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Deep learning has been revolutionizing information processing in many fields of science
and engineering owing to the massively growing amounts of data and the advances in
deep neural network architectures. As these neural networks are expanding their capa-
bilities toward achieving state-of-the-art solutions for demanding statistical inference
tasks in various applications, there appears to be a global need for low-power, scalable,
and fast computing hardware beyond what existing electronic systems can offer. Optical
computing might potentially address some of these needs with its inherent parallelism,
power efficiency, and high speed. Recent advances in optical materials, fabrication, and
optimization techniques have significantly enriched the design capabilities in optics and
photonics, leading to various successful demonstrations of guided-wave and free-space
computing hardware for accelerating machine learning tasks using light. In addition
to statistical inference and computing, deep learning has also fundamentally affected
the field of inverse optical/photonic design. The approximation power of deep neural
networks has been utilized to develop optics/photonics systems with unique capabili-
ties, all the way from nanoantenna design to end-to-end optimization of computational
imaging and sensing systems. In this review, we attempt to provide a broad overview
of the current state of this emerging symbiotic relationship between deep learning and
optics/photonics. © 2022 Optica Publishing Group
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1. INTRODUCTION

Historically, optical devices and systems have been extensively used to sense/detect,
communicate, store, and display information. Although the idea of leveraging the speed
of photons and the inherent parallelism of optics for general-purpose, low-latency,
energy-efficient computation has been highly appealing for decades, it has yet to find
widespread acceptance, affecting our everyday lives, which continue to be dominated
by electronic computers [1]. In contrast to optical computing, on the other hand,
deep learning and artificial neural networks (ANNs) have already established their
widespread recognition as the mainstream algorithmic tool for learning, information
processing, and statistical inference. With the massively growing amounts of data and
the complexity of the accompanying artificial intelligence (AI) algorithms in a range of
demanding applications, e.g., autonomous driving, robotics, remote sensing, defense,
Internet-of-Things (IoT), the emerging needs of modern-day computing hardware
on speed, energy-efficiency, and form factor have started to point beyond the reach
of electronic computers; this, in turn, presents another opportunity for optics and
photonics to contribute new solutions to our global computing needs.

Traditional electronic computers are mainly built upon the Von Neumann architecture
[2], where the memory and the processor are two separate units communicating over a
bus at a limited data rate, operating in a sequential manner. Although this architecture
had not posed major problems in its early stages, when the processing unit was the
slowest link in the chain, starting with the mid-1990s, the clock speed of processors
surpassed the speed of memory, i.e., the execution became faster than the data feed,
creating the problem known as the “von Neumann bottleneck” [2]. In addition, the
exponential gain in the computational capacity of electronics predicted by Moore’s law
has dramatically slowed down recently, as the size of transistors approached close to
their physical limits. One remedy for these architectural inefficiencies and decelerated
developments in transistor fabrication has been found in the use of graphics processing
units (GPUs) for general-purpose computing. Together with the availability of massive
data repositories, the immense processing power and parallelism of modern GPUs have
been one of the major driving forces behind the rise and success of deep learning and
ANNs. Currently, GPUs represent one of the most mature and accessible computing
hardware for the training and execution of ANNs, which require massive amounts of
data to be rapidly processed. On the other hand, the enormous processing capacity
of high-end GPUs is accompanied by their high power needs, bulky form factor,
and relatively high processing latency. These factors make it challenging to deploy
machine learning algorithms based on complex ANNs on low-power, size- and/or
cost-limited systems, such as mobile devices and edge computing applications, e.g.,
cameras, autonomous vehicles, and IoT peripherals [3].

Despite the maturity of electronic computing technologies including GPUs, optical
networks and photonic circuits might play a major role in the future of mobile AI,
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edge computing, and other machine-learning-related applications; optics and pho-
tonics present the potential to offer massively parallel, fast operation with scalable,
small form-factor devices that have very low power consumption. For example, the
feedforward ANN models, already trained digitally using GPUs, can be deployed
as all-optical and/or hybrid (optical–electronic) machine learning platforms to carry
out feedforward inference tasks with low latency and low power consumption, using
small-form-factor computing devices. In particular, inference tasks in visual comput-
ing applications, where the information is already in the optical domain (e.g., a scene)
are well suited for exploiting optical computing techniques, because the fundamental
building blocks of ANNs, such as convolutions, matrix–vector multiplications, and
various transformations, can be executed all-optically to be completed at the speed of
light propagation, as a byproduct of diffraction and light–matter interactions.

Although a tremendous amount of effort was devoted to developing optical neural
networks and related computing schemes, especially during the 1980s, these earlier
studies did not result in practical applications due to inadequate data, shortcomings
of available fabrication techniques, and limited access to state-of-the-art computing
technologies in these earlier decades. The wide availability of GPUs and significant
advances in nano-fabrication techniques and optical materials [4,5] during the past
few decades have refueled the research on optical neural network and photonic com-
puting techniques. Once some of these design ideas eventually mature into practical
technologies, they could potentially drive a paradigm shift in implementations of
machine learning models and expand the reach of modern AI. Similar to the possible
advantages offered by optical computing systems for AI applications, recent develop-
ments in various branches of optics and photonics have also greatly benefited from
the advances in deep neural networks and other machine learning tools. For instance,
deep learning and neural networks have already been shown to produce state-of-the-
art results for computational inverse problems in many optical imaging and sensing
applications, e.g., microscopy [6–10], holography [11–15], quantitative phase imaging
(QPI) [14,16], among many others [17–33].

In addition to these applications, the data-driven nature of deep learning and its infer-
ence capabilities are exploited to solve challenging, task-specific inverse optical design
problems for various applications, including metamaterials, nanophotonics, free-form
optics, and imaging. Traditional solutions of hardware design problems in optics and
photonics have, almost exclusively, been driven by the physical laws, e.g., Maxwell’s
equations, describing the forward model of the underlying wave phenomena. How-
ever, relying heavily on analytical closed-form solutions often restricts the hardware
design space to mathematically tractable representations, which necessitates resource-
intensive numerical methods. Although the inverse hardware designs in various fields,
e.g., nanophotonics and metamaterials, have greatly benefited from the adaptation
of numerous optimization schemes from greedy search algorithms to metaheuristic
approaches such as evolutionary algorithms, these numerical optimization procedures
often require solving the forward model recursively with many repetitions, making
them relatively slow. The universal function approximation power of deep neural
networks [34], on the other hand, presents new avenues for inverse optical design
problems. In the field of nanophotonics [35], for instance, deep neural networks can
be used as surrogate models, also known as metamodels. In this approach, a deep
neural network is trained to solve for the forward physical transformation, i.e., given a
set of design parameters as inputs, the trained deep neural network approximates the
system response at the output in a much faster manner compared with rigorous solvers
of Maxwell’s equations [36,37]. The exact opposite functionality is also offered by
deep-learning-based solutions, meaning that deep networks can be trained to directly
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infer an optical hardware design to yield a desired electromagnetic (EM) response at
the output [38].

In other fields of optics, where modeling of light as a scalar wave field is adequate,
deep learning has also been utilized to tailor the light–matter interactions over a
series of diffractive surfaces in a task-specific and data-driven manner [39,40]. These
multilayer diffractive platforms have been shown to provide non-intuitive, task-specific
solutions to inverse optical design problems, e.g., spatially controlled wavelength
demultiplexing [41] and lensless all-optical pulse shaping [42]. As another example,
in imaging and microscopy-related applications, deep neural networks and optical
system architecture in front of the optoelectronic sensors have been co-designed in
a unified computational framework to optimize the imaging system performance in
various metrics such as spatial resolution, dynamic range, and depth of field (DOF)
[43,44]. It has also been shown that the deep-learning-based software–hardware co-
design can be used to mitigate aberrations and other forms of imperfections due to,
e.g., fabrication errors in computational imaging and sensing systems [45,46].

As highlighted through these examples from the recent literature, there is an emerging
symbiotic relationship between optics/photonics and deep learning that is immensely
beneficial for both research fields. Scientific and engineering advances at this inter-
section of optics/photonics and deep learning are emerging at an unprecedented speed
and can not only leapfrog our design methods in optics, but can also provide highly
parallelized, scalable, and low-power, extremely fast computing platforms to further
expand the capabilities and application areas of deep neural networks. To highlight
these exciting opportunities and emerging advances, in this article we provide a timely
review of the use of deep learning in optics and photonics for statistical inference,
computing, and inverse design applications.

2. BACKGROUND ON OPTICAL COMPUTING AND NEURAL NETWORKS

We start this section with a brief historic overview of deep learning and neural
networks.

2.1. Deep Learning and Neural Networks
Although the term “deep learning” has recently become widely popular, the funda-
mental ideas represented by this phrase date back to the 1940s, e.g., “all-or-none”
McCulloch–Pitts neuron [47]. At that time, the error-backpropagation algorithm had
not been discovered yet; hence, the weights had to be manually adjusted by a human
and the model was entirely linear, trying to categorize the input into two classes, as
positive or negative. Rosenblatt pioneered the first perceptron model that can learn the
weights to categorize given inputs [48]. A modified version of the stochastic gradient
descent, one of the most widely used optimization schemes in modern deep learn-
ing, was first used to train an adaptive switching circuit, called ADALINE (Adaptive
Linear).

Although the earliest research efforts in the field were intended to computationally
mimic the learning functionality of the brain, the proposed models had very little corre-
spondence with the biological structure and functions inside the human brain; the name
“artificial neural network” can therefore be considered a metaphor. Even today, very
little is known about the inner principles, computational paths, and the nervous system
inside the brain. Therefore, neuroscience and the actual biological infrastructure of
the brain have not been (and perhaps will never be) a strict guide for the evolution of
modern deep learning techniques. The most prevailing analogy between the nervous
system and ANNs is that in both, a large number of simple computational units can
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show intelligence when they interact and work collaboratively with each other. Despite
such rough guidelines, deep learning, today, is a field of research primarily focused on
developing computational systems that can learn to solve demanding tasks requiring
intelligence.

2.1a. Universal Approximation Theorem
Deep learning has been a field driven mostly by empirical evidence and numerical
experimentation. The theoretical proofs on the universal approximation capabilities
of feedforward networks with hidden layers [49,50] were published in 1989, almost
3 years after Rumelhart et al. had managed to train a neural network with error-
backpropagation [51]. Nevertheless, the universal approximation theorem can be
considered as one of the important mathematical foundations behind the success
of the modern deep learning frameworks from a theoretical perspective.

As constructed by Refs. [49,50], the theorem states that a feedforward neural net-
work with at least one hidden layer and a linear output layer can approximate any
continuous function from a finite-dimensional, closed, and bounded space to another
one with any desired error tolerance, given that the network has enough hidden units
each with a “squashing” nonlinear activation function. As defined in Ref. [50], a
“squashing” nonlinear function ψ(x) maps the set of real numbers, R, onto the inter-
val [1] such that if it is non-decreasing, limx→∞ψ(x) = 1 and limx→−∞ψ(x) = 0. Some
examples of squashing functions are: (1) the indicator/threshold or unit step func-
tion, ψ(x) = 0{x<0} + 1{0≤x}, (2) ramp function, ψ(x) = 0{x≤0} + x{0≤x≤1} + 1{1≤x}, and
(3) the cosine squasher,ψ(x) = 0{x<−π/2} +

1
2
(︁
1 + cos

(︁
x + 3π

2
)︁ )︁

{−π/2≤x≤π/2} + 1{x>π/2}.
The well-known sigmoid function, ψ(x) = 1

1+e−x , is also a member of this family of
functions [49].

Although these earlier works covered only a limited set of nonlinear activation func-
tions that are bounded, the universal approximation theorem has been further extended
to a wider set of activation functions [52], including the unbounded rectified linear unit
(ReLU) function that is used extensively in modern deep neural networks. With deep
neural networks already granted a wide acceptance as the state-of-the-art informa-
tion processing architecture, the research on universal approximation theorem is still
active, mostly focusing on exploring and expanding the class of nonlinear activation
functions that can provide theoretical guarantees on the approximation capabilities
and error bounds of deep neural networks [53]. Research along the lines of Refs.
[52,53] can also be crucial for the future of optical neural networks and photonic
processors due to the restricted space of nonlinearities that can be created through
optical materials and devices. For instance, Ref. [53] introduces truncated power
functions such as f (x) = 0{x≤0} + x2

{x>0} as a nonlinear functional form that can serve
as an activation function in a universal approximator. This function, f (x), might be
of particular importance for optical systems, as photodetectors generate optical sig-
nals proportional to the incident light intensity, which itself is proportional to the
field-amplitude squared. Another recent research that is closely related to coherent
optical neural networks [39] has been published by Voigtlaender [54] investigating the
universal approximation capabilities of complex-valued neural networks. The author
found that, unlike real-valued neural network architectures, the desired features of
nonlinear activation functions for providing universal approximation guarantees in
complex-valued networks depend on the depth of the neural network. For example,
in the case of complex-valued neural networks with at least two hidden layers, a
broad class of nonlinear activation functions, except the polynomials and holomor-
phic/antiholomorphic functions, can theoretically provide universal approximation
property [54].
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2.1b. Feedforward Neural Networks
The goal of any feedforward neural network model is to approximate a desired function
g. If, for example, the machine learning task at hand is to design a classifier, then
y = g(x) is a desired mapping that assigns a category y to an input x. Deep learning
aims to find an approximation f (x) that satisfies f (x) ≈ g(x) for any given input x. In the
case feedforward networks, f is defined over an acyclic computational graph with each
layer, i, corresponding to a function f (i) such that f = f (L)(f (L−1)(. . . f (1)(x))), where L is
the number of successive layers in the graph. According to the universal approximation
theorem, a neural network with at least one hidden layer, i.e., f = Wf (1)(x) + b, where
W and b are the multiplicative weights and the additive bias values of the output
layer, can represent an approximation to any Borel measurable function (including
all continuous functions) with an arbitrary degree of accuracy given that the number
of computational nodes at the output of f (1)(x) is sufficiently large [49,50,52–55].
However, the universal approximation theorem does not provide any information on
how to determine the necessary number of nodes at the output of f (1)(x). In fact, it was
shown that a shallow network (with one hidden layer) might require exponentially large
number of hidden units to accurately represent a function compared to a deeper network
model [56]. In addition to this, many examples in the literature empirically demonstrate
the advantages of constructing deeper models in terms of the approximation capability
and generalization success of the underlying neural network architecture.

When an input x is fed into a network, it goes through a series of transformations
denoted by f (i) at each layer i, and this process of computing y is called the forward
propagation or forward inference. During the training stage, each parameter update
step starts with the forward propagation of a batch of inputs. At the final output
layer, a cost function, L, with a problem-specific analytical formulation is computed.
Deep neural networks are often trained by gradient-based optimization algorithms,
e.g., stochastic gradient descent [57–59], that aim to iteratively lower the value of the
cost function, L. Gradient-based training with respect to a loss function L is done
through error backpropagation [51]. If we assume, L = f (2)(f (1)(x)), with x ϵ Rm and
y = f (1)(x) ϵ Rn, then according to the chain rule we have

∂L

∂xi
=

∑︂
j

∂L

∂yj

∂yj

∂xi
, (1)

which can be written in vector notation as

∇xL =

(︃
∂y
∂x

)︃T

∇yL, (2)

where ∂y
∂x denotes the n × m Jacobian matrix of the operator f (1).

In modern deep learning architectures, the functional form of each layer, f (i), is com-
posed of a linear transformation of the output of the previous layer followed by a
nonlinear activation function, i.e., f (i) = σ(W(i)f (i−1) + b(i)), with σ denoting the acti-
vation function. If W(i) is a full matrix connecting all the neurons on two successive
layers to each other, then it is called a fully connected neural network layer. A major part
of the computational burden in a forward inference task can be attributed to the linear
transformations performed on each layer, consisting of a series of multiplication and
summation operations, also known as multiply-accumulate (MAC) operations. This
also applies to convolutional neural networks (CNNs), which are especially effective
for processing multidimensional visual data. CNNs form a special case, where W(i)

is a sparse matrix representing only localized neural connections modeling the con-
volution operation with learnable weights. In fact, as we discuss in Section 3, the
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computational load associated with the MAC operations in feedforward neural net-
works is one of the main motivations behind the development of various photonic
deep learning accelerators and related optical computing techniques based on linear
materials.

2.2. Historical Overview of Optical Neural Networks and Photonics in Computing
One of the motivations behind optical neural networks in the early days of optical
computing stems from the capability of optics in providing high-throughput and high-
speed information encoding and processing schemes that can be parallelized. Early
generations of optical computing schemes have mostly revolved around the Fourier
transform (FT) property of lenses, which is valid under the small-angle approximation
[60,61]. One of the most commonly employed optical computing architectures was
the 4f correlator proposed by different groups [62,63]. The major challenge related
to the 4f correlators was the accurate implementation of complex-valued Fourier
coefficients of a desired spatial filtering function. This limitation was overcome by the
seminal work of Lugt [64], giving the 4f optical correlator more power, also motivating
subsequent research in the field. To realize the optimum matched filter function for any
given signal, s(x, y), Lugt recorded the interference pattern created by the FT of s(x, y),
S(p, q), and a reference beam over a photosensitive holographic film. The resulting
interference pattern, G(p, q) mainly represents three terms:

G(p, q) = (|R(p, q)|2 + |S(p, q)|2) + R∗(p, q)S(p, q) + R(p, q)S∗(p, q). (3)

The first term in Eq. (3) corresponds to a DC component representing the superposition
of the FT intensity of the reference, R(p, q) and the signal S(p, q). Although this DC term
is of no particular interest, the other two off-axis terms represent the cross correlation
operation and its complex conjugate, respectively. The tight optomechanical alignment
requirements of the setup in Ref. [64] were relaxed with the help of an off-axis
design in [65], termed as the joint transform correlator (JTC). In its original form,
JTC is used to optically compare two given real-valued signals using a two-step
process. First, these two signals are placed side-by-side, e.g., one at (x = a, y = 0)
and the other at (x = −a, y = 0), at the front-focal plane of a Fourier transforming
lens and their joint FT spectrum is recorded on a photosensitive film. Once this
holographic film is placed at the front-focal plane of another Fourier transforming
lens, the output at the back-focal plane will have two separate 2D functions centered
around x = −2a and x = 2a, corresponding to the cross correlation between the two
input signals. Many variants of the original architectures of 4f optical correlators and
JTC were developed, including nonlinear JTCs [66,67], targeting various applications,
including information encryption [68–70], synthetic aperture radar (SAR) [71–74],
and pattern recognition [75–78]. Beyond space-invariant convolutions, correlation, and
matched filtering operations, coherent optical processing techniques were also adapted
to implement a more general family of linear transformations such as the Hough
transform [79], matrix–vector multiplications, and coordinate transformations [80].

In addition to these coherent optical computing techniques, optical processing schemes
using incoherent light were also proposed. In these systems, the information is encoded
in the intensity of the optical field, and this information representation over intensity
restricts the range of values to non-negative real numbers. Despite this limitation,
incoherent optical processing architectures were developed to realize a series of
basic computing tasks, including matrix–vector multiplications [81,82], character
recognition [83], FT operation [84], among others [85].

Despite these efforts, these early optical computing techniques have not found
widespread practical use, with one exception being the SAR in the early 1960s. On the
other hand, the progress on diffractive optical element (DOE) design and fabrication,
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optical materials and the spatial light modulator (SLM) technology motivated another
surge in optical information processing techniques in the 1980s. A series of adaptive
JTC architectures taking advantage of the SLM technology were constructed and used
for, e.g., road sign identification [86], and the optical correlator setup was miniaturized
to fit into a personal computer [87].

In parallel to these, interest in neural network models also saw a rapid increase due to
various important advances in the field [49–51]. Despite the progress in deep learn-
ing, however, electronic computers, which could easily outperform the human brain
in arithmetic operations, were still falling behind when it comes to complex infer-
ence tasks such as pattern recognition. In addition to this, very large-scale integrated
(VLSI) circuit technology was facing a challenge due to the increase in the form
factor of electronic chips: the computational speed and efficiency of VLSI systems
were bottlenecked by wire-based interconnect technology. These limitations motivated
extensive research on brain-inspired computing platforms along with faster intercon-
nect technologies for addressing the high computational load in the training of neural
networks [88]. Several VLSI circuits were developed for proof-of-concept demon-
strations of brain-inspired computing and adaptability [89–92]. In parallel to these
efforts, optical neural networks [93–98] were also introduced together with analog
optical MAC processors that can all-optically achieve, e.g., matrix operations [99]
and systolic array processing [100]. Demonstrating an array of dynamic nonlinear
crystals as a planar neural interconnect was another important milestone [101]. This
was followed by the seminal work of Li et al. [102], in which an optical network
that can recognize faces in real-time with very good accuracy was trained by using a
photorefractive crystal to store approximately 1 billion weights.

Despite the success of custom neural network hardware demonstrations, the interest in
optical neural network technologies slowly faded toward the end of the 1990s. Some
of the main reasons behind this were: (1) the high-end GPUs that are cost-effectively
used today were not available then, hindering the advances that could be made in both
electronic and optical neural networks in terms of both training and inference; (2) the
amount of training data were inadequate or hard to acquire in a high-throughput man-
ner to effectively train deep neural network architectures and, when the neural network
models are rather small, the motivation for developing analog accelerators is weak-
ened; (3) the optoelectronics and integrated photonics industry and manufacturing
techniques were not as mature as today, limiting the capabilities of optical and pho-
tonics hardware in terms of performance, scaling, and cost. Over the last two decades
in particular, major advances in GPUs, optical materials, micro/nanofabrication tech-
nologies, optoelectronics, and integrated photonics have changed the landscape of
optoelectronic computing. As a result, optics and photonics fields are now in a much
favorable position to prove their potential advantages, particularly on feedforward
statistical inference tasks through deep neural network architectures.

3. OPTICAL INFERENCE AND COMPUTING

Deep learning [103,104] has become the standard algorithmic tool in processing visual
data collected by focal-plane arrays and other optoelectronic sensing technologies. This
has fueled the recent revival of research in optical neural networks. The designs of
optical networks can be broadly divided into two categories. The first approach focuses
on designing optical computing chips that take advantage of integrated photonics,
waveguide technology, and related optoelectronic devices. As these optical neural
network chips and deep learning accelerators mostly use high-throughput fabrication
techniques already heavily used in the electronics industry, they have the potential
to provide cost-effective and scalable solutions that are compatible with the current
electronic chips for future integration.
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As an alternative approach, free-space-based 3D optical neural networks and com-
puting systems have also been demonstrated by exploiting the interaction of light
with engineered materials. These optical processors aim to compute a given inference
task before the light waves reach the photodetectors or the focal-plane array. From
another perspective, these approaches aim to provide free-space propagation-based
alternatives to conventional lens-based machine vision systems and can empower
task-specific, resource-efficient designs that complete the entire computing task as
the light propagates within a material; they can also be jointly trained with back-end
electronic neural networks to reduce the computational load, demanding resolution
and memory requirements on modern machine vision systems.

In Section 3.1, we first introduce and discuss the recent progress on integrated photon-
ics toward the creation of high-speed neural interconnects and neuro-inspired photonic
devices. Section 3.1 ends with the description of photonic neural network architec-
tures that have recently been demonstrated experimentally. Section 3.2 focuses on
the second design approach outlined previously, discussing the operational principles
and successful demonstrations of free-space-based diffractive optical processors, also
introducing hybrid (optical–electronic) network systems.

3.1. Integrated Photonics for Statistical Inference and Computing
One of the motivations behind the research on integrated photonics in the 1970s
was to develop optical supercomputers, see for example [105]. In those early days, the
research was mainly focused on ferroelectric materials, e.g., lithium niobate (LiNbO3),
and III–V compound semiconductors such as GaAs and InP. Although LiNbO3 drew
attention due to its large electro-optic coefficient enabling light modulation via the
Pockels effect [106], III–V semiconductors were also found interesting because of their
prospect in laser fabrication, optical amplification, and electronic integration [107].

Over the years, silicon electronics has dominated the industry and, thus, silicon-based
fabrication technologies have shown a rapid development, which attracted the attention
of optics researchers. That said, silicon photonics had a rough start around the mid-
1980s [107,108], due to two major factors. First, the crystalline silicon has an indirect
bandgap causing it to be an extremely inefficient material for light emission. Second,
crystalline silicon does not exhibit any electro-optic modulation effect due to its
centro-symmetrical structure [107]. Despite these difficulties, the research on silicon
photonics has grown and matured to play a major role in communication systems
as well as in intra- and inter-chip optical interconnect technology, aiming to solve
some of the data rate bottleneck and power dissipation issues imposed by electrical
wire-based connections [94,109–111]. In fact, the photonic integrated circuit (PIC)
technology with silicon-on-insulator (SOI) wafers are already used as the building
blocks of modern-day data centers [112].

The success of deep learning and neural networks, as well as the availability of massive
amounts of big data in various fields, have brought demanding expectations from
computational systems that are hard to meet with the current state-of-the-art electronic
hardware. As a result, in recent years, photonics researchers have been focusing on
the design of optical communication and interconnect systems for the development of
neuromorphic circuits and photonic deep learning accelerators that can be integrated
with existing electronic computing systems to enable high-bandwidth, low-latency,
and low-power hardware platforms for the future needs of AI applications [3,113].

3.1a. Photonic Neural Interconnects and Deep Learning Accelerators
The bulk of the computational burden in an inference task achieved through state-
of-the-art deep neural networks rests upon the large amounts of MAC operations
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corresponding to linear transformations that need to be executed at each layer before
the nonlinear activation functions [114]. It is well-known that such linear operations
can be efficiently implemented in the optical domain. In the context of PICs, for
instance, it has been shown that any N × N unitary matrix U can be implemented
using a mesh of Mach–Zehnder interferometers (MZIs) [115,116]. The theoretical
foundation behind this scheme is based on the fact that a matrix U can be constructed
by cascading N(N−1)

2 rotation operators, {Rk}, each acting sequentially on 2D subspaces
of the full N-dimensional vector space [115]. Composed of two beam splitters (or
directional couplers) and two controlled phase-delay elements, θ and ϕ, each MZI can
be used as a four-port device, two input and two output, that can achieve a 2D rotation

operator, i.e., Rk(θk, ϕk) =

[︃
ejφk (ejθk − 1) jejφk (ejθk + 1)

j(ejθk + 1) 1 − ejθk

]︃
.

Matrices in neural networks are, in general, not unitary but rather represent arbitrary
linear transformations. Fortunately, an MZI mesh system capable of achieving any
N × N unitary matrix could also realize an arbitrary linear transformation matrix, A,
of size M × K, provided that both K and M are not larger than N/2 (see Ref. [117]).
In other words, an arbitrary matrix, A, can be generated as an M × K submatrix of an
N × N unitary matrix, if N is sufficiently large, i.e., K ≤ N

2 and M ≤ N
2 .

Alternatively, an arbitrary M × K matrix A can also be physically implemented through
singular value decomposition (SVD), A = UΣV†, provided that optical attenuators
and/or amplifiers are embedded into the optical path on the photonic chip [118], as
shown Fig. 1(a). Although the unitary matrices, U and V, are already suitable for
MZI-based implementations, the diagonal matrix Σ requires the integration of optical
attenuators and/or amplifiers in the form of, e.g., semiconductors [119], dyes [120],
and phase change materials (PCMs) [121]. For instance, a successful realization of
arbitrary weight matrices of a fully connected neural network was experimentally
demonstrated by cascading a few MZI mesh architecture with embedded attenuation
paths [118].

An important challenge of these MZI-based optical processors is that the number of
interferometers and integrated components in the photonic chip scales exponentially
with the size of the desired transformation matrices. For instance, implementing a
N × N unitary linear transformation requires N(N−1)

2 MZIs or, in other words, a total of
N(N − 1) beam splitters/couplers combined with N(N − 1) phase shifters; including
the N additional phase shifters at the output ports, the total number of phase shifters that
are needed becomes N2. If the N × N matrix is not unitary, then these numbers further
increase, significantly hindering the scalability of these systems toward processing,
e.g., high-resolution images with several million pixels. Moreover, power losses, noise,
and other physical imperfections increase proportionally with the number of integrated
components in the system. Proposed methods toward mitigating such unwanted system
defects include, e.g., fault-tolerant MZI mesh architectures [117,124], designs that
incorporate component imperfections [125], “self-configured” MZIs [126,127], and
in-situ training of neuron connection weights [128].

Tuning the connection weights and phase delays inside the silicon waveguides with
a fast, power-efficient, and robust mechanism represents yet another key challenging
aspect of integrated photonic computing. Some of the most notable effects that can be
used for adjusting the refractive index of a region within silicon waveguides include
the thermo-optic effect, free-carrier absorption, and free-carrier dispersion (plasma
dispersion) [113]. Although thermal tuning mechanisms based on metal filament
microheaters [129] and waveguide-embedded heaters [130] are among the most robust
and convenient methods, they are slow and power-inefficient. Instead, for faster oper-
ation, one can fabricate hybrid waveguides made of a silicon core surrounded and/or
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Figure 1

Photonic interconnects and deep learning accelerators. (a) MZI mesh that can
all-optically realize 4× 4 unitary transformation (red pathway) and attenuation (blue
pathway) [118]. Reprinted by permission from Macmillan Publishers Ltd: Shen et
al., Nat. Photon. 11, 441 (2017) [118]. Copyright 2017. (b) Concept of a broadcast-
and-weight network with modulators used as neurons. MRR, microring resonator;
BPD, balanced photodiode; LD, laser diode; MZM, Mach–Zehnder modulator; WDM,
wavelength-division multiplexer [122]. Reprinted by permission from Macmillan Pub-
lishers Ltd: Tait et al., Sci. Rep. 7, 7430 (2017) [122]. Copyright 2017. (c) Photonic
implementation of a convolutional layer with 10 3× 3 filter channels processing an
input image of size 500× 500 based on the time- and wavelength-multiplex deep
learning accelerator presented in Ref. [123]. This large-scale, photonic deep learn-
ing accelerator can achieve 11 TeraOps/s. Reprinted by permission from Macmillan
Publishers Ltd: Xu et al., Nature 589, 44 (2021) [123]. Copyright 2021.

doped with other materials, such as III–V semiconductors [131], LiNbO3 [132], and
graphene [133], to tailor the refractive index modulation. However, these methods can
provide only a limited dynamic range for optical modulation and they create photonic
structures that are susceptible to electrical damage [113]. As an alternative solution,
PCM-based all-optical methods [121,134,135], which do not require any external
electrical or thermal input for tuning the material properties, have been proposed.
Instead, these all-optical neural interconnects exploit optically induced changes in,
e.g., Si3N4 [121], metal sulfide fibers [134,135] to control the light propagation inside
silicon waveguides. An additional benefit related to all-optical PCM-based solutions
is that these materials are non-volatile, i.e., they do not require any external source to
maintain their state. Hence, they offer a power-efficient and fast way to adapt the linear
weights along silicon waveguides. Therefore, they could potentially play a major role
in the future of photonic deep learning accelerators and the associated neural network
architectures.

In addition to the spatial modes exploited by the MZI-mesh circuits in realiz-
ing weighted interconnects, the optical waves have other orthogonal features, e.g.,
wavelength and polarization, that do not interact with each other and, thus can
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independently be used to encode and/or carry information. There have been several
works that utilize the spectral composition of optical waves to physically realize MAC
operations in photonic circuits [121,122,136–139]. According to the proposed scheme
in [136], a synaptic connection is realized through a bank of microring resonators
(MRRs) that acts as tunable filters to process a series of spectral subbands in parallel,
termed as broadcast-and-weight (see Fig. 1(b)). Originally proposed as a photonic
MAC architecture for neuromorphic spiking neural networks [140], it also inspired
several other deep learning accelerator designs based on optical microdisk arrays
[141] and memristor-driven MRR banks [142,143]. A variant of the broadcast-and-
weight architecture that is optimized specifically for the implementation of photonic
convolutional layers was proposed in Ref. [144], where the authors exploited the
localized and sparse nature of connections in convolutional layers to reduce the num-
ber of MRRs, resulting in a more compact system. The broadband photonic neural
interconnect designs demonstrated in [121,138] are also similar to the broadcast-and-
weight scheme in the sense that they process the weights of the spectral subbands
simultaneously. However, they require an additional demultiplexing step to achieve
this parallelism, as the PCMs [121] and InP semiconductor optical amplifiers (SOAs)
[138] lack the spectral selectivity of MRRs.

Even at this relatively early stage of photonic AI accelerators, there has been crucial
and promising progress towards the scalability of MAC processors. Recently, Xu et al.
[123] reported a photonic accelerator for CNNs that can realize a convolutional layer
with 10, 3×3 filters acting on input images of size 500×500 pixels as illustrated in
Fig. 1(c). To achieve this, they multiplexed the optical waves both in time and spectral
domains (see Fig. 1(c)). In this scheme, the flattened/vectorized weight vector repre-
senting the coefficients of a convolutional filter is encoded into the power spectrum of
the light waves. Based on this encoding, the optical power of the ith spectral component
is set to be W[N − i + 1] with i ϵ [1, N], where N denotes the size of the flattened con-
volutional kernel (for example, N = 9, for a 3×3 filter). Meanwhile, the input image
is also vectorized into a 1D vector, X, of size L (for example, L = 25 × 104, for a
500×500 image) and represented as the amplitude of a stepwise electrical waveform,
X[n] with n ϵ [1, N + L − 1] including zero padding. An electro-optic Mach–Zehnder
modulator is driven by this input electrical waveform, X[n], to broadcast the input
gray levels values onto the shaped optical comb lines. As a result, the optical power at
the ith wavelength channel becomes W[N − i + 1]X[n]. The modulated optical signal
is, then, progressively shifted in the time domain with the help of a dispersive fiber
that applies a wavelength-sensitive time delay equal to the duration of a step of the
input electrical waveform X[n]. Consequently, the optical power of the shifted replica
at the ith spectral component becomes W[N − i + 1]X[n − i]. Setting the duration of
integration at the photodetector to be equal to the time delay between each spectral
component, the total spectral power at every time point, n, is accumulated, creating
the output electrical waveform, Y[n]:

Y[n] =
N∑︂

i=1

W[N − i + 1]X[n − i], (4)

which corresponds to the discrete convolution between the input X and the fil-
ter W. At the readout of the photodetector, each sample of Y[n] within the range
n ϵ [N + 1, L + 1], corresponds to the inner product between W and a region of input
image X. This photonic computing framework can also be extended to implement any
linear transformation by simply adopting the sampling intervals at the readout of the
photodetection [123]. Figure 1(c) depicts a case where W describes a convolutional
network layer with multiple channels, then the weights of each 2D filter are encoded
into the optical power of wavelength components within a distinct spectral subband.
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Therefore, the required optical bandwidth of operation is directly proportional to the
size (width, height, and depth) of the targeted convolutional layer to be implemented.
The authors reported 11.3 TeraOps/s by utilizing only a 36-nm bandwidth covering
mostly the C-band (1540–1570 nm). Although this performance is inferior compared
with Google TPUs (tensor processing units) and other chips offering >200 TeraOps/s,
the authors provide possible improvement directions, e.g., utilizing the entire telecom-
munication band (1460–1620 nm). In addition, if the presented time and wavelength
multiplexing can be further enriched with the incorporation of polarization and spa-
tial modes, photonic deep learning accelerators might enable PetaOps/s operation for
CNNs with more than 24,000 synaptic connections [123].

3.1b. Neuromorphic Computing Using Photonics
Despite the remarkable technological advances in nanofabrication technologies and
VLSI circuit architectures, conventional electronic computer systems are far from
competing with the performance and efficiency of the human brain. The large gap
between electronic computers and the brain can be attributed to several important
factors. Although the traditional computers are centralized, digital devices, the brain
represents information encoded in the relative values of analog signals, and it com-
putes in a decentralized, highly parallel manner [88,92]. Neuromorphic engineering
is broadly concerned with the development of physical hardware systems that can
potentially mimic the neuro-biological structure and fundamental operational princi-
ples of the nervous system. In relation to that, neuromorphic computing aims to bring
the efficacy of biocomputing into engineered computational devices [89,92], and it
remains to be an active area of research both in electronics [145–149] and photonics
[150–152].

Towards realizing brain-inspired optical computing hardware, one of the key
challenges faced by neuromorphic photonics has been to implement activation func-
tions analogous to the nonlinear action potential dynamics of biological neurons
[113,153,154]. In fact, the difficulty of realizing nonlinear activation functions at
acceptable optical intensity levels in a power-efficient and scalable manner could be
considered as one of the reasons behind the gradually vanishing interest in optical
neural networks during the 1990s [3]. During the past two decades, on the other hand,
there have been numerous advances in the fabrication of silicon photonic chips and
related components, enabling researchers to revisit neuro-inspired photonic devices
with nonlinear physical dynamics. Some of these recent research efforts toward real-
izing photonic nonlinearities can be divided into two mainstream approaches based
on the physical domain of signal flow between the input and output ports of these
devices: (1) optical-electrical-optical (O/E/O) and (2) all-optical [113,150].

The O/E/O type of neuron-like photonic devices offer a degree of design flexibility
because the input and output ports are optically isolated, meaning that the properties
of the output optical waves, e.g., wavelength, power, can be set independently from the
properties of the input waves. In addition, the electrical domain in the signal pathway
can be exploited to implement, enhance, and/or tune the nonlinearity of the device.
In the O/E/O approach, the first O/E conversion step is, in general, responsible for the
accumulation/summation of the weighted signals at the input of the nonlinearity and is
often implemented by a photodetector or array of detectors. As the photodetector inte-
grates the incoming photons, an electric current that is proportional to the total intensity
of the collected optical waves is generated. An important distinction among different
O/E/O approaches proposed in the literature can be attributed to the mechanism of
establishing the nonlinear response. Although some of the O/E/O devices apply the
nonlinearity purely in the electrical domain through, e.g., superconductors [155,156]
(see Fig. 2(a)) or digital lookup circuits [118,138], others utilize the E/O conversion
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stage designed around lasers [157] and/or modulators [158–160] (see Fig. 2(b)). A
MZI-mesh compatible nonlinear O/E/O node design has recently been reported by
Williamson et al. [161], in which the optical signal at the input is split into two arms,
with one arm accommodating a photodetector followed by an electronic phase shift
controller, determining the nonlinear transfer function at the intersection output of the
two arms as a function of the input as shown in Fig. 2(c). In addition to its MZI-mesh
compatible structure, this approach also allows the nonlinear transfer function to be
tuned by changing the bias voltage over the phase shift controller arm. The authors
demonstrated ReLU-like functions along with clipped nonlinear responses akin to
bounded activations. A similar tunability is also reported in Ref. [158] (see Fig. 2(b)),
where the authors generated sigmoid and ReLU-type functions along with a radial
basis function highlighting their design flexibility.

Unlike the O/E/O approaches, the information is not represented in the electrical
domain inside an all-optical photonic neuron. Instead of using E/O conversion dynam-
ics and/or electrically controlled modulators, the nonlinear activation functions are
achieved based on manipulating the material properties, such as optical susceptibility
and carrier concentrations in semiconductors, triggered by light–matter interactions.
Inducing changes in optical susceptibility of nonlinear materials is, in general, power
inefficient, meaning that the output of the photonic neuron is much weaker than its
input. In addition, cascading these photonic structures becomes challenging and often
results in extremely photon inefficient designs. These issues, however, can be mitigated
by using a form of carrier regeneration/injection as first shown by Hill et al. almost two
decades ago [163], and this approach has been used in experimental demonstrations of
all-optical photonic neurons. These all-optical photonic neuron designs include carrier
regeneration over light–semiconductor interaction principles: cross-gain modulation
[164] and cross-phase modulation [165]. One of the challenges associated with these
carrier regeneration techniques is to isolate the controlling input signal from the output
signal. To partially address this challenge, the device parameters are often tuned to
generate weaker output signals than the input, and they are used in conjunction with
optical amplifiers that boost the signal to an adequate level to drive the neurons on
subsequent layers.

Other promising approaches toward realizing all-optical nonlinear activation functions
have also been presented based on PCMs [121,166], MRR-loaded arms in MZI archi-
tectures [167], and nanoparticles embedded inside silicon waveguides [162], see, e.g.,
Figs. 2(d)–2(f). In Ref. [121], the authors integrated PCM cells as part of MRRs to
induce switching behavior based on the PCM state, amorphous or crystalline, which
depends on the incident optical power over the material. Specifically, with the PCM in
its crystalline state, the optical injection signal and the MRR is in resonance with each
other. Consequently, all the injected signal is coupled to the MRR before reaching the
output node. When the intensity of the light incident on the PCM material surpasses
a certain threshold, the material goes to an amorphous state, disrupting the resonance
between the MRR and the injected optical signal. In this state, the optical pump signal
bypasses the MRR and directly reaches the output node, resulting in a transfer function
that resembles ReLU.

Among the photonic neuron design approaches discussed thus far, the O/E/O neurons,
where the information is digitized in the electrical domain [118,138] to generate the
nonlinear response, operate at the slowest rates due to the bottleneck created by the
analog-to-digital converters (ADCs) in the signal pathway. On the other hand, in all-
analog O/E/O neuron designs without any digitization, the primary factor limiting
the speed of operation is, in general, not the O/E or E/O conversions, but rather the
relatively slow carrier drift in semiconductors and/or electrical wire-based connections
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Figure 2
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Photonic implementations of nonlinear activation functions. (a) A superconducting
optoelectronic neural activation device [156]. A superconducting-nanowire single-
photon detector (SNSPD) converts the incident light into electrical current and drives
a superconducting switch followed by an integrated LED that emits the output light.
Reprinted by permission from Macmillan Publishers Ltd: McCaughan et al., Nature
Electron. 2, 451 2019 [156]. Copyright 2019. (b) Silicon photonic modulator neuron,
as proposed in Ref. [158]. The input optical intensity is converted into electrical
current driving a ring modulator to exploit its nonlinear response. The nonlinear
input/output response of the device is controllable: see the two exemplary response
curves (bottom). Figures 2 and 5 reprinted with permission from Tait et al., Phy. Rev.
Appl. 11, 064043 2019 [158]. Copyright 2019 by the American Physical Society. (c) An
MZI-based O/E/O-type nonlinear activation unit [161], where a photodetector drives
an adjustable phase shifter controlling the interference on two arms. The nonlinear
response can be controlled by changing the bias of the phase shifter. © 2019 IEEE.
Reprinted, with permission, from Williamson et al., IEEE J. Sel. Topics Quantum
Electron. 26, 1–12 (2019) [161]. (d)–(f) All-optical photonic nonlinear activation
device models. (d) Fundamental building blocks of an all-optical neural network that
uses PCMs to implement both synaptic connections and neural activations [121]. The
weighted neural connections are achieved by WDM multiplexer–demultiplexers (II)
and PCMs embedded in silicon waveguides (I). The nonlinear activation is achieved by
embedding a PCM cell (III) into the input junction of a ring resonator (IV). Reprinted
by permission from Macmillan Publishers Ltd: Feldmann et al., Nature 569, 208
(2019) [121]. Copyright 2019. (e) Schematic of an MRR-loaded MZI-based nonlinear
thresholder. On the right, micrograph of the all-optical activation device. (f) A gold
nanoparticle (NP) and CdSe quantum dot (QD) embedded in the middle or on the
top of a silicon waveguide implement an all-optical nonlinear response, red (black)
curve depicting the activation when the NP/QD is placed on top (in the middle) of the
waveguide. Reprinted with permission from [162]. Copyright 2018 Optical Society of
America.
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[113]. The time delay and power consumption in these O/E/O systems are mostly
related to resistance–capacitance constants of different individual parts constituting the
device. Although there are O/E/O designs exhibiting very small intrinsic capacitances,
e.g., ∼2 fF as reported in, e.g., Ref. [168], the all-optical photonic neurons still
maintain their status as being the fastest. One drawback related to the all-optical
photonic neurons is that they lack the tunability offered by the O/E/O approaches,
meaning that the functional forms of the realizable nonlinear activation functions are
constrained by the response of the underlying light-matter interactions. Nonetheless,
the recent studies on the universal approximation theorem suggests that the class of
nonlinear functions that ensure theoretical guarantees for the inference capabilities of
deep neural networks, might be larger than previously predicted [53,54]. Furthermore,
several works on photonic neural networks have shown that the data-driven training
techniques of deep learning can be adapted to physically attainable nonlinear transfer
functions without major performance degradation [118,122,169].

Beyond the continuous-time photonic nonlinearity models outlined previously, there
has been extensive research on photonic systems that aim to approximate the spik-
ing dynamics of the nervous system [170–172] using spiking photonic devices as
their computational primitives [121,140,173–189]. Unlike the transfer function of
continuous-time nonlinearities, which can be described by a first-order differential
equation, ẏ = h(y, x), where x and y denote the input and output signals, respectively,
the operation principles of spiking devices rely on time-varying internal state vari-
ables, z, and there is not one but rather a set of differential equations describing their
operation; ż = f (z, x) and ẏ = g(y, x, z) [173,182]. The operational dynamics of these
devices simply have three main behavioral regimes. In the first regime, the system
rests in an equilibrium without any perturbation. When a perturbation above a certain
threshold is applied, the system deviates from the equilibrium conditions triggering a
burst of optical power in the form of a single pulse or a series of pulses. The pertur-
bation level that is required for the transition from the equilibrium regime to pulsing
mode is called the excitability threshold. Following the burst of optical power, the
system returns to its equilibrium state, and the duration of this settlement regime is
called refractory period which directly determines the pulse firing rate of the device.

One of the most commonly used types of integrated photonic devices aiming to
mimic the biophysical dynamics of neurons is based on excitable semiconductor
lasers [173]. Widely studied semiconductor-based optical excitability models include;
two-section gain and saturable absorber (SA) lasers [177,178] (Fig. 3(a)), semicon-
ductor ring [180] and micro-disk [183] lasers, photonic crystal nanocavities [181]
(Fig. 3(d)), injection-locked semiconductor lasers [188], semiconductor lasers with
optical feedback mechanisms [189], micropillar lasers with embedded SAs [184,185]
(Fig. 3(f)), polarization switching in vertical-cavity surface-emitting lasers (VCSELs)
[174], graphene excitable lasers [186,187] (Fig. 3(e)), and resonant-tunneling diode
(RTD)-driven lasers [190] (Fig. 3(b)). Broadly speaking, these excitable photonics
designs have a gain medium, a saturable process, and a cavity, all in a single device.
The pump of the gain medium can either be an electrical or an optical signal, whereas
the injection modes can broadly be classified as: (1) coherent optical injection, (2)
incoherent optical injection, and (3) electrical injection. In a coherent injection device,
the input and output signals occupy the same spectral band and they offer compatibility
with coherent optical processing architectures. However, they require a precise global
phase control which is challenging to achieve, particularly in systems of synchronized
lasers. For incoherent injection devices, the input and output optical signals are at
different wavelengths. In some cases, the input signal can also be used as the pump
provided that the wavelength of the input signal is smaller than the wavelength of the
output [186,187].
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Figure 3

Excitable lasers and cavities for photonic spiking. (a) Two-section gain medium
that integrates the input power combined with a saturable absorber excitable laser acts
as an integrate-and-fire neuron [177]. Right, an illustration of spiking dynamics of the
device. When enough excitatory input current arrives at the input port, it drives the
voltage V(t) (purple) above a threshold unleashing a spike y(t) at the output (blue).
© 2013 IEEE. Reprinted, with permission, from Nahmias et al., IEEE J. Sel. Topics
Quantum Electron. 19, 1–12 (2013) [177]. (b) An O/E/O neuron that is composed of
resonant-tunneling diode (RTD) layer stack, photodetector, and laser diode, exhibiting
spiking behavior [190]. Right, excitability is achieved by biasing a double-barrier
quantum well (DBQW) within the RTD in the negative differential resistance (NDR)
region of within its current–voltage curve. Reprinted with permission from [190].
Copyright 2013 Optical Society of America. (c) A spiking photonic neuron that
operates based on a pair of balanced differential photodetector pair driving a laser
followed by an optical amplifier [140]. This device uses incoherent injection, meaning
that the wavelength of the light at the output is different than the wavelengths at the
input. (d) InP-based 2D photonic crystal nanocavity with quantum wells (QWs) [181].
Right, the hysteresis demonstrates the bistable operation depending on the cavity
resonance. Figures 1 and 2 reprinted with permission from Brunstein et al., Phys.
Rev. A 85, 031803 (2012) [181]. Copyright 2012 by the American Physical Society.
(e) Graphene-SA excitable laser fiber, as proposed in Ref. [186]. An erbium-doped
fiber is optically pumped and used as a gain medium. Reprinted by permission from
Macmillan Publishers Ltd: Shastri et al., Sci. Rep. 6, 19126 (2016) [186]. Copyright
2016. (f) An optically pumped III–V semiconductor micropillar with SA acting as a
spiking photonic device. Right, recorded time traces of input perturbations (upper),
and the system responses (lower), when the bias pump is set to be 71% of self-pulsing
threshold. Figures 1 and 3 reprinted with permission from Selmi et al., Phys. Rev.
Lett. 112, 183902 (2014) [184]. Copyright 2014 by the American Physical Society.

While the progress on the design of photonic spiking devices has been rapidly develop-
ing, the experimental studies investigating their cascadability and compatibility with
the existing weighted neural interconnect technologies are still limited. Recently, Nah-
mias et al. [140] have fabricated a photonic chip with multiple spiking neurons to test
their cascadability (see Fig. 3(c) for the proposed nonlinear activation device). Their
neuron-like spiking device model, which comprises a balanced photodetector pair,
a two-section distributed feedback lasers, and a SOA operating based on incoherent
injection, is also compatible with the broadcast and weight scheme presented in Ref.
[136]. Robertson et al. [176] experimentally demonstrated VCSEL-based spiking neu-
rons collectively working to achieve functional processing tasks such as coincidence
detection and pattern recognition by processing ultrafast input signals composed of
∼100 ps pulses. In another effort, Feldman et al. [121] experimentally demonstrated a
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single-layer, all-optical spiking network with four neurons that can successfully clas-
sify four different, binary, 3×5 input images (see Fig. 4(c)). Each neuron has 15 (3×5)
synaptic connections weighted all-optically via non-volatile PCM materials, which
creates a high transmission contrast between amorphous and crystalline states (see
Fig. 2(d)). Instead of semiconductor-based solutions, their all-optical neurons also use
PCM cells embedded inside MRRs together with an incoherent optical injection to
drive the spiking dynamics as demonstrated in Fig. 2(d). In their experimental system,
the value of each pixel of a given input pattern is encoded into the amplitude of a
wavelength channel. These 15 wavelength channels are replicated 4 times and distrib-
uted over 60 (3×5×4) waveguides using a wavelength-division-multiplexing (WDM)
scheme based on MRRs. The input values are then weighted by using PCM embed-
ded waveguides corresponding to the matrix of a 15×4 fully connected network. The
signal inside 15 waveguides reaching to each neuron is then accumulated by an addi-
tional MRR based WDM system and directed onto the PCM cell of the corresponding
neuron, which applies a ReLU-like nonlinearity.

One challenge in photonic spiking neural networks stems from the inefficiency of sim-
ulating these continuous-time, dynamic systems with digital clock-based electronic
computers. This is also the primary reason behind the stronger prominence of other
machine learning modalities. Despite the analogy between the spiking networks and
the biophysical dynamics of the nervous system [170–172] and the established math-
ematical, code-theoretic foundation [192–194] supporting the efficacy of spike-based
elasticity in information encoding and processing [195–204], these systems have, in
general, been partially shadowed by other neural network schemes more compatible
with the digital computing. Future advances in spiking photonic neural network sys-
tems might, therefore, be revolutionary in the field of neuromorphic engineering by
filling a need for fast, analog hardware platforms to study spiking dynamics of the
brain.

Neuromorphic photonic hardware platforms, on the other hand, are also concerned
with the optical implementations of more conventional and widely used neural network
architectures. For instance, Ref. [118] experimentally realized a feedforward, fully con-
nected network using externally trained MZI-meshes and digital O/E/O nonlinearities
following the theoretical model of saturable absorbers. Their system was shown to
achieve 76.7% accuracy for the task of vowel classification, as shown in Fig. 4(a).
Similarly, a photonic chip based on an MZI-mesh that can physically implement 6×6
arbitrary complex-valued matrices has been fabricated in [205], where the authors
compared the real- and complex-valued neural networks for (1) the implementation of
an XOR gate, (2) classification of the Iris dataset, (3) binary categorization of spiral
and circle patterns, and (4) the MNIST image dataset. With a 4-layer complex-valued
fully-connected network with 784, 4, 4, and 10 neurons, respectively, they reported
86.5% accuracy, computed over 200 blind testing samples, for the recognition of
MNIST handwritten digits. This 86.5% accuracy decreases to 82.0% when the same
network architecture is implemented using only real-valued weight matrices highlight-
ing the benefits of the complex-valued neural networks, which has recently attracted
more attention in the deep learning community [206–208]. On the other hand, there
are two drawbacks related to this implementation. First, they implemented nonlinear
activations purely in the digital domain following signal detection with photodetec-
tors, which limits the computational speed. In addition, due to the limited size of their
photonic chip, the weighted connections between the 1st and 2nd layers (784 × 4) as
well as the weights of the output layer (4 × 10) were implemented electronically [205].
Recent proof-of-concept experimental demonstrations also include a photonic recur-
rent [122] and a feedforward neural network [158] (see Fig. 4(c)) designed around the
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Figure 4

Photonic neural network implementations. (a) A fully connected photonic neural
network operates based on MZI meshes to classify vowels [118] (see also Fig. 1(a)).
The nonlinear activations are implemented digitally following an analytical model
describing the transfer function of saturable absorbers. Reprinted by permission from
Macmillan Publishers Ltd: Shen et al., Nat. Photon. 11, 441 2017 [118]. Copy-
right 2017. (b) A fully connected feedforward network architecture realized by the
broadcast-and-weight scheme [136] (as in Fig. 1(b)) that uses microring resonator
(MRR) weight banks depicted here as WEI for photonic neural connections. Each
balanced photodetector pair (BPD) corresponds to the input port of a neuron, thus,
there are four neurons in total shown here. The BPDs integrate the input signal corre-
sponding to summation of the inner product and convert the information into electrical
current to drive an MRR-based modulator to realize nonlinear activation [158]. Figure
1 reprinted with permission from Tait et al., Phys. Rev. Appl. 11, 064043 (2019)
[158]. Copyright 2019 by the American Physical Society. (c) An all-optical spiking
neural network implementation using the PCM-based synaptic connection and non-
linear activation schemes shown in Fig. 2(d) [121]. The network has 4 neurons and
15×4 neurosynaptic connections with self-learning capability. Reprinted by permis-
sion from Macmillan Publishers Ltd: Feldmann et al., Nature 569, 208 (2019) [121].
Copyright 2019. (d) A proposed optical convolution unit [191] where the gray levels of
the input image pixels are mapped to voltages driving the first acousto-optic modulator
array (AOM array 1) and the values of convolutional kernels drive the AOM array 2.
Reprinted with permission from [191]. Copyright 2019 Optical Society of America.

broadcast-and-weight scheme reported in Ref. [136], as well as a CNN architecture
physically realized through acousto-optic modulators [191] (Fig. 4(d)).

3.1c. Reservoir Computing based on Guided Waves and Integrated Optics
One of the first implementations of reservoir computing was conceived by Verstraeten
et al. [209], in an effort to unify the underlying principles of echo state networks
[210] and liquid state machines [211], developed by Jaeger and Haas and Maass
et al., respectively. One of the primary purposes behind these developments was to
circumvent the difficulties in training deep recurrent neural networks (RNNs), which
offer an attractive deep learning model to process time-series data. Typical reservoir
computing systems consist of three major components: one input layer, the reservoir,
and an output layer. The k-dimensional input information is injected into a reservoir
with N-nodes through the input connection matrix, Win of size k × N corresponding
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to the input layer. The reservoir, on the other hand, is represented as a dynamical
system where the connectivity is modeled through a matrix, Wres, of size N × N
with N denoting the number of nodes within the system. Earlier work used randomly
distributed weights for the input, Win, and the internal connections, Wres. In other
words, the training solely optimizes the connections between the nodes of the reservoir
and the output, i.e., Wout, significantly easing the learning process.

In the discrete-time domain, the forward model of a reservoir computing system can
be described as

x[n] = f (Winxin +Wresx[n − 1] + b) (5a)

xout = Woutx[n], (5b)

where the vectors x[n] , xin, and xout denote the internal state of the reservoir at time
instant n, the input information and the corresponding output, respectively. The term b
in Eq. (5) represents a vector of additional biases, whereas the function f is a nonlinear
node-wise activation function. According to the inference model described by Eq. (5),
the internal state of the reservoir is represented as a nonlinear function of the input
information and the previous state of the system, which, in return, points to a fading
memory. Moreover, from Eq. (5b), the result of an inference task, xout, generated as
a response to an input, xin, is simply a linear combination of the reservoir state, x[n].
Therefore, the reservoir can be considered a nonlinear dynamic system of filters that
transforms the data into a higher-dimensional space where the information can be
linearly interpretable.

Although the stochastic gradient descent-based, iterative optimization algorithms can
be used to train the output connections of a reservoir computing system, the common
practice is to compute the Wout in a single step using ridge regression based on the
following algebraic form:

Wout = MoutMT
in[MinMT

in + δI]−1. (6)

In Eq. (6), Min is a matrix that contains the concatenated internal states of the reservoir,
x[n], for a series of different input vectors from the target dataset and Mout is the matrix
of the desired outcomes for a given computational task and the set of inputs in Min .
The multiplicative factor δ ≪ 1 is a small regularization term that provides robustness
against potential ill-posedness and large condition number of the matrix MinMT

in, which
needs to be inverted. Computation of the optimal output connections using a single-
step regression process as depicted in Eq. (6), instead of iterative and computationally
time-consuming gradient-descent-based approaches, enables the reservoir computers
to be trained faster.

Various physical reservoir computing hardware has been developed based on, e.g.,
water ripples [212], tensegrity structures [213], soft bodies [214], and photonics
devices [215–217]. The engineering fields have embraced the concept of reservoir
computing due to its advantageous features regarding its implementation and robust-
ness. First, in theory, any physical system with a sufficiently high-dimensional phase
space can serve as a reservoir [216,218]. Although it depends on the input–output
data spaces and the desired computational task, typical examples of reservoirs operate
based on several hundreds of nodes, which can readily be found in most physical sys-
tems. Second, the forward model within the reservoir does not need to be optimized,
meaning that the physical connection weights within the computing medium do not
need to be adjustable. In fact, there are reservoir computing platforms, where the
connectivity matrix, Wres, and the nonlinear activation f can only be modeled partially
and the characterization of the reservoir response is done purely based on empiri-
cal input–output testing [219]. Furthermore, it has been shown that the connectivity
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within the reservoir does not have to be random in nature and can exhibit a certain
type of brain-inspired topology [220]. Even more simplistic, non-random approaches
such as cyclic reservoirs [221], have also been shown to offer promising computational
performance.

Although the nature and complexity of the internal connections do not pose strong
prerequisite conditions, a physical nonlinear dynamic system must generate the same
output in response to the same input, i.e., it should ideally define a one-to-one nonlinear
mapping between the input and output vector spaces. However, satisfying this condition
in a dynamic system can be particularly challenging as it requires controlling the initial
conditions and the timing of the input injection in an accurate manner. In the case of
using natural and physical engineering systems as computing reservoirs, it could be
very difficult to monitor and alter the internal state of the reservoir. Thus, a nonlinear
physical system is generally required to show the echo state property (ESP) [222,223]
to serve as a reservoir, meaning that its internal state only depends on the sequence of
inputs previously injected into the system. Otherwise, the state of the reservoir must
be controllable by altering external parameters, e.g., electrical signals controlling the
transmission coefficients over the pixels of a SLM [224,225].

In their pioneering work, Vandoorne et al. presented a 16-neuron reservoir based on
passive components such as optical splitter/combiners and waveguides fabricated on a
SOI platform [226]. The neurons were placed over a 4 × 4 grid. Coupling and splitting
at each neuron were achieved by 1 × 2 or 2 × 2 multimode interferometers. Among all
the 16 neurons, one neuron was used to inject input signals, and the intensity levels of
11 neurons were measured by photodiodes as the output of the reservoir. Each neuron
was connected to its adjacent neighbors through a 2-cm waveguide. The purpose of
the relatively long waveguide was to slow down the photonic reservoir’s time scale for
additional flexibility in optimizing the ratio of interconnection delay to bit-rate, which
was scanned between 125 Mbit s−1 and 1.25 Gbit s−1. The reservoir was designed
fully passive and did not have any nonlinearity other than the intensity detection at the
output, which creates signals proportional to the magnitude-squared of the amplitude
of a complex electric field, I ∝ |E|2. They have shown that a 16-node reservoir
computing system operating based on the nonlinear optoelectronic conversion at the
photodetectors is sufficient to perform nonlinear logical operations, e.g., XOR, header
recognition and classification of spoken digits.

A possible limitation of the photonic reservoir presented in Ref. [226] is related to the
node topology, called the swirl architecture [215]. In this node topology, the neuron
connections are non-symmetrical, i.e., some neurons use 1 × 2 splitter/combiners,
and others use 2 × 2 optical splitter/combiners. Although the losses on 2 × 2 split-
ter/combiners are negligibly small, 50% of the input radiation is lost in the nodes that
operate based on 1 × 2 splitter/combiners due to modal radiation. Moreover, the nodes
on the edges of the reservoir have a smaller number of neighbors compared with the
nodes in the middle; therefore, their contribution to the optical mode mixing dynamics
within the reservoir is limited. To circumvent these issues, a 4-port architecture [227]
and Y-junction multimode combiners [228] that avoid the 1 × 2 splitter/combiners
and enhance optical mode mixing dynamics have been proposed. Spatially-distributed
nodes of an integrated photonic reservoir can also be implemented using crystal cav-
ities [229], MRRs [230,231], or SOAs [119]. However, experimental verification and
characterization of photonic reservoirs taking advantage of these technologies have
yet to be demonstrated.

Although spatially distributing the optical computing nodes is the most straightfor-
ward and intuitive way to realize a photonic reservoir, it also poses some fabrication
challenges. Alternatively, one can use a single nonlinear photonic node combined with
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a time-delayed feedback line as a reservoir minimizing the hardware complexity of
the photonic reservoirs. The delay-line-based reservoir computing concept was first
developed by Appeltant et al. and demonstrated using electronic circuits [232]. Unlike
the spatially distributed reservoir systems, this concept relies on a single hardware
node that is multiplexed in the time domain with the help of a delayed feedback
loop; hence, the reservoir nodes in these systems are sometimes referred to as virtual
nodes or virtual neurons. While the delay-line-based single-node computing offers
various advantages mainly due to its minimalistic approach regarding the hardware
and fabrication requirements, it also intrinsically restricts the node topology within the
reservoir to a circular graph where each virtual node interacts with only two neighbors.
Furthermore, the idea of delay-line-based computing essentially involves a trade-off
between space and time. Assuming reservoirs with N nodes, the delay-line-based
system must be processing N times faster than its spatially distributed counterpart to
compute a given task at the same speed. Despite these limitations, on the other hand,
the concept has attracted a significant amount of attention within the optics and pho-
tonics community, as it offers a way toward implementing optical machine learning
systems with only a single computational primitive that can be better optimized and
more accurately controlled compared with photonic neurons in multinode, spatially
distributed reservoir computing systems.

The experimental realizations exploiting the delay-line-based computing toward pho-
tonic processors have mainly been designed around optoelectronic ring oscillators
(OEROs) [233–239]. In such systems, the optical part typically consists of a laser
source, a long fiber spool providing the time-delayed feedback, and a broadband
Mach–Zender modulator producing the nonlinearity in the form of sin2 (see Fig. 5(a)).
The fundamental architecture shown in Fig. 5(a) has been initially demonstrated
by Larger et. al. [233] and Paquot et al. [234]; whereas the former focused on its

Figure 5

Delay-line-based photonic reservoir computing schemes. (a) Building blocks of a
typical optoelectronic single-node delay-line based reservoir computing system. The
state variable in the feedback loop is x[n], corresponding to the voltage at the radio
frequency input of the electro-optic Mach–Zehnder modulator. (b) Building blocks
of a typical all-optical single-node delay-line based reservoir computing system. The
state variable in the feedback loop is the complex envelope of the electrical field at the
output of the laser E[n]. PC, polarization controller; MZM, Mach-Zehnder modulator;
DL, delay line; PD, photodiode; EC, electronic coupler; c, circulator.
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applications in speech recognition and time-series prediction, the latter demonstrated
nonlinear channel equalization and nonlinear autoregressive moving average opera-
tions. Since these earlier studies, numerous advances on delay-line-based reservoir
computing systems have been reported, including time-interleaved reservoirs process-
ing multiple tasks [240], OEROs oscillating in wavelengths generated by a tunable
laser source [237], and multiloop [241] as well as recurrent [242] reservoir computing
architectures, where the output is reinjected into the reservoir. Moreover, Soriano et
al. have experimentally demonstrated that using a six-level mask signal, instead of a
binary square wave, can increase the robustness of delay-line optoelectronic reservoir
computing systems against the quantization noise at the input and output. Duport et
al. have developed a different approach to circumvent the noise and bit rate limitations
of OERO-based reservoir processors and they developed a fully analog optoelectronic
computing system [235]. For the application of these systems toward conventional
machine learning tasks, e.g., speech recognition, the work of Larger et al. represents a
major advancement, where they managed to reach the processing rate of one million
words per second with only 0.04% and 0.6% word error rate on TI46 and AURORA-
2 datasets by using a differential phase shift key (DPSK) controlled Mach–Zehnder
demodulator along with two integrated optical phase modulators to generate non-local,
nonlinear phase-to-intensity conversion dynamics within the reservoir.

Although the OERO-based reservoirs take advantage of photons in information pro-
cessing, their processing speed is compromised by the electronic components used in
the feedback loop. This limitation has been addressed by developing all-optical time-
multiplexed reservoir computing systems [243–252]. In all-optical configurations,
the electronic components on the feedback arm of the OERO reservoirs (filter and
amplifier) are replaced by SOAs [244,251], semiconductor lasers [245,248,249,253],
VCSELs [252], diode-pumped erbium-doped microchip lasers [250], quantum cas-
cade lasers (QCLs) [254] and even passive elements, e.g., coherently driven passive
fiber cavities [246] and semiconductor saturable absorber mirrors, [247] offering low-
loss, power-efficient solutions (see Fig. 5(b)). Compared with the processing rates of
their optoelectronic counterparts in the range of megabytes per second, the all-optical
single-node reservoirs can offer significantly faster operation, achieving information
processing rates around several gigabytes per second [245]. In addition, the faster
operation also enables the system to create more virtual nodes within the reservoir for
a given time delay [216].

The spatiotemporal mode mixing dynamics of waveguides and fibers have also been
investigated as a third alternative to realize photonic reservoir computing systems.
Mesaritakis et al. [255] numerically demonstrated that a single polymer waveguide
could serve as a computing medium where the excited transverse modes act as the
computational nodes of a reservoir. The input in their system is a light beam modulated
with the help of a SLM coupled into the waveguide. Different modulation patterns
over the light modulator excite various transverse modes supported by the waveguide
geometry. According to their forward model, the air–polymer interface creates a short
fiber cavity. In addition, they assumed a longer external cavity created by the use of
beam splitter surrounding the waveguide. The presence of these two cavities ensures
that the polymer waveguide, when used as a reservoir, exhibits fading memory. The
output layer was implemented digitally following the detection of the speckle pattern
generated by the superposition of all the excited modes of the waveguide with the help
of a focal-plane array and an imaging system. A similar approach was reported in the
experimental demonstration presented in Ref. [256], except that, instead of a polymer
waveguide, the authors used a multimode optical fiber as the computing medium.
They investigated the performance of their system in classifying audio signals from
publicly available Japanese vowel dataset and reported 81.5% test accuracy, for which
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a linear classifier can only achieve 43.2%. Finally, Tegin et al. expanded the fiber-
based reservoir computing architecture to process both the spatial and spectral modes
of short (10 ps) optical pulses modulated with the help of an SLM by using graded-
index multimode fiber (GRIN MMF) and a lens-based projection system [257]. They
experimentally demonstrated the performance of their system on regression tasks such
as age estimation based on face images, classifying audio digits and x ray lung images
for COVID-19 diagnosis.

3.2. Free-Space Optics and Engineered Diffractive Materials for Statistical Inference
and Computing

In the previous section, we have presented and discussed the advances in optical
computing and neural network architectures that are implemented based on integrated
photonics. Although PIC technology has shown substantial progress addressing key
design aspects, e.g., the implementation of all-optical nonlinear activation functions
[121], toward realizing deep learning accelerators and neural networks, there are still
some challenging engineering problems ahead to compete with electronic computing.
As an example of some of these challenges, Zhang et al. [205] implemented the weights
of the input and output layers of a three-layer neural network in the electronic domain
because the effective number of interconnects on their photonic chip is not large
enough to accommodate the entire inference task. This example points to the potential
difficulties that might arise in the future of PICs toward realizing much wider and/or
deeper neural network architectures while maintaining relatively compact footprints.

In an alternative approach, optical neural networks and the related computing systems
can be placed directly in the path of propagating light waves before they are collected
by an optoelectronic sensor. It is already known that FTs and fractional FTs can be
performed using simple optical components, e.g., thin lenses, together with free space
sections; this capability enables the all-optical implementation of some mathemati-
cal operations such as convolution and matrix–vector products [60,61,82]. With the
development of some advanced material engineering and design modalities involving,
e.g., metamaterials, plasmonics, and dielectrics, the associated fabrication techniques,
e.g., two-photon polymerization [4,5] and additive manufacturing, along with the wide
availability of GPUs, it has now become more feasible to precisely shape the optical
wave field with task-specific, custom optical modulation surfaces without any phys-
ical wavefront recording as in previous holographic approaches [64,65], paving the
way for efficient, parallel, fast, and scalable all-optical information processing systems
[39,258,259]. Hence, intense computations that include machine learning tasks can
be realized within a compact form factor, spanning, e.g., a few tens of wavelengths
in the longitudinal direction. In Section 3.2.1, we present some recent results on free-
space-based all-optical computation and statistical inference platforms that utilize
diffraction of light. In addition to these all-optical processors and machine learning
architectures, diffractive optical neural networks can also serve as front-end computing
engines for the jointly trained hybrid (optical–electrical) network systems reducing
the computational burden of the back-end electronic networks, potentially enabling
advanced machine vision applications with low-pixel count, low-cost optoelectronic
sensor arrays. We present some of the emerging results on such hybrid networks in
Section 3.2.2.

3.2a. All-Optical Inference and Computing Using Free-Space Optics and Engineered
Diffractive Media

The Rayleigh–Sommerfeld diffraction formulation has been shown to yield exact
solutions for the propagation of optical waves inside an isotropic and homogeneous
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medium both for far- and near-field diffraction [60,260,261]. According to this formu-
lation, diffraction of light inside an isotropic and homogeneous medium (free-space)
can be formulated as a shift-invariant linear system with an impulse response of

h(x, y, z) =
z
r2
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2πr
+

n
jλ

)︃
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j2πnr
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x2 + y2 + z2, n and λ are the refractive index of the medium and the
wavelength of the propagating light, respectively, and j =

√
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depicted in Eq. (7) satisfies the Helmholtz equations and represents the diffracted
optical field in an exact manner within the assumptions of the scalar wave theory. If
the target optical system operates within the small-angle regime, this exact diffraction
formulation can be simplified and the light diffraction phenomenon can be approx-
imated based on the Huygens–Fresnel principle [60]. Specifically, when the term
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also known as Fresnel kernel [60]. Under this assumption, given a thin lens for which
the optical modulation can be described as a quadratic phase function, a FT relationship
between the two focal planes of the lens can be established. This Fourier transforming
property of thin lenses, based on the Fresnel approximation, has been exploited to
compute convolution operation and used as one of the building blocks of some of the
earlier optical computing schemes leading to numerous applications, including road
sign and face recognition systems [66,86,87,95]. On the other hand, this relation is only
valid under Eq. (8) rather than Eq. (7). The difference is that whereas Eq. (7) computes
the interaction between all the modes supported by free space, Eq. (8) assumes a limited
spatial bandwidth under the Fresnel approximation. Limiting the space-bandwidth
product of the propagating waves in an optical computing system would make it highly
challenging to fabricate compact optical processors for large-scale, high-throughput
computation over large fields of view.

A recently emerging optical computing platform without the use of traditional lenses
is based on successive diffractive layers that are engineered and optimized to collec-
tively compute a function through light-matter interaction. This framework is termed
diffractive deep neural networks (D2NN) [39,40,262–264] and it uses deep learning
to design a series of passive diffractive surfaces to all-optically compute a given sta-
tistical inference task using a compact, thin optical platform that spans a few tens
of wavelengths axially [39]. Given a machine learning task, D2NN formulates the
problem from the perspective of devising a black-box optical processor that aims to
approximate the desired input–output transformation function, e.g., classification of
input objects (see Fig. 6). The forward model of this 3D black-box is described over the
complex-valued transmittance coefficients, t(xi, yi, zi) = αi exp(jθi), of the diffractive
features/neurons that occupy predetermined locations inside the computing volume,
(xi, yi, zi), as shown in Fig. 6(a). These diffractive neurons are connected based on the
light diffraction depicted by the impulse response in Eq. (7) (taking into account all
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the propagating modes in space, without any paraxial approximation) and they are
trained and optimized to compute a given inference task by collectively processing the
light waves propagating through the diffractive optical network.

Similar to the training of electronic neural networks, at every iteration, a batch of
inputs are virtually propagated through the diffractive optical network model using
a computer environment, and the complex-valued transmittance of each diffractive
neuron is updated according to the gradient of its parameters with respect to a loss
function that is specifically tailored for the desired inference task. Once the training
is finished using a computer, the transmissive (or reflective) surfaces constituting the
diffractive network are fabricated to physically form the all-optical processor, which
does not require any power to compute, except for the illumination light. The suc-
cess of these physically formed, passive optical inference platforms was demonstrated
using 3D-printed diffractive layers operating at terahertz wavelengths with, e.g., 0.2
million diffractive neurons fabricated over 5 successive layers [39,40,265] as illus-
trated in Fig. 6(c). These earlier demonstrations reported diffractive optical networks’
generalization and statistical inference capabilities for object classification tasks. For
example, blind testing accuracies as high as >98% and >90% have been reported to
classify amplitude-encoded handwritten digits and phase-encoded fashion products,
respectively [266]. To reach these classification accuracies for an optical computing
hardware, Li et al. [266] implemented a series of design advances compared with the
original D2NN architecture [39]. The most notable of these changes is a differential
detection scheme shown in Fig. 6(a). The all-optical classification framework reported
in Ref. [39] assigns one output detector to each data class in the target dataset, as
shown in Fig. 6(b). The final inference decision is given based on the maximum signal
detected among all the output detectors, i.e., max(I), where I represents the detected
optical signals at the output plane of the diffractive network. With the differential
scheme depicted in Fig. 7(a), Ref. [266] doubles the number of optical detectors at the
output plane and assigns a pair of detectors to each data class representing the positive,

Figure 6

Diffractive deep neural networks (D2NN). (a) The forward optical model of diffrac-
tive networks parameterize a given machine learning task as a function of the
complex-valued transmittances of diffractive neurons on a series of layers connected
to each other via light diffraction [39]. The amplitude and/or phase values of the trans-
mittance over each neuron are trained using deep learning based on a task-specific loss
function. (b) A diffractive all-optical handwritten digit classifier infers the data class
of an input object (in this case the digit “5”) by routing most of the incoming photons
onto the corresponding class detector. (c) 3D-printed diffractive optical network that is
fabricated for the experimental demonstration of all-optical object classification based
on the D2NN framework. From Lin et al., Science 361, 1004 (2018) [39]. Reprinted
with permission from AAAS.
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Figure 7

Advances in the inference and generalization capacity of diffractive optical net-
works. (a) Schematic of diffractive optical networks using differential detection
scheme that assigns a pair of detectors to each data class. The class scores are com-
puted based on the normalized difference of the optical signals collected by each
pair of detectors [266]. (b) Schematic diagram of the class-specific diffractive optical
network system design proposed in Ref. [266]. The classes of a target dataset are
divided into subsets and assigned to different diffractive optical networks that are
trained jointly. Each diffractive network in the system is trained to solve a simpler
classification problem with reduced number of classes [266]. (a) and (b) Reprinted
from Li et al., Adv. Photonics 1, 046001 (2019) [266]. Copyright 2019 SPIE. (c)
Schematic diagram of an ensemble of diffractive networks, as proposed in Ref. [267].
The final ensemble class score is computed through a weighted summation of the
differential detector signals synthesized by the individual diffractive networks within
an optimized ensemble [267]. Reprinted by permission from Macmillan Publishers
Ltd: Rahman et al., Light. Sci. Applicat. 10, 14 (2021) [267]. Copyright 2021.

I+, and negative, I−, parts of the final class scores. Accordingly, in this differential
design the max operation is computed over the normalized differential optical signals,
i.e., I+−I−

I++I− . This simple adaptation in the output plane configuration brings significant
improvement in the all-optical classification accuracies at the expense of using twice
as many detectors at the output plane of a diffractive network; for example, for MNIST
dataset, 20 detectors (10 I+ detectors and 10 I− detectors) are needed for a differential
D2NN design [266].

To further improve the inference capacity of diffractive optical networks, several
works directly adapted a few related ideas and concepts from the machine learning
literature, e.g., class-specific network training [266] (Fig. 7(b)), ensemble learning
[267] (Fig. 7(c)), and skip network connections [268]. In the class-specific design
scheme [266], the data classes in a target dataset are divided into subgroups. If, for
example, the target dataset is handwritten digits (MNIST) with a total of 10 classes,
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then these are separated into P subgroups. Each subgroup is assigned to a different
diffractive network, i.e., each diffractive network tries to solve a reduced classification
problem with 10/P individual data classes. The class scores detected at the output
plane of each diffractive network are combined to determine the network inference
based on max(I) (see Fig. 7(b)). Compared with a single diffractive network-based
inference, this class-specific design strategy with P=10 results in ∼1.5%, 2.5%, and
∼6% increase in the blind testing accuracy for the classification of digits, fashion
products, and CIFAR-10 datasets, respectively.

In another work, Rahman et al. [267] applied ensemble learning techniques for design-
ing a diffractive optical network system. Towards this end, 1252 different D2NN
classifiers were trained for the more challenging task of classifying CIFAR-10 images.
Unlike the previous class-specific design approach [266], these D2NN models were
trained independently, i.e., without any feedback between any of the networks dur-
ing their training. The diversity of the diffractive optical networks in the ensemble
was accomplished by engineering unique spatial filters for each model. Each filter
was placed between the input plane and the first trainable layer of the corresponding
diffractive network (see Fig. 7(c)). Following the training phase, they performed a
pruning algorithm to reduce the number of diffractive optical networks in the final
system extracting optimized combinations of diffractive networks that can achieve
improved classification accuracies with a limited number of models working together.
Based on this ensemble learning scheme, blind testing accuracies of 61.14%±0.23%
and 62.13± 0.05% were achieved with 14 and 30 diffractive networks selected through
an evolutionary pruning algorithm [267], reporting the highest classification accuracy
numbers for the CIFAR-10 dataset reported with a system based on passive diffractive
networks.

Beyond diffractive optical networks that classify objects using light diffraction through
passive materials, the D2NN framework has also found a plethora of other applications,
including the categorization of human action images [269], multiview 3D object
recognition [270], image segmentation, salient object detection [271], overlapping
phase-object classification and image reconstruction [272]. Numerous research groups
have shown successful experimental demonstrations of diffractive networks fabricated
with different methods, operating at various parts of the EM spectrum. Recently, Goi et
al. reported an application of the D2NN framework for the deep-learning-based design
of an optical on-chip image encryption engine directly integrated on top of an infrared
(IR) CMOS sensor [273]. They managed to create a neuron density of 500 million/cm2

by fabricating diffractive neurons of size ∼416 nm based on a nano-printing method
that uses femtosecond lasers and two-photon polymerization [273]. Optical logic
gates, such as NAND, AND, OR, and NOT have also been implemented all-optically
using diffractive optical networks [274,275]. Reporting promising analysis on the
cascadability of the D2NN-based logic gates, Ref. [275] presented the design of an
all-optical half-adder composed of five cascaded diffractive NAND networks, each
with an identical design.

SLMs have also been used, instead of passive diffractive surfaces, within the D2NN
framework leading to reconfigurable and adaptive designs. The main advantage of
replacing the passive layers with dynamic electro-optic modulators is the adaptability
to erroneous physical conditions through transfer learning [269] or in-situ backprop-
agation [276]. As a compromise, though, these dynamic electro-optic modulators
increase the complexity and power consumption of the underlying diffractive network
system compared to other solutions based on entirely passive components. There are
also reported D2NN designs which use meta-atoms/metamaterials, e.g., TiO2 nano-
post on glass [277], as the computational precursor of a diffractive optical network;
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however, an experimental diffractive network system based on metasurfaces (with
sub-wavelength structures) is yet to be demonstrated.

The computational capabilities and inference/generalization capacity of diffractive
optical networks composed of linear light modulation surfaces have been investigated
in Ref. [263]. This theoretical analysis showed that for a diffractive optical network
connecting an input field of view of size Ni to an output field-of-view of size No, the
dimensionality of the solution space of diffractive optical networks increases linearly,
proportional to the number of diffractive neurons, N, working collectively within the
diffractive system, up to a limit dictated by NiNo. The same analysis also showed that
if all N neurons reside over a single diffractive layer, the efficiency of deep-learning-
based training decrease substantially compared with the case where N neurons are
distributed over two or more diffractive surfaces that are successively placed. In
other words, for a given statistical inference task, e.g., classification of CIFAR-10
images, diffractive optical networks with a larger number of layers can achieve higher
blind testing accuracy, diffraction efficiency, and optical signal contrast [263], despite
using linear optical materials. This behavior is also intuitively similar to the case in
electronic neural networks. Although the universal approximation theorem proves that
a neural network having a single hidden layer (with an appropriate nonlinear activation
function) is a universal function approximator, in practice the gradient-based learning
has a hard time finding the optimal parameters for shallow networks. In addition, the
number of neurons required in a shallow network architecture increases exponentially
to reach the same generalization performance of a deeper network. Therefore, in
both electronic networks and diffractive optical networks, given a certain number of
neurons, it is a better design practice to distribute these available neurons over deeper
network architectures [263,278].

In addition to all-optical statistical inference tasks, the D2NN framework can also
be utilized to design diffractive optical networks performing various deterministic
all-optical computing tasks [278–280]. For applications in optical communications,
Huang et al. [280] designed diffractive optical networks that can achieve three modes
of optical modulation, namely, orbital angular momentum-shift keying (OAM-SK),
OAM multiplexing and demultiplexing, and OAM-mode switching. Kulce et al. [278],
on the other hand, reported D2NN-based linear transformations and demonstrated that
the deep-learning-based training of diffractive optical neural networks can be used to
synthesize an arbitrary, complex-valued linear transformation between an input and
an output field of view. Some of these arbitrarily selected linear transformations per-
formed using diffractive networks included unitary, non-unitary, and non-invertible
randomly generated complex-valued matrices, 2D discrete FT, 2D permutation oper-
ations, and high-pass filtered imaging, highlighting the broad scope of all-optical
computing applications that can benefit from diffractive networks.

Beyond enabling coherent all-optical processors that utilize both the phase and
amplitude information of light, the D2NN framework has also been extended to
process temporally incoherent, broadband light to compute machine learning tasks
all-optically [40]. The broadband computational capabilities of diffractive optical net-
works might potentially bring deep-learning-driven solutions addressing problems
pursued for a long time in the field of computational imaging and sensing fields.
One example is single-pixel machine vision. Although there are various approaches
toward designing single-pixel imaging systems, these often rely on time-multiplexed
data collection schemes, mechanical and/or electrical scanning, and computationally
expensive information recovery algorithms, hindering their practicality and utiliza-
tion in many applications. Incorporating the material dispersion properties into the
deep-learning-based forward training model, Li et al. [40] have demonstrated diffrac-
tive optical networks that enable single-shot, single-pixel machine vision systems by
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simultaneously processing multiple wavelengths to classify objects, e.g., handwritten
digits [40]. In this single-pixel D2NN-based machine vision framework, the broad-
band input light transmitted through (or reflected by) an input object is processed
by specially designed diffractive layers trained to encode the spatial information of
input objects into the intensity of the spectral components collected by a single-pixel
detector aperture located at the output plane, where each wavelength represents one
data class. The success of this framework has been experimentally demonstrated by
classifying handwritten digits all-optically with a single pixel. Blind testing infer-
ence accuracies as high as 96.82% were reported with this D2NN-enabled spectrally
encoded single-pixel machine vision system. The broadband light processing capabil-
ities and the deep-learning-based, data-driven training of diffractive optical networks
have also been used for solving inverse optical design problems such as spatially-
controlled wavelength-demultiplexing [41] and optical terahertz pulse shaping [42],
which is discussed in more detail in Section 4.1.5.

One of the key areas that would significantly enhance the inference capacity and
function approximation power of diffractive optical networks is potential nonlinear
activation functions that can be embedded in the signal pathway between the input
and output fields of view. For this aim, there have been some emerging approaches to
introduce nonlinearity in diffractive optical networks [268,269,271,281]. Some of the
proposed implementations of optical nonlinearities in Refs. [268,269,271] rely on pho-
todetectors and/or sensor arrays. They also require the use of dynamic, reconfigurable
electro-optic modulation devices, which might result in an inferior computational
speed. Zuo et al. [281], on the other hand, has shown an all-optical nonlinear acti-
vation function based on electromagnetically induced transparency (EIT), which is a
light-induced quantum interference effect among atomic transitions. This nonlinear
neuron activation platform is based on 85Rb atoms in a 2D magneto-optical trap. These
atoms were maintained in the ground state, |1 and the atom cloud was illuminated
with two laser beams propagating in opposite directions. Although the coupling laser
beam, which represents the input to the neuron, is set to be in resonance with the
atomic transitions |2 → |3, the counterpropagating probe beam is in resonance with
|1 → |3 transitions. In the absence of a coupling beam, the atom cloud is opaque for
the transmission of the probe beam. When the coupling beam is present, the relation
between the intensity of the coupling beam, Ic

in, and the output probe, Ip
out can be

written as

Ip
out = Ic

inexp
(︃
−OD

4γ12γ13

Ω2
c + 4γ12γ13

)︃
, (9)

where OD and γij denote the atomic path depth for the transition |1⟩ → |3⟩ and
dephasing rate between the states |i⟩ and |j⟩, respectively. The term Ωc represents
the coupling field Rabi frequency, and its square is proportional to the coupling laser
intensity. The development of such all-optical nonlinear activation models that are
much easier to fabricate and align/maintain, scalable, and efficient, is of particular
importance for the future of optical computing platforms but remains an important
engineering challenge in the field.

Physical implementation errors and sources of noise present yet another major chal-
lenge in these all-optical computing systems and diffractive neural networks. Although
this is a common problem affecting all analog computing devices including, e.g., elec-
tronic VLSI systems, there are some error sources specific to the optical computing
systems using wave propagation and engineered media, such as mechanical misalign-
ments and fabrication inaccuracies/imperfections. One way to tackle these potential
issues that would prevent the diffractive optical networks and other free-space optical
computing systems from reflecting their true performance in practical applications is
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to replace the passive modulation surfaces with reconfigurable electro-optic modula-
tors that can be calibrated in situ [269,276]. On the other hand, the use of dynamic
modulators could result in a significant increase in the system complexity, cost, and
power consumption. Alternatively, it has been shown that the evolution of diffractive
surfaces during the deep-learning-based training of a diffractive network can be regu-
larized and guided toward diffractive solutions that can maintain the inference accuracy
despite mechanical misalignments [265]. This misalignment-tolerant diffractive net-
work training strategy models the layer-to-layer misalignments, e.g., translations in
x, y, z, over random variables and introduces these errors as part of the forward optical
model, inducing “vaccination” against such system inaccuracies and/or variations.
In their proof-of-concept experiments, the authors fabricated and compared a vacci-
nated diffractive network with a non-vaccinated one, trained for the classification of
handwritten digits. As shown Fig. 8, misaligning the 3rd diffractive layer in a 5-layer

Figure 8

Experimental demonstration of vaccinated diffractive optical networks (v-
D2NNs) [265]. (a) Schematic diagram of a diffractive optical network that is vaccinated
against both lateral and axial layer-to-layer misalignments. (b) The positions of the
center of the 3rd diffractive layer during the experimental testing. The central location
corresponds to ideal placement (zero misalignment), whereas the remaining 12 posi-
tions represent various degrees of misalignment of the 3rd layer with respect to the
others. (c) 3D-printed unvaccinated design that failed to infer the correct data class
23 times out of in total 78 measurements over 6 different test objects (13 positions
of the 3rd layer for each object). The 3D-printed, vaccinated design shown in (a) that
failed only twice for inferring the input object class, meaning that in the remaining
70 physically misaligned network constructions, the final class assignments were all
correct, demonstrating the success of “vaccination.” Reprinted from Mengu et al.,
Nanophotonics 9, 4207 (2020) [265]. Copyright 2020 De Gruyter.
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all-optical classification network to 12 different locations around its ideal position, the
authors measured the intensities collected by the class detectors at the output plane of
the diffractive network for 6 different input test objects/digits never seen by both of
the networks. Although both of these diffractive network designs predicted the object
classes correctly when the 3rd diffractive layer is at its ideal location, in the remaining
72 measurements, the non-vaccinated diffractive network failed to reveal the correct
class 23 times, whereas the vaccinated network managed to infer the correct object
class in 70 measurements, failing only twice, highlighting the efficacy of the vaccina-
tion strategy. The same training scheme can also be extended to mitigate the effects of
other potential error sources, e.g., fabrication inaccuracies [282] and optoelectronic
detection noise, improving the robustness of diffractive networks toward practical
applications without requiring bulky and expensive electro-optic modulator systems.
Based on a similar training approach, diffractive optical networks composed of passive
layers can also adapt to random variations at their input in the form of object scaling,
shift, and rotation [283].

D2NN framework has introduced a unifying perspective on deep learning, wave optics,
and light–matter interactions and, with its broad applicability, it has fueled a large
number of research efforts as outlined previously. On the other hand, in addition to
diffractive optical networks, there exist a variety of recently proposed optical comput-
ing techniques that also exploit waves within engineered media. For instance, the wave
physics of an inhomogeneous medium can act as an analog RNN [284]. By optimizing
the spatial distribution of two or more types of materials based on an adjoint method
[35], it is possible to use wave dynamics to classify vowels mimicking a RNN [284].
A similar approach has also been shown in [285], where the authors designed a non-
linear nanophotonic medium of size 80λ by 20λ. By numerically solving Maxwell’s
equations and optimizing the locations of air holes within the medium, the authors
demonstrated a system achieving ∼79% blind testing accuracy for the classification of
handwritten digits.

In a recent work, Hamerly et al. proposed another innovative approach to optical com-
puting. They implemented ultra-low-power matrix–vector multiplication architecture
using two lens-based imaging systems combined over a beam splitter and balanced
homodyne detection [286]; see Fig. 9. In their experimental system, the input vector x
and the weight matrix A are generated by a master laser feeding two grating antennas,
i.e., point sources, on two arms of a beam splitter. The entries of the input vector x are
encoded in the complex-valued amplitudes of a pulse sequence, and it is replicated over
an array of point sources (see Fig. 9(b)). On the second arm of the beam splitter, each
point source is used to create the rows of the matrix also encoded as a time-domain
pulse sequence. The light waves coming from these point sources are superposed over
a beam splitter, as shown in Fig. 9(c). For instance, in the case of a vector–vector
inner product with one point source on the arm corresponding to the weight matrix A,
for a given time point j, the field on the beam splitter can be written as xj + Aij. This
field is then projected on two detectors creating the intensities, I+ = 0.5∥xj + Aij∥

2 and
I− = 0.5∥xj − Aij∥

2. The difference between these intensity values can be written as
I+ − I− = 2Re[A∗

ijxj], which is proportional to the multiplication of the weight matrix
and the vector entries. An important design consideration in such an optical computing
scheme is that the total path length from the grating antennas to the detectors must be
shorter than both the coherence length of the laser and the cτpulse, where c and τpulse
denote the speed of light and the duration of a pulse in the time sequences representing
the entries of x and rows of A.

Beyond these neural network implementations, diffractive surfaces and free-space
wave propagation have also been harnessed to realize optical reservoir computing



242 Vol. 14, No. 2 / June 2022 / Advances in Optics and Photonics Review

Figure 9

Implementation of a large-scale optical neural network based on imaging optics
and homodyne detection [286]. (a) Feedforward neural network architecture with K
layers. (b) The proposed implementation of the multiply-accumulate (MAC) operation
(matrix–vector multiplications) on each layer based on time-multiplexing and repli-
cating the entries of the input vector x over a series of point sources driven by the same
master laser. Each row of the matrix A is converted to a time-domain signal emitted by
a nanoantenna/point source, therefore, the number of point sources on the matrix arm
of the beam splitter is equal to the number of rows. The matrix–vector multiplication is
achieved through homodyne detection at the output plane. According to the proposed
optical network design scheme, nonlinear activation is applied electronically following
the homodyne detection. (c) Two imaging systems are combined over a beam splitter
to superpose the optical signals representing the input vector x and the weight matrix
A. For a given time point, homodyne detection at the output detector array generates
signals that are proportional to the multiplication of the entries in vector x and the
weight matrix A , i.e., A∗

ijxj; consequently, time integral of the collected signal at the
ith homodyne detector reveals the inner product between the ith row of matrix A and
the input vector x. ). Reprinted under a Creative Commons license.

http://creativecommons.org/licenses/by/4.0/
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Figure 10

Implementation of a reservoir computing system based on the diffractive coupling
of wave fields in free space [225]. The state of the reservoir encoded on the SLM
is imaged onto the camera (CAM) through a polarizing beam splitter (PBS) and
a diffractive optical element (DOE). A digital micromirror device (DMD) creates
a spatially modulated image of the SLM’s state corresponding to the output layer
connections in a reservoir system i.e., WDMD = Wout. The field right after the DMD is
focused onto a detector integrating the weighted internal reservoir state to generate the
output signal [225]. Reprinted with permission from [225]. Copyright 2018 Optical
Society of America.

systems. Compared with their counterparts implemented through PICs, time-delay
feedback lines, and waveguides, the generation of a reservoir through the diffractive
spatial coupling of propagating wave modes provides a significantly higher number of
computational neurons to be accommodated. Although most delay-line-based systems
typically operate using a few hundred neurons, diffractive systems can provide more
than 10,000 nodes [287]. On the other hand, most of the implementations reported to
this date have relied on electronic feedback mechanisms and digitally implemented
nonlinear activation functions [287–289], significantly hindering the computational
speed and power consumption of these systems. To offer a solution to this issue, Ref.
[224] investigated the coupling dynamics of a reservoir that has 64 nodes in the form of
an 8 × 8 VCSEL array, a DOE, and a reflective SLM. They set the separation between
the DOE and the SLM to ensure spatial overlap between the higher diffraction orders
and the main order generated by the DOE over the surface of the light modulator. The
use of a reflective light modulator creates the optical feedback mechanism required
by the reservoir computing, and in one loop, the light emitted by the VCSEL array
impinges over these sources after making a double pass through the DOE. While
utilizing one-half of the SLM for controlling the reservoir states, the other half was
used for the weighted integration of output signals focused onto a detector.

Recently, the concept of creating internal reservoir connections based on diffractively
coupled light sources has been extended to accommodate ∼2000 neurons for its
application in reinforcement learning [225] (see Fig. 10). Unlike the previous approach,
the authors did not use a VCSEL array, instead fed the information into the system
through a single node. According to their system design shown in Fig. 10, the internal
reservoir connections was realized by the light beam making a double pass through a
DOE, hence, Wres = WDOE. The state of the reservoir, on the other hand, was defined
as the optical intensity over the polarizing beam splitter (PBS). The output layer
connections, Wout, were implemented using a digital micro-mirror device (DMD).



244 Vol. 14, No. 2 / June 2022 / Advances in Optics and Photonics Review

They demonstrated the success of their system by performing Mickey–Glass time-
series prediction based on 2025 reservoir nodes. Although they managed to achieve
impressive NMSE values for the application of time-series prediction, direct use of the
optical reinforcement learning architecture shown in Fig. 10 in practical applications
could be challenging due to its power consumption, cost, complexity and∼5 Hz system
update speed.

Although these all-optical information processing and neural network architectures
that take advantage of free-space optics generally allow low-latency, low-power, and
highly parallel computing capabilities, their current inference performance is largely
crippled by the lack of practical, low-power, and scalable nonlinear activation functions
as discussed earlier and emphasized in the literature (see, for example, the Supplemen-
tary Materials of [39]). Therefore, their generalization capabilities might be insufficient
for the end-to-end all-optical computing of more complex machine learning tasks, e.g.,
multitask inference systems. Some of these more challenging cases can be addressed
by integrating these optical computing systems as analog front-end processors with
electronic (back-end) neural networks, creating hybrid (optical–electronic) systems
working in collaboration. On the other hand, the formation of hybrid systems can
also benefit electronic neural networks that have already become an integral part of
modern-day machine vision systems. Specifically, with task-specific, trainable diffrac-
tive optical surfaces replacing the standard lens-based imaging optics used in cameras,
next-generation machine vision systems could become more resource-efficient and
faster. This unique opportunity is discussed in the next subsection.

3.2b. Optical Neural Networks as Analog Front-End Processors Integrated with Electronic
Back-End Neural Networks for Hybrid Machine Vision Systems

In a conventional machine vision system, there are three fundamental building blocks:
(1) a lens-based imaging optics (front-end), (2) an optoelectronic sensor array, and (3)
electronic neural networks (back-end). Among these different parts, there is a clear
division of labor in which the optical part directs the incoming light to form the image
of a scene that is collected and digitized by the optoelectronic sensor array. Finally, the
information is digitally processed for various inference tasks by subsequent electronic
neural networks. From a machine learning perspective, the same components can
also be interpreted as an encoder–decoder system [103]: the optical part synthesizes
a representation of the scene, its image, and the electronic neural network extracts,
processes and/or decodes the information to achieve the desired machine learning
task(s). Based on this point of view, the intensity of the light field collected by a
focal-plane array does not have to be the exact replica of what a human eye would see
or interpret, but rather it should correspond to a representation of the input that can be
decoded by a jointly-trained back-end electronic network.

From this perspective, the optical computing systems replacing the traditional imaging
optics can be seen as front-end processors that work alongside the back-end electronic
neural networks for improving, for example, the computational speed, frame rate,
memory requirements, and power consumption of machine vision systems. Over the
past few years, several hybrid network systems have been presented demonstrating
object recognition and/or task-specific computational imaging tasks. Examples of
object classification systems, where the optical front-end network significantly reduces
the resolution requirement on the focal-plane array and the computational burden
on the back-end electronic network is presented in Ref. [262]. By jointly training
a diffractive optical network with an electronic neural network, the authors have
shown that it is possible to reduce the number of pixels at the focal plane array by
approximately a factor of eight, without any compromise on the inference accuracy
compared with a conventional vision system with an ideal, aberration-free imaging
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optics (see Fig. 9(a)). According to the reported results, for instance, LeNet [59] can
classify the images of fashion products with an accuracy of 90.33% based on an ideal
imaging optics and an optoelectronic sensor having the full resolution of 28 × 28
pixels. On the other hand, if the number of pixels on the focal-plane array is reduced
to 10 × 10 (approximately a factor of eight reduction), the related loss of information
due to undersampling and aliasing hurts the inference performance of LeNet, which
can only provide 87.44% classification accuracy. When the same LeNet architecture
is jointly trained with a 5-layer diffractive optical front-end, the inference accuracy
with the same low-resolution sensor (10×10 pixels) remains to be >90.2%.

In addition to allowing the use of low-resolution sensors, a diffractive optical network
front-end also contributes to the inference tasks and enables the use of shallower
electronic neural networks at the back-end with reduced number of neurons and MAC
operations to achieve the same inference accuracy. For instance, in the case of a
25× 25-pixel focal-plane array, a hybrid system composed of a 5-layer diffractive
network and a single-layer fully connected network can provide 90.08% inference
accuracy for classifying fashion products [262]. On the other hand, a deeper network,
LeNet, can achieve 90.19% classification accuracy by processing images created by
an ideal imaging system and a focal-plane array with the same resolution (25× 25
pixels). When we compare the computational cost of these two electronic network
models, the single-layer shallow network only has 25× 103 trainable parameters and
computes the inference task with 50× 103 floating-point unit arithmetic operations
(FLOPs), whereas LeNet, has 60.8× 103 learnable parameters computing the data
class based on ∼106 FLOPs. Therefore, when a diffraction-limited imaging system
is replaced with a diffractive optical network that is jointly trained with a back-
end, shallow electronic network, the memory usage, computational speed, and power
consumption of the system can be reduced significantly by simplifying the back-end
architecture [262].

In a hybrid machine vision system, the optical part can also be tasked to accompany the
back-end electronic network as a co-processor, either assisting the electronic network
by directly acting as its first layer [290] or completing one of the tasks all-optically
in a multitask machine learning system [40,272]. Figure 9(b) illustrates an optical 4f
correlator architecture proposed by Chang et al. to implement a given convolutional
layer of an electronic neural network in the optical domain by processing spatially
incoherent light [290]. In their hybrid optoelectronic system, they trained a neural
network model, using a computer, composed of a convolutional layer with 8 filters
of size 9× 9 followed by a ReLU nonlinearity and a fully connected layer digitally
mapping the output feature space of the convolutional layer to class scores. Owing
to the non-negativity constraint of optical intensity, in their forward training model,
they represented the 8 feature channels at the output of the convolutional layer as the
difference between 16 channels with 8 positive and 8 negative channel pairs, termed
as pseudonegative convolution. At the end of the training, 16 stacked filters of this
pseudonegative convolutional layer were tiled side-by-side over a 4× 4 grid providing
the desired point spread function (PSF) of the 4f correlator as shown in Fig. 11(b).
In the second step of their design, they optimized a phase mask that can achieve the
desired PSF mimicking the target convolution operations. For the optimization of the
phase mask, they also utilized a gradient-descent-based algorithm during which the
height profile of the mask material is iteratively updated. As, at the end of convergence
of phase encoding, the predicted PSF of the phase mask might not exactly match
the ground truth, they applied additional training on the subsequent fully connected
electronic layer to compensate for this discrepancy. Based on the outlined design
procedure, their final forward model, including the phase-encoded PSF, predicted
51.0% accuracy for the classification of CIFAR-10 images. The reported experimental
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Figure 11
a

b

c

Hybrid (optical–electronic) neural network implementations. (a) Jointly trained
diffractive optical front end and electronic neural networks (back end) for the task of
object classification [262]. Left, the concept of jointly trained diffractive and electronic
neural networks toward achieving a machine learning task. Right, the performance of
a co-trained hybrid system is compared against the classification performance of a
conventional vision system which uses lens-based, diffraction-limited imaging optics
with the same electronic neural network architecture. © 2019 IEEE. Reprinted, with
permission, from Mengu et al., IEEE J. Select. Topics Quantum Electron. 26, 1–14
(2019) [262]. (b) Hybrid two-layer neural network where the first convolutional layer
(9×9, 8 filters) is computed all-optically followed by the second fully connected layer
in the electronic domain [290]. Reprinted by permission from Macmillan Publishers
Ltd: Chang et al., Sci. Rep. 8, 12324 (2018) [290]. Copyright 2018. (c) A single-pixel
multitask machine vision framework based on hybrid neural network systems. The
diffractive optical front end encodes the spatial information of an input object into the
intensity of predetermined spectral components collected by a single detector at the
output plane. These spectral intensity values represent the class scores and the all-
optical class inference is revealed by the maximum of these spectral intensity values.
A shallow electronic back-end network is trained separately based on these optically
synthesized spectral intensity values to reconstruct/recover the unknown image of
the input object. The resulting multitask, single-pixel hybrid machine vision system
all-optically classifies objects by utilizing the broadband processing and statistical
inference capabilities of diffractive networks and also electronically reconstructs the
images of the objects within the input field of view [40]. From Li et al., Sci. Adv. 7,
eabd7690 (2021) [40]. Reprinted with permission from AAAS.
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accuracy, on the other hand, was slightly lower (44.4%) due to the unwanted physical
error sources causing the system conditions to deviate from the constructed forward
model, highlighting the importance of noise mitigation strategies in optical computing
systems [265,269,276,282].

Figure 9(c) depicts another example of a multitask hybrid machine learning system
where the optical front-end and the electronic neural network are trained for different
tasks separately. In this particular case presented in Ref. [40], the diffractive optical
network extracts the information on spatial features of an input object and encodes it
into the intensities of a set of predetermined wavelength components that are collected
by a plasmonic nano-antenna-based single-pixel detector [291]. The intensity values
of the detected spectral components at the predetermined wavelengths represent the
class scores. Thus, the optical front-end completes the task of image classification all-
optically based on the spectral power distribution at a single pixel. Upon convergence
of the training of the optical part, a back-end electronic neural network is trained
separately to decode the highly compressed spatial information at the single-pixel
output. Stated differently, this image reconstruction electronic network performs a task-
specific data/image decompression, with the task being the recovery of handwritten
digit images, establishing a multitask computational vision system that covers both
electronic image recovery and all-optical image classification through a single-pixel
machine vision system. A similar multitask, separately trained hybrid neural network
system has also been presented in Ref. [272], where the authors took advantage of the
coherent processing capabilities of diffractive optical networks to all-optically classify
two spatially overlapping phase objects despite strong phase ambiguity due to spatial
overlap at the object plane, solving an unconventional machine learning problem. They
further demonstrated that back-end electronic networks trained based on the intensities
collected by the class-specific detectors could, in fact, reconstruct the phase images
of both objects addressing an inverse problem with, in general, a non-unique solution
space [272].

4. DEEP LEARNING FOR DESIGN IN OPTICS AND PHOTONICS

4.1. Deep-Learning-Enabled Inverse Design for Optical and Photonic Devices
Deep learning has also been used extensively for the design of conventional optical
components, e.g., inverse design of lens groups based on geometrical optics. For
example, Côté et al. used deep learning as a tool to infer lens design starting points
directly from the desired specifications, such as focal length, f number, and field of
view [292]. They trained a multilayer fully connected network that can automatically
produce high-quality starting points by extrapolating from known designs. However,
this framework was only used on simple air-spaced and cemented doublets, limiting
the design space of the lens group. In a follow-up work, the same research group
overcame this limitation by using a RNN that can dynamically capture the sequential
structure of lens designs with a flexible number of elements, which allows a single
model to adopt a shared representation of various lens structures that differ by the
sequence of glass elements and air gaps so that the resulting model can generalize to
new lens design structures for which there is no reference lens design [293]. In a recent
work, they further improved their framework to allow the aperture stop to be placed
anywhere in the generated lens starting point [294]. However, as promising as deep
learning can be for the design of traditional ray optics-based devices, the bulk of the
literature related to the applications of deep learning for photonic design is concerned
with the task-specific inverse design of nanophotonic structures [295]. Starting with
the following subsection we focus on these emerging applications of deep learning for
inverse design in nanophotonics.
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Figure 12

Forward and inverse problems in nanophotonics. (a) Forward simulation to com-
pute the electromagnetic response R for a design D can be thought of as evaluating a
function f that maps the designs in the space D to their corresponding responses in
the space R. For almost all problems of practical interest, this is done by numerically
solving Maxwell’s equations with an electromagnetic solver. (b) An algorithmic flow
chart representing conventional iterative approaches to inverse design. The major step
in an iteration of such inverse design is the forward simulation of candidate designs
for computing their electromagnetic responses, which is highly resource intensive.

4.1a. Conventional Inverse Design Approaches Used in Nanophotonics
The response R of an EM system to incident radiation depends on the system geom-
etry D, e.g., the spatial distribution of permittivity and permeability throughout the
system. Computing the response of a system with given geometry to incident radi-
ation, i.e., evaluating the function f that maps system designs in the space D to
their EM responses in the space R (forward computation/simulation; Fig. 12) entails
solving the Maxwell’s EM equations. Various analytical and numerical methods have
been demonstrated for providing the approximate solutions to Maxwell’s equations.
The level of computational resources required for numerically solving Maxwell’s
equations depends on the complexity of the nanophotonic geometry as well as the
desired accuracy of the solution. As useful as the forward simulation is, for engi-
neering applications, it is often necessary to reverse engineer a desired response,
i.e., to accurately find out a geometry D that would give rise to a desired response
R. Researchers in the nanophotonics field are frequently faced with inverse design
problems, i.e., determining the nanostructure geometry that would give rise to a
desired optical response [35]. The solution to nanophotonic inverse problems has
often been guided by the intuition of expert practitioners or metaheuristic optimization
approaches.

One of the basic approaches to solving inverse problems is possibly the “grid search,”
which involves solving the forward problem for many design points in D and selecting
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the design D that results in the nearest approximation to the desired response in terms of
a well-chosen fitness metric/objective function. More sophisticated approaches toward
inverse design problems utilize various additional optimization algorithms. The vast
majority of these numerical optimization algorithms applied to EM inverse design
problems are metaheuristic in nature, such as evolutionary algorithms, particle swarm
optimization, and ant colony optimization [296]. These algorithms are the preferred
choice in cases where the gradient of the objective function with respect to design
parameter space is difficult or impossible to compute. Gradient-based optimization
methods such as gradient descent and conjugate gradient method can be utilized if the
gradient computation is practically feasible, for example, by using adjoint simulation
[297].

An algorithmic flowchart that represents many of these approaches is depicted in
Fig. 12. These algorithmic approaches to inverse design have one thing in common:
all of them require solving/executing the forward model numerous times during the
optimization process. As a result, even with adequate computational resources, the time
required for finding a decent solution/approximation can become prohibitively large.
Moreover, the results of all the intermediated forward simulations are, in general,
not reusable. Another limitation of these approaches is that they are feasible for
finding solutions only within a family of designs parameterized by a few design
parameters.

4.1b. Deep-Learning-Based Methods for Inverse Design in Nanophotonics
The ability of deep neural networks to approximate any function [50] has motivated
nanophotonic researchers to exploit them in solving inverse design problems. The
earliest use of neural networks in EM inverse design dates back to the 1990s for
microwave applications [298,299]. A review of the works in deep-learning-based
inverse design prior to the onset of the century can be found in Ref. [300]. Since 2018,
there has been a surge in the amount of literature related to nanophotonic inverse
design with deep learning, apart from a few efforts [36] prior to this period.

The ways in which deep neural networks have been exploited for inverse design are
multifaceted. However, the basic idea boils down to training a neural network to learn
an approximation fapprox of the function f that maps a design D in the design space D

to the corresponding EM response R in the space of responses R (Fig. 13). Although
preparing the necessary data for training and the training itself might be arduous and
time-consuming, the training is only a one-time effort. Once such a network is trained,
it can be used to accelerate the forward computation/simulation for the candidate
designs within an iteration of conventional iterative approaches. Such approximate
models that take the place of lengthy and computation-intensive forward simulations
are known as “surrogate models” or “metamodels.” Deep learning also enables a
whole new paradigm of inverse design, where a neural network is trained to learn
the inverse mapping from R to D, and then it is deployed to predict the geometry D
for a desired response R directly without having to undergo the iterative optimization
routine.

4.1c. Neural Networks as Surrogate Models
A straightforward way deep learning is exploited for nanophotonic inverse design
is by using trained deep neural networks as a surrogate (metamodel) for forward
EM computation within conventional inverse design approaches outlined in Section
4.1.1. Such adaptation allows for a significant reduction in the time required for
iterative inverse design because running a neural network for computing the response
R corresponding to a design D is much faster and simpler than rigorously solving
Maxwell’s equations with an EM solver.
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Figure 13

Neural-network-based solutions to nanophotonic inverse problems. (a) A neural
network that is trained to approximate the forward mapping f from designs D to
their responses R can be used to evade the slow and computationally intensive step
of rigorously solving Maxwell’s equations for the candidate designs for an inverse
design iteration. (b) A neural network can also be trained to directly learn the inverse
mapping, i.e., the mapping from electromagnetic responses to corresponding designs,
so that it can be used to output the design D 0 corresponding to a target response R 0
non-iteratively in just one forward pass through the network. NN, neural network.

Figure 14

Design of an ultra-flat and zero dispersion PCF with deep learning. (a) Five-
ring PCF geometry optimized by El-Mosalmy et al. [36] to inverse design an ultra-flat
dispersion curve. The fibers along the ith ring have diameter di. (b) Ultra-flat dispersion
attained between 1.3 µm and 1.6 µm, by optimizing the fiber diameters within the PCF
geometry. The optimization was performed by “grid search,” facilitated by evaluating
numerous designs very fast by a “forward” neural network, which was trained to map
fiber diameters to corresponding dispersion value at various wavelengths.

To outline the integration of neural networks as a metamodel within conventional
approaches, here we briefly describe the work of El-Mosalmy et al. [36], to design a
polarization rotator and an ultra-flat, zero dispersion photonic crystal fiber (PCF) by
using deep neural networks. To obtain ultra-flat and zero dispersion (Fig. 14), they
optimized the air hole diameters within five rings of a PCF structure where the air
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hole diameters in the first, second, third, fourth, and fifth concentric rings are denoted
as d 1, d 2, d 3, d 4, and d 5. Taking the hole pitch as 1.7825 µm and fixing d 4 and
d 5 to 1.0158 and 1.6769 µm, respectively, they computed the effective index n eff of
the PCF structures for different values of d 1, d 2, and d 3 at different wavelengths
(λ) using simulations based on the full vectorial finite difference method (FVFDM).
Then they used the calculated data to train a neural network to predict n eff for values
of λ, d 1, d 2, and d 3 that were not used not in the training data. The trained NN is
then used to predict n eff for a large number of (λ, d 1, d 2, d 3) combinations on a
finely spaced design grid without any extra EM simulation. They ultimately found out
that ultra-flattened zero dispersion can be approximately obtained over wavelengths
ranging from 1.5 µm to 1.6 µm at d 1 = 0.53 µm, d 2 = 0.65 µm, and d 3 = 0.73 µm.

The differentiability of ANNs and the availability of efficient algorithms such as error
backpropagation for computing gradients with respect to the input design parame-
ters permit the application of powerful optimization tools such as gradient-descent
method within the framework of inverse design with ANNs used as surrogate models.
For example, Peurifoy et al. [37] trained an ANN meta-model for scattering cross
section spectrum of a core–shell nanostructure as a function of the shell thickness
and applied the gradient descent method to optimize the shell thicknesses to achieve a
target spectral response. The retrieved values of the shell thicknesses for the complex
target spectral response (Fig. 15) show a remarkable agreement with the ground truth
values, demonstrating the ability of deep neural networks to model complex physi-
cal interactions and design rules through training. The number of training samples
was also small, i.e., equivalent to sampling each design parameter (shell thickness)
only four times. The results presented in this work summarize many of the potential
incentives for incorporating deep learning into nanophotonic inverse designs.

4.1d. Neural Networks for Inverse Mapping in Nanophotonics
Apart from being used as a metamodel in conventional inverse design approaches,
deep learning unlocks a new paradigm for inverse design. Instead of learning the
(forward) mapping from the design parameters to the corresponding EM response, a
deep neural network can also be trained to learn the (inverse) mapping from an EM
response to the corresponding design structure/geometry, and as a result of this, the
entire iterative optimization routine can be sidestepped, and inverse design can be
obtained by a single forward pass through the inverse mapping network. However,
training of such an inverse mapping neural network might be challenging because the
mapping from response to geometry/structure is not one-to-one, i.e., there may exist
more than one structures/designs that give rise to very similar responses (Fig. 12(a)).
This fundamental property of non-uniqueness in inverse scattering problems causes
naïve neural network training procedures to fail in convergence and generalization.

One approach to overcome the non-uniqueness challenge of inverse design solutions
is the tandem network approach, which was reported by Liu et al. [38]. They aimed
to inverse design a target transmission spectrum with a multilayer thin film that
is composed of alternating layers of SiO2 and Si3N4, with the thicknesses of the
layers selected as the design parameters. As shown in Fig. 16(a), in the training data,
there were two six-layer thin film designs with very similar transmission spectra. In
the presence of such degenerate examples in the training data, the training fails to
converge, as shown in Fig. 16(b). Even filtering out such examples does not improve
the convergence. To circumvent this issue, the authors proposed a tandem architecture
where the output of the inverse network is fed to a forward modeling network pretrained
to predict the response of a design, see Fig. 16(c). Training of the inverse network
is performed by minimizing the difference between the target response input to the
inverse network and the response predicted by the forward modeling network for the
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Figure 15

Exploiting the differentiability of ANNs as surrogate models. (a) Core and shell
nanostructure optimized by Peurifoy et al. [37] to inverse design a desired scattering
cross section spectrum. An ANN forward model was trained to predict the spectrum
for a design parameterized by the shell thicknesses xi of the nanostructure. Then, the
trained ANN was used to optimize the input shell thicknesses for a desired spec-
trum, by freezing the hidden layers and backpropagating to the input layer the error
between the desired output and the predicted output. (b) The response of the neural
network design agrees very well with the target, whereas that of a design obtained
by nonlinear optimization shows significant deviations. (c) Comparison of runtime
between numerical simulation and neural network forward model. Forward runtime
of the trained models varies linearly with design complexity whereas the runtime of
numerical simulations varies quadratically. From Peurifoy et al., Sci. Adv. 4, eaar4206
(2018) [37]. Reprinted with permission from AAAS.
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Figure 16

a

b

c

d

Tandem network approach for solving non-uniqueness problem. (a) The non-
uniqueness of inverse mapping exemplified by two different six-layer thin-film designs
having very similar transmission spectra. (b) Such non-uniqueness in inverse mapping
causes naïve training of inverse mapping network to fail to converge even if the
ambiguous examples are filtered out from the training dataset, as the responses of the
network-predicted designs fluctuate significantly from the target responses for training
with both the unfiltered and the filtered datasets. (c) Training of inverse mapping
network in tandem configuration with a pretrained forward modeling network, as
proposed by Liu et al. [38]. The tandem network approach works because even if
the predicted design for a target response is not similar to the ground truth design,
the error will be low as long as the response of the predicted design is similar to the
target response. (d) Successful convergence of training of inverse mapping network
in tandem configuration. After training, the inverse mapping network predicts designs
with responses very similar to the target responses. Reprinted with permission from
Liu et al., ACS Photonics 5, 1365 (2018) [38]. Copyright 2018 American Chemical
Society.

inverse network output design. This tandem architecture partially avoids the issue of
non-uniqueness because for the training cost function to be low, the designs by the
inverse neural network are not required to be the same as the designs in the training
data; as long as the predicted designs and the ground truth designs have similar
output responses (from the forward modeling network) the overall loss function will
be reduced, helping the learning and generalization of the network. The significant
improvement in convergence following the training of the inverse network within
the tandem configuration is evident from Fig. 16(d). The trained inverse network
was also shown to predict the design parameters corresponding to arbitrarily-defined
Gaussian-shaped transmission spectra within a fraction of a second, demonstrating
the generalizability of the trained network and much faster inverse design capability
compared with alternative iterative optimization routines.

Another approach toward mitigating the non-uniqueness issue is to use probabilistic
deep learning models instead of deterministic models. Instead of predicting a solu-
tion, such models predict the statistical distribution over probable solutions, sampling
from which would yield the ultimate solution. The advantage of such modeling over
the tandem network approach is the ability to retrieve multiple solutions, over which



254 Vol. 14, No. 2 / June 2022 / Advances in Optics and Photonics Review

further optimization can be performed to increase the probability of reaching a better
approximation. In addition, there is no need for a pretrained forward modeling network
as required in the tandem network approach. For example, Unni et al. [301] introduced
a mixture density network (MDN) approach as an alternative to tandem neural net-
works to address the non-uniqueness of inverse design solutions. This MDN models
the design variables as having multimodal probability distributions parameterized
by deterministic functions of the target response. Figure 17(b) compares the MDN
approach against the tandem network approach: although the standard neural network
fails to converge to any of the optimum designs, the tandem network converges to
one of the ground truth designs ignoring the others and the converged solution might
not be globally optimum. However, the probabilistic modeling of the design variables
in MDN approach allows for the retrieval of multiple solutions through a sampling
of the learned distribution, on which postprocessing was performed to obtain fur-
ther refinement of these probabilistic solutions. Figure 17(c) depicts three different
four-layer thin-film designs sampled from the learned parameter distributions, which
successfully provide a close match to the target spectra.

Probabilistic deep generative models such as variational autoencoders (VAEs) and
generative adversarial networks (GANs) can also partially lift the restriction of the
design space and be used to generate free-form design geometries. Such models are
generally more complex and have sub-components (encoder and decoder for VAE,
generator and discriminator for GAN) that are jointly trained. Many works in the
literature have used GANs for nanophotonic inverse design. For example, the work
of So and Rho [302] used a conditional deep convolutional GAN to inverse design
desired reflection spectra using metasurfaces. Metamaterials (and their 2D counter-
part, metasurfaces) can be assembled from periodic arrays of “meta-atoms,” i.e., unit
cells comprising subwavelength structures made out of, e.g., metals or dielectrics. The
effective optical properties of the metamaterial depend on the meta-atom constituents
as well as their precise geometry (e.g., shape, size, orientation). The meta-atom archi-
tecture that was optimized in Ref. [302] is composed of a 30-nm-thick antenna on
50-nm MgF2 spacer and a 200-nm silver reflector on a silicon substrate, with a unit cell
dimension of 500 nm (Fig. 18(a)). A conditional deep convolutional GAN (cDCGAN)
was used to generate free-form meta-atom geometries corresponding to the desired
spectrum, which was provided as the condition vector. The trained cDCGAN was able
to predict nanophotonic geometries closely matching the ground truth for reflection
spectra not presented during training; see Fig. 18(b). The cDCGAN was also tested
with completely new geometries of triangular and star-shaped antennae which did not
exist in the training and validation datasets, and the results reveal that it can generalize
well to spectral responses corresponding to designs of unseen shapes (see Fig. 18(c)).
The generated meta-atom geometries are different from the ground truths, but the
resulting reflection spectra are similar to the target reflection spectra, which is another
manifestation of the non-uniqueness of the inverse mapping, i.e., different designs can
have very similar responses. The trained cDCGAN was further tested with randomly
generated, hand-drawn spectra with Lorentzian-like shapes, the results of which are
shown in Fig. 18(d). The responses (reflection spectra) corresponding to the generated
nanophotonic geometries show reasonably good agreement with the target responses.
All these results confirm the generalization success of properly trained ANNs for
providing fast and non-iterative inverse design solutions.

4.1e. Emerging Approaches and Methods
This subsection highlights some other emerging deep-learning-based approaches in
photonic/optical inverse design that are distinct from the approaches described in ear-
lier subsections. The underlying theme of a majority of these works is engineering
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Figure 17

Probabilistic modeling as a solution to non-uniqueness of inverse mapping. (a) In
the context of inverse mapping, a deterministic neural network tries to model the exact
values (x1, · · · , xn) of the design variables, whereas a probabilistic one, such as mixture
density network (MDN), models the probability distributions of design variables,
parameterized by, for example, a mean µ, a standard deviationσ, and a (relative) weight
π for each mode of a multimode Gaussian distribution for each design variables [301].
(b) Because of non-uniqueness of inverse mapping, a deterministic inverse network
trained in isolation is highly likely to converge to a solution that does not coincide with
any of the true solutions for a target response. Although a deterministic model trained
in tandem configuration (also see Fig. 16) is able to predict a true solution, it ignores all
the other solutions. Probabilistic MDN models, on the other hand, allow the retrieval of
different solutions through sampling the learned distribution of design parameters. (c)
Three different four-layer thin-film designs whose transmittance spectra closely agree
with the ground truth spectrum (target), obtained by sampling the learned distributions
for the film thicknesses by an MDN. Reprinted with permission from Unni et al., ACS
Photonics 7, 2703 (2020) [301]. Copyright 2020 American Chemical Society.
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Figure 18

Deep generative models for inverse design of free-form shapes. (a) Base meta-
atom geometry optimized by So and Rho [302] for inverse designing target reflection
spectra. They collected a dataset consisting of pairs of cross-sectional image of silver
nanoantenna of either of six representative shapes (circle, square, cross, bowtie, H-
shaped, and V-shaped) and corresponding reflection spectrum, and trained a cDCGAN
to predict a nanoantenna shape given a target spectrum as input. (b) The evaluation
of the trained cDCGAN on test data not used in training. The predicted geometry and
corresponding response agrees closely with both the design and response of the ground
truth in the dataset. (c) Same as (b). In these cases, however, the predicted geometry did
not match with the ground truth (corresponding geometry in the dataset), although their
spectral responses matched very well. This is a manifestation of the non-uniqueness of
inverse mapping. (d) The neural network was also able to accurately predict meta-atom
geometry for arbitrarily defined Lorentzian-like function not present in the dataset.
Reprinted from So and Rho, Nanophotonics 8, 1255 (2019) [302]. Copyright 2019 De
Gruyter.

the spectral response of photonic structures such as metamaterials and metasurfaces
[302–312], layered photonic structures [38,301], and core-and-shell nanoparticles
[37,313]. Several of these works report the ability of generative deep learning models
to predict, e.g., meta-atom geometries to create an arbitrarily defined, desired spectral
response [302,305,310]. The approaches adopted in these works could also apply to
nanophotonic designs for other applications such as sensing [304] and spectral filtering
[41,309]. A significant fraction of these works are dedicated to metasurface design
for applications such as beam engineering [314], inverse scattering [315,316], gradi-
ent metasurfaces [317–319], metagratings [320,321], among others. Deep learning
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approaches have also found wide applications in inverse design for holography
[322–324], color engineering [325–328], solar cell/photovoltaics [329–334], and
integrated photonics [335–339].

Another recent work demonstrating the use of deep learning in inverse design for
an exciting application is reported by Qian et al. [315] where they demonstrated a
self-adaptive metasurface cloak that imparts invisibility to an object and responds
within milliseconds to changing incident waves and surroundings without any human
intervention, see Fig. 19. This adaptive metasurface cloak consists of five main parts:
a reconfigurable metasurface inclusion, two detectors, a pretrained ANN, and a power
supply. The active meta-atoms of the ultrathin metasurface provide different local
reflections to produce a back-scattered wave similar to that produced by the bare
surrounding. The two detectors are used to probe the incident wave and the surround.
The reconfigurability of the meta-atoms is attained by using loaded varactor diodes,
whose capacitance can be tuned by tuning the voltage supplied by the power supply
to achieve the required reflection phase. Deep learning was used in the training of a
neural network to predict the required dc bias voltage for a desired local reflection
phase, which, in turn, is derived from the surrounding background and incident wave.
This self-adaptive invisibility cloak was demonstrated experimentally to operate in the
microwave regime, and might be scaled to operate at higher frequencies.

Another emerging approach in the inverse design of photonic hardware is based on the
diffractive optical network framework. In addition to their utilization for all-optical
statistical inference systems, diffractive optical networks have also been used in the
design of task-specific broadband photonic systems. Diffractive optical networks were
designed using deep learning tools for various applications such as pulse shaping, sin-
gle and dual passband spectral filtering, spatial demultiplexing of broadband radiation,
and were experimentally demonstrated in the terahertz part of the spectrum [41,42].
For example, Veli et al. [42] reported the synthesis of an arbitrary temporal wavefront,
e.g., a 15.5 ps square pulse, by processing the spectrum carried by the input terahertz
pulse with a passive diffractive optical network composed of four trained phase-only
diffractive layers (Fig. 20(b)). These diffractive pulse shaping networks are also tun-
able in the sense that the output pulse width can be adjusted by changing the axial
distance between the fabricated layers. Using the diffractive network framework, Luo
et al. [41] also reported the design of single and dual passband spectral filters as well
as a spatially controlled wavelength demultiplexer, see Fig. 20(c) and (d). These works
exemplify the potency of deep learning for the inverse design of compact and non-
intuitive optical systems for specific tasks that traditionally require intricate optical
designs and setup.

4.2. Deep-Learning-Enabled Design for Computational Imaging and Sensing
The integration of computation within the imaging framework, enabled by advances in
optoelectronic sensor technologies over the past decades, has facilitated great progress
in the field of computational imaging and sensing. In a computational imager or sensor
[340], optics constitute only the front-end that encodes the desired optical signal,
and an electronic back-end is used for decoding and further enhancing these signals
following the optical (analog) to electronic (digital) conversion by optoelectronic
sensors. Computational imaging, in principle, provides significant improvements over
standalone optical imagers by preserving the information in the measured signal that
would otherwise be lost without the encoding. The usual approach for designing such
computational imaging systems has been to optimize the optics and the back-end
electronics separately for their intended purpose. However, the design space that could
be reached by joint optimization of the optics and the electronics [3], harnessing their
synergy more effectively for better overall performance, remains relatively unexplored.
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Figure 19

Deep learning enabled design of a self-adaptive metasurface cloak. (a) Schematic
of an ultrathin layer of active meta-atoms, each incorporating a varactor diode that
is independently controlled by a DC bias voltage, constituting an intelligent self-
adaptive metasurface cloak [315]. In response to the incident wave and the background
wave detected by the two detectors, an embedded pretrained ANN calculates all the
necessary bias voltages (V1, V2, . . . , VM), which are then supplied to the varactor diodes
to trigger cloaking. (b) Finite difference time domain (FDTD) simulation results for
transient response of the cloak, where a Gaussian pulse impinging on a triangular
perfect electrical conductor (PEC) bump is detected by an antenna array and then
fed into a pretrained ANN, together with a hypothetically known background. The
metasurface cloak is triggered, and subsequently renders the bump invisible within 15
ms. (c) Self-adaptive cloak response to four random backgrounds (row i) for normal
wave incidence at 8.4 GHz in terms of near-field magnetic field distributions of the
background (row ii), cloaked object (row iii) and bare object (row iv); and far-field
differential radar cross section (RCS) of the cloaked (red) and bare (blue) objects for
the four cases (row v). (d) Same as (c), but for random and simultaneous changes
in both the incident wave (angle and frequency) and the background. Reprinted by
permission from Macmillan Publishers Ltd: Qian et al., Nat. Photonics 14, 383 (2020)
[315]. Copyright 2020.

Deep learning equips us with the ability to better explore this unique and timely oppor-
tunity by enabling task-specific, joint optimization of the optics and the electronics.
It is possible to form a learning model by cascading an accurate numerical model
of the front-end optics and the digital reconstruction/processing model (back-end),
and to perform end-to-end training of the cascaded model and optimize the param-
eters of interest for a given desired task, as long as the models for both the optical
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Figure 20

Inverse design of broadband photonic systems using the D2NN framework.
(a) Diffractive optical networks, in general, comprise spatially engineered diffrac-
tive surfaces that are trained through deep learning inside a computer. The forward
training model of diffractive networks can be constructed to reflect material disper-
sion enabling these platforms to offer task-specific solutions for challenging broadband
optical inverse design problems e.g., lensless pulse shaping [42] and spatially con-
trolled spectral demultiplexing [41]. (b) Processing of an input terahertz pulse to
optically synthesize a rectangular pulse of desired width using a four-layer diffractive
optical network design [42]. Reprinted by permission from Macmillan Publishers Ltd:
Veli et al., Nat. Commun. 12, 37 (2021) [42]. Copyright 2021. (c) Spectral filtering
of broadband terahertz pulses using three-layer diffractive optical networks [41]. (d)
Spatially controlled demultiplexing of the spectral components in a broadband tera-
hertz pulse with a two-layer diffractive optical network [41]. (a), (c), and (d) Reprinted
by permission from Macmillan Publishers Ltd: Luo et al., Light. Sci. Applicat. 8, 112
(2019) [41]. Copyright 2019.
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front-end and the digital back-end are differentiable with respect to these parameters
to be optimized. We elaborate on this approach and the underlying opportunities in
Sections 4.2.1 and 4.2.2. Apart from this end-to-end training based on explicit for-
ward modeling of the optics, deep learning can also be used to implicitly learn the
inverse mapping from measurements to design parameters for adaptive control of the
desired optical system. The instances of performing inverse mapping for computa-
tional imaging and sensing is elaborated on in Section 4.2.3. We should clarify that
methods and applications where deep learning is only used to optimize the back-end
electronic hardware [341–343] or purely software-based digital processing models
[6–9,11,13,14,17–20,22–25,31–33,344–347] used for, e.g., image reconstruction or
super-resolution, lie outside the scope of this review, although they also offer various
solutions to computational imaging and sensing problems in the digital domain.

4.2a. End-to-End Optimization of PSF and Deep Image Reconstruction Models
One of the ways computational imaging bypasses the limitations of standalone optics
is through PSF engineering, i.e., by engineering the spatial transmittance of the pupil
plane of the imaging system. The idea behind PSF engineering is to encode the optical
information in such a way that information otherwise unresolvable by standalone optics
with a regular PSF (e.g., depth information) can be resolved with the help of subsequent
digital decoding. PSF engineering, also known as coded aperture imaging, has been
widely applied in the design of computational cameras and microscopes [348–352]. In
recent years, the exploitation of deep learning for jointly optimizing the PSF and the
digital decoder has provided new and rich opportunities for exploration of the design
space of PSFs, and yielded coded aperture designs that are high performance, task
specific, but non-intuitive.

In practice, PSF engineering can be realized by introducing a coded aperture at
the pupil plane, for example, a phase mask with an optimized surface profile ϕ.
The modulation of the light field by the coded aperture is equivalent to performing
a convolution at the image plane, the kernel for which is the same as the PSF h
(Fig. 21(a)). Following an imaging measurement by the sensor, an electronic decoder
is used to undo the encoding performed by the coded aperture. This decoding can
be performed by a trained CNN; for example, a fully convolutional neural network
(FCNN), as in Fig. 19(a), is often used to recover the target image with the desired
information from the measurement. FCNN takes its name from being composed of
purely convolutional up-/down-sampling layers. Given that the mapping from the
surface profile ϕ to the PSF h and a differentiable numerical model of the optical
measurement f (·) are available, both the surface profile ϕ and the FCNN can be jointly
optimized by backpropagation of gradients of the loss L between the network’s image
reconstruction and the target images. After convergence to a desired solution, the
optimized surface profile can be conveniently fabricated, e.g., through 3D printing or
lithography to physically perform the desired PSF. In recent years, the computational
imaging community has developed a variety of computational cameras and displays
with specific functions based on this concept of end-to-end training. One of the
earlier demonstrations comes from the work by Elmalem et al. [353], who used a
single-ring phase pattern with the radius and the phase delay of the ring optimized
jointly with a CNN to achieve an extended DOF; see Fig. 21(b). Following a similar
principle, Akpinar et al. [354] used a DOE in a coded aperture imaging system to
extend the imaging DOF. In addition to the extension of the imaging DOF, researchers
also demonstrated holistically optimized computational cameras using phase-coded
apertures for other tasks, such as image super-resolution [43,355], monocular depth
estimation [356–358], high-dynamic-range imaging [44,359], hyperspectral imaging
[360,361], and light field sensing [362]; see Fig. 21(c), (d), and (e). In addition to
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Figure 21

Deep-learning-enabled computational camera designs based on PSF engineering.
(a) The general principle of PSF-engineered computational camera designs, where the
surface profile of the coded aperture of the camera can be jointly trained with the
CNN-based reconstruction model at the back-end using backpropagation of gradients
of the same task-specific loss function. This principle has been used to improve
various performance metrics in numerous computational imaging tasks including: (b)
extension of the depth of field [353], reprinted with permission from [353], copyright
2018 Optical Society of America; (c) depth estimation [357]; (d) high dynamic range
imaging [44]; and (e) hyperspectral imaging [361].

camera systems, researchers also extended the idea of joint optimization to designing
computational near-eye display systems [363,364].

PSF engineering has also been used for high-resolution 3D imaging in computa-
tional microscopy. Researchers have been using engineered PSFs such as double helix
[350,352] and Tetrapod [365,366] functions for better estimation of depth (axial dis-
tance) of objects for more than a decade. In recent years, the use of deep learning



262 Vol. 14, No. 2 / June 2022 / Advances in Optics and Photonics Review

for synergistic co-optimization of optics and reconstruction algorithms for PSF engi-
neering in computational microscopy has kickstarted. For example, Nehme et al.
demonstrated 3D localization of dense emitters over a large axial range by using a
framework named DeepSTORM3D to design an optimized PSF [10]; see Fig. 22(a).
The authors placed an optimal phase mask at the Fourier plane of a 4f system that
was used to extend the intermediate image plane formed after the tube lens. The opti-
mal phase profile of the phase mask was obtained through a joint optimization with
a CNN back-end, the purpose of which was to accurately predict the 3D positions
of fluorescent emitters from the acquired 2D images. For the joint optimization, the
authors used deep learning to train a model that incorporated a differentiable physical
layer simulating the PSF modulation. After training their model on a large number of
simulated images of randomly distributed, densely populated fluorescent emitters, the
authors experimentally validated the efficacy of the framework by precisely predicting
the axial positions of emitters over a depth range of ∼4 µm. In a follow-up work, the
authors demonstrated the prediction of the emitter positions with a 3D precision of 30
nm over an axial range of∼5 µm [367]. This enhancement was realized by introducing,
instead of a single PSF, a pair of engineered PSFs along two parallel optical paths, as
depicted in Fig. 22(b).

In addition to depth estimation, the idea of jointly optimizing a phase mask and
a back-end CNN has also been used to perform color microscopic imaging with a
monochromatic sensor, following similar ideas as in Refs. [360,369]. For example,
Hershko et al. used deep learning to perform the automatic design of a phase mask for
color encoding in localization microscopy [368]. Owing to the divergence of phase
delay for different wavelengths, the designed phase mask possesses distinct PSFs for
different colors, in order to encode the colors of fluorospheres into different spatial
patterns. As shown in Fig. 22(c), the 2D grayscale images of these fluorosphere patterns
were captured by a monochromatic camera in a standard fluorescence microscope, and
the color information of the fluorospheres was recovered by a jointly trained CNN.
Thus, color fluorescence microscopy imaging was achieved without any additional
hardware.

4.2b. End-to-End Optimization of Structured Illumination and Deep Reconstruction Models for
Super-Resolution

In addition to PSF engineering, manipulation of the illumination pattern, known as
structured illumination, can also improve the performance of a microscope by extract-
ing desired information from samples. The idea of structured illumination dates back
to the early 2000s when Gustafsson surpassed the lateral resolution limit of light
microscopy through illumination with moiré fringe patterns [370]. Fourier ptycho-
graphic microscopy is also used for super-resolution, in which multiple low-resolution
images are captured with different illumination angles. Each of the low-resolution
images corresponds to spatial frequency components contained in a sub-aperture with
a low numerical aperture (NA) on the Fourier domain [371]. Iterative phase retrieval
algorithms or alternatively, trained deep neural networks can then be used to put
together these sub-apertures to reconstruct a high-resolution image of the sample. A
regular implementation of multiangle illumination is based on using a 2D array of pro-
grammable light-emitting diodes (LEDs) placed before the sample, where the LEDs
are switched on one by one to achieve separate and distinct angles of illumination on the
sample; see Fig. 23(A). This approach of switching on a single LED for each measure-
ment results in large time costs and hinders the imaging throughput. For solving this
issue, multiplexing of LEDs that are simultaneously on for a single measurement was
used to reduce the total number of measurements [372]. Subsequently, deep-learning-
based joint optimization was utilized to design such multiplexed solutions, which
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Figure 22

Deep learning for PSF engineering in computational microscopy. (a) A deep-
learning-based framework for designing an optimal PSF to localize dense emitters
in 3D [10]. The encoding phase-mask and the decoding CNN are jointly trained.
Reprinted by permission from Macmillan Publishers Ltd: Nehme et al., Nat. Meth. 17,
734 (2020) [10]. Copyright 2020. (b) An improved version of [10], where two imaging
paths with co-optimized PSFs along each are combined to enhance the performance
of localization in high-density volumetric samples [367]. © 2021 IEEE. Reprinted,
with permission, from Nehme et al., IEEE Trans. Pattern Anal. Machine Intell. 43,
2179 (2021) [367]. (c) Deep-learning-based hardware-software co-design is used for
engineering the PSF of a microscope together with the image reconstruction neural
network. The presented framework reconstructs color images using solely a standard
fluorescence microscope and a grayscale camera as hardware [368]. Reprinted with
permission from [368]. Copyright 2019 Optical Society of America.
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Figure 23

Figure 21 Illumination control in microscopy using deep learning

(b)

(c)(a)

Deep-learning-based optimization of illumination patterns/sequences in optical
imaging and microscopy. (A) Fourier ptychographic microscopy (FPM) with an
LED array source, where each LED modulates a different part of the sample’s Fourier
components into the passband of the microscope, increasing the spatial resolution
of the images [375]. In the earlier approaches to FPM, the LEDs were turned on
one by one for successive frames during imaging, so the high spatial resolution was
accompanied with low temporal resolution. (B) Deep learning is used to optimize a
reduced number of illumination patterns in FPM, for imaging with more optimal trade-
off between temporal and spatial resolution [375]. A physics-based unrolled neural
network is used to reconstruct a super-resolved image from multiplexed measurements
using a set of learned LED patterns. (C) Deep-learning-enabled single-shot FPM by
further reducing the number of illumination patterns in LED array-based microscopy
to one [373]. Reprinted with permission from [373]. Copyright 2019 Optical Society
of America.

led to a single-shot Fourier ptychographic microscopy [373,374]. In other related
work, Kellman et al. used a physics-based learning approach to reduce the number
of illuminations in LED array-based microscopy, achieving amplitude and QPI for
context-specific applications with a more favorable trade-off between temporal res-
olution and image reconstruction quality [375,376]; see Fig. 23(B). An important
difference in their approach from the others is the use of a physics-based unrolled neu-
ral network to iteratively reconstruct the high-resolution sample image. The inclusion
of this optimization approach provides robustness and generalizability in addition to
reducing the number of learnable parameters. In another implementation, Robey et al.
[374] built a differentiable numerical simulation layer, which simulates the physics of
low-resolution image formation of a sample under illumination with multiple LEDs.
Feeding the simulated low-resolution images to a CNN that is jointly trained with
the LED patterns, they were able to demonstrate single-shot imaging with improved
temporal resolution and space-bandwidth product; see Fig. 23(C).

4.2c. Deep Learning for Inverse Mapping in Computational Imaging and Sensing
In Sections 4.2.1 and 4.2.2, we discussed the usage of end-to-end deep learning
to holistically optimize the front-end optics and its back-end digital reconstruction



Review Vol. 14, No. 2 / June 2022 / Advances in Optics and Photonics 265

models, where the optical system is physically simulated in the forward model, and
its optical parameters are optimized in the design process. However, analogous to
the design scheme of inverse mapping in nanophotonics that we elaborated on in
Section 4.1.4, obtaining appropriate hardware parameters can also be achieved by
finding a mapping function from the desired output of the optical system to the sys-
tem parameters. The critical difference between these two schemes lies in that in the
latter scheme, the parameters to optimize are the internal parameters of the mapping
function, which can be represented as the implicit weights of a neural network using
deep learning and have no explicit physical meaning. The same idea of performing this
kind of inverse design of optical systems using deep learning has also been explored
in microscopy and other imaging and sensing systems [340,377–379]. For example,
Diederich et al. [380] trained a CNN that was used to tailor the shape of the light
source in a smartphone microscope to the features of different transparent samples, so
that the phase-contrast images of the samples can be adaptively enhanced for better
visualization (see Fig. 24(a)). A similar application of deep neural network for mul-
tiphoton illumination microscopy was reported in Ref. [381], where the authors used
a learning-based approach to estimate the correct illumination power in curved sam-
ples compared to a conventional multiphoton microscope, and adaptively applied the
minimal illumination needed to observe the structures of interest; see Fig. 24(b). The
advantages of such learning-based adaptive control of illumination intensity include
affordable photon budget and reduced perturbation/toxicity to the sample induced by
the imaging process [381].

Another example of performing inverse mapping using deep learning is for wavefront
sensing and correction. It is an important challenge to mitigate variable distortions
brought by, for example, scattering media around the sample. Adaptive optics has a
rich history to mitigate such challenges and has stepped onto a new level with the help
of deep learning. Neural network-based approaches were demonstrated earlier in array
telescopes to predict piston and tilt errors within the array elements using a network
with one hidden layer [383]. Following the progress made in deep learning in the last
decade, the use of deep learning in adaptive optics has significantly increased recently.
For example, researchers have demonstrated the efficacy of using deep neural networks
to provide necessary wavefront corrections to shape the optical beam after a scattering
medium. Specifically, they trained deep neural networks to, for example, learn the
inverse mapping from speckle patterns to illumination of the scattering media, so that
once the network is trained it can generate the corrected illumination corresponding
to desired speckle patterns [382]; see Figs. 22(c) and (d). In efforts related to image-
based wavefront sensing and correction, researchers have also used CNNs to retrieve
the spatial distribution of the wavefront errors based on the measured image intensities,
so that optical components such as SLMs can be used on demand to compensate for
such wavefront errors. Such efforts include performing wavefront sensing based on
measured PSFs [384,385], high-order aberration prediction using the pattern measured
by a Shack–Hartmann wavefront sensor [45], and correction of aberrations in excitation
and detection of optical microscopy based on reflected light from scattering samples
[46]. All-optical solutions to inverse problems in computational imaging applications
have been explored recently [324,386,387]. For example, application of deep learning
to design diffractive optical networks (see Section 3.2) for twin-image free all-optical
reconstruction of inline holograms was reported in Ref. [324], whereas Luo et al. [386]
demonstrated “seeing through” random, unknown diffusers using diffractive networks
that all-optically undo the scattering introduced by these diffusers. The advantages of
these diffractive approaches over their digital counterparts comprise the speed of image
reconstruction and the elimination of computing power (except for the illumination
light) due to the passive nature of diffractive networks.
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Figure 24

Figure 22 Wavefront correction using deep learning

(b)

Measured surface point cloud

(a)

(c)

(d)

Deep learning of inverse mapping in computational imaging and sensing.
(a) Enhanced phase contrast by adjusting the illumination shape adaptively to the
features of the transparent samples is achieved in a smartphone microscope. The adap-
tive adjustment of illumination shape was enabled by incorporating a trained CNN that
predicts the optimum illumination parameters for a given sample from the sample fea-
tures [380]. Reprinted from Diederich et al., PLoS One 13, e0192937 (2018) [380]. (b)
A neural network is used in multiphoton illumination microscopy to decide the appro-
priate excitation power as a function of the sample surface profile [381]. Reprinted by
permission from Macmillan Publishers Ltd: Pinkard et al., Nat. Commun. 12, 1916
(2021) [381]. Copyright 2021. (c) and (d) Light control through scattering media with
neural networks [382]. (c) A neural network (NN) is trained with pairs of illumina-
tion and corresponding speckle pattern through a scattering material. Once the NN is
trained, it is used to predict the illumination necessary to generate a target pattern after
the scattering material. (d) The ability of single-layer neural networks or CNNs trained
likewise to predict necessary illumination patterns for generating diffraction-limited
Gaussian foci through scattering media at different positions within the field of view.
(c) and (d) Reprinted with permission from [382]. Copyright 2018 Optical Society of
America.
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5. FUTURE OUTLOOK

The field of optics and photonics has been profoundly influenced by deep learning,
one of the most disruptive technologies of the last decades. Advances in deep learning
research will continue to bring about innovative design approaches for optical systems
and nanophotonic components. Deep learning could even potentially help fundamen-
tal knowledge discovery in some branches of optical sciences. It could also unveil
unconventional, non-intuitive, and/or task-specific solutions to a wide range of inverse
design problems in optics and photonics that either had not been solved previously or
the conventional solutions had serious shortcomings in terms of system parameters
and targeted performance metrics.

The field of optics and photonics bears the promise of enabling new computing tech-
nologies that would help deep neural networks step into their next phase of evolution
in terms of speed, power efficiency, and scalability. Although it is arguable if we can
realize general-purpose optical computers as a practical technology in the foreseeable
future, next-generation AI applications and their requirements make optical computing
an intriguing research area that is full of opportunities (and challenges). It is not pos-
sible to know in advance whether or when optics will fully deliver on the promises it
bears, but it is highly likely that deep learning will benefit from the bold attempts made
by photonics researchers in this regard. All-optical implementations of deep neural
network equivalent processors are not yet on the horizon, one of the major obstacles
being the all-optical implementation of low-power, scalable, and practical nonlinear
activation functions. However, nonlinear deep neural networks with photonic acceler-
ators may very well be in vogue within the next few years, whereas niche applications
benefiting from the high speed and parallelism of optical implementations could be
on the rise. It might not even be far-fetched to anticipate rises in applications of linear
optical networks, for various machine vision applications that demand extreme speed,
ultra-low power consumption, and ubiquitous computing.

Hybrid neural network systems present another key direction that can merge the best
of both worlds, i.e., the bandwidth, speed, power efficiency of optics/photonics and
the flexibility of electronic digital computing. Optical–electronic inference engines
realized by the joint optimization of the two computing modalities might bring optical
computing and its advantages into practical applications in, e.g., computer vision,
microscopy, and robotics. It is futile to speculate on the limit optics can go, if there
is one, in transforming deep learning, but the advances in recent years exhort for
continuing explorations. As for researchers that work at the intersection of deep
learning and optics/photonics fields, time is ripe for reaping the benefits from this
symbiotic relationship and collaboration between fields, which will continue to provide
exciting opportunities for the decades to come.
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