On the other hand, a more generic way of 
optimizing a diffractive network is to define the amplitude ai and θi as 
learnable parameters. In this study, the analysis was constrained to 
phase-only diffractive surfaces where the amplitude coefficients, ai, 
were all taken as 1 during the entire training. Thus, the only learnable 
parameters of the presented diffractive networks are the phase shifts 
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applied by the diffractive features, θi. For all the diffractive networks that 
were trained, the initial value of all θis was set to be 0, i.e., the initial 
state of a diffractive network (before the training kicks in) is equal to 
the free-space propagation of the input light field onto the output plane.

The Design of Diffractive QPI Networks: During the deep learning-
based diffractive network training, the 2D space was sampled with 
a period of 0.53λ, which is also equal to the size of each diffractive 
feature (“neuron”) on the diffractive surfaces. Although the forward 
optical model was described over continuous functions in the 
previous subsection, training of the presented diffractive networks 
was performed using digital computers. Hence, the input and output 
signals are denoted using their discrete counterparts for the remaining 
part of this subsection with a spatial sampling period of 0.53λ in both 
directions (x and y). In the physical layout of the presented diffractive 
optical networks, the size of the input field-of-view was set to be 
42.4λ  × 42.4λ, which corresponds to 80 × 80 2D vectors defining the 
phase distributions of input objects. With I[m,n] denoting an image 
of size M  × N from a dataset, 2D linear interpolation was applied to 
compute the 2D vector φ[q,p] of size 80 × 80. Note that the values of M 
and N depend on the used image dataset. Specifically, for Tiny-Imagenet 
M = N = 64, while for CIFAR-10 and Fashion-MNIST datasets, M = N = 32  
and M = N = 28, respectively. The scattering function within the input 
field-of-view of the diffractive networks was defined as a pure phase 
function (see Figure 1) in the form of ejαπφ[q,p].

The physical dimensions of each diffractive layer were set to be 106λ 
on both x and y axes, i.e., each diffractive layer contains 200 × 200 = 40 K 
neurons. For instance, the 5-layer diffractive network shown in Figure 2 
has 0.2 million neurons, and hence 0.2 million trainable parameters, 
θi, i = 1, 2, …, 0.2 × 106. In the forward optical model, all the distances 
between 1) the first diffractive layer and the input field-of-view, 2) two 
successive diffractive layers, and 3) the last diffractive layer and the 
output plane, were set as 40λ resulting in an NA of ≈0.8. With the size 
of each diffractive feature/neuron taken as 0.53λ, the diffraction cone 
angle of the secondary wave emanating from each neuron ensures 
optical communication between all the neurons on two successive 
surfaces (axially separated by 40λ), while also enabling a highly compact 
diffractive QPI network design. For instance, the total axial distance from 
the input field-of-view to the output plane of a 5-layer diffractive QPI 
network shown in Figure 1 is only ≈240λ.

The size of the QPI signal area at the output plane including the 
reference/background region was set to be 43.56λ  × 43.56λ, i.e., the 
reference region extends on both directions on x and y axes by 0.53λ, 
(43.56λ  = 42.4λ  + 2 × 0.53λ). If the background optical intensity over 
this reference region is denoted as IR[r] and the optical intensity within 
the QPI signal region as IS[q,p], then according to the forward model, 
IQPI[q,p] is found by

[ , ]
[ , ]

QPII q p
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S=  (4)
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 is the mean background intensity value, NR denotes 

the number of discretized intensity samples within the reference 
region. According to Equation (4), for a given input object/sample, the 
final diffractive QPI signal, IQPI[q,p] reports the output phase image in 
radians.

To guide the evolution of the diffractive layers according to the QPI 
signal in Equation  (4), at each iteration of the deep learning-based 
training of the presented diffractive QPI networks, the phase parameters, 
θi, were updated using the following normalized mean-squared-error[73]
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where, Ns is the total number of discretized samples representing 
the QPI signal area, i.e., Ns  = 80 × 80. The vectors o and o′ are 1D 

counterparts of the associated 2D discrete signals, o[q,p] and o′[q,p], 
computed based on lexicographically ordered vectorization operator. 
They denote the ground-truth phase signal of the input object and the 
diffractive intensity signal synthesized by the QPI network at a given 
iteration, respectively. Both the ground truth vector, o, and o′ cover the 
output sample field-of-view and the reference signal region surrounding 
it, hence their size is equal to NR + NS = 82 × 82. The 2D vector o[q,p] 
is defined based on the input vector ϕ[q,p]. First, the size of the two 
vectors was equalized by padding the 80 × 80 vector φ[q,p] to the size 
82 × 82. The values over the padded region are equal to 1/απ . This 
padded vector was then scaled with the multiplicative constant απ such 
that the 80 × 80 part in the middle represents the argument of the phase 
function ejαπφ[q,p]. The reference signal region surrounding this 80 × 80 
part has all ones, implying that the mean intensity over this area will 
correspond to 1  rad. By computing the loss function in Equation  (5) 
based on a ground-truth vector that also includes the desired reference 
signal intensity, implicitly the diffractive QPI network is enforced/
trained to synthesize a uniformly distributed intensity over the reference 
signal area, although this is not a requirement for the QPI networks’  
operation.

The multiplicative term, σ, in Equation  (5) is a normalization 
constant that was defined as[73]
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The structural loss function, L, in Equation (5) drives the QPI quality, 
and it was the only loss term used during the training of the diffractive 
networks shown in Figure  2; and Figures S1 and S3 (Supporting 
Information). The training of the diffractive network designs with output 
diffraction efficiencies of ≥ 2.9% shown in Figure 5, on the other hand, 
use a linear mix of the structural loss in Equation (5) and an additional 
loss term penalizing poor power efficiency, i.e., pL L Lγ′ = + . The 
functional form of the power efficiency-related penalty pL  was defined as

p eL = η−  (7)

where η stands for the percentage of power efficiency

100out

1

P
P

η = ×  (8)

with P1 denoting the optical power incident on the 1st diffractive layer 
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. The coefficient γ is a multiplicative constant that 

determines the weight of the power efficiency-related term in the total 
loss, L′. The value of γ directly affects the diffraction efficiency of the 
resulting diffractive QPI network design. Specifically, for the diffractive 
network shown in Figure 2, it was set to be 0. On the other hand, when γ 
was taken as 0.1, 0.4, and 5.0, the corresponding diffractive QPI network 
designs achieved 6.31%, 8.17%, and 11.05% diffraction efficiency (η), 
respectively (see Figure 5).

Implementation Details of Diffractive QPI Network Training: The deep 
learning-based diffractive QPI network training was implemented in 
Python (v3.7.7) and TensorFlow (v1.15.0, Google Inc.). For the gradient-
based optimization, the Adam optimizer with its momentum parameter 
β1 set to 0.5 was used.[74] The learning rate was taken as 0.01 for all the 
presented diffractive QPI networks. With the batch size equal to 75, all 
the diffractive networks were trained for 200 epochs, which takes ≈40 h 
using a computer with a GeForce GTX 1080 Ti GPU (Nvidia Inc.) and 
Intel Core i7-8700 Central Processing Unit (CPU, Intel Inc.) with 64 GB 
of RAM, running Windows 10 operating system (Microsoft). To avoid 
any aliasing in the representation of the free-space impulse response 
depicted in Equation (1), the dimensions of the simulation window were 
taken as 1024 × 1024.
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The PSNR image metric was calculated as follows
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For SSIM calculations, the built-in function was used in Tensorflow, 
i.e., tf.image.ssim, where the two inputs were απφ[q,p] and IQPI[q,p], 
representing the ground-truth image and the QPI signal synthesized 
by the diffractive network, respectively. The input parameter “max_val” 
was set to be απ in these SSIM calculations. It should be noted that 
for all the images used in the performance quantification, the SSIM and 
PSNR metrics were computed over the same output field-of-view, which 
is ≈42.4λ × 42.4λ.
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