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Abstract: Permutation matrices form an important com-
putational building block frequently used in various
fields including, e.g., communications, information secu-
rity, and data processing. Optical implementation of
permutation operators with relatively large number of
input–output interconnections based on power-efficient,
fast, and compact platforms is highly desirable. Here, we
present diffractive optical networks engineered through
deep learning to all-optically perform permutation oper-
ations that can scale to hundreds of thousands of inter-
connections between an input and an output field-of-view
using passive transmissive layers that are individually
structured at the wavelength scale. Our findings indicate
that the capacity of the diffractive optical network in
approximating a given permutation operation increases
proportional to the number of diffractive layers and train-
able transmission elements in the system. Such deeper
diffractive network designs can pose practical challenges
in terms of physical alignment and output diffraction
efficiency of the system.We addressed these challenges by
designing misalignment tolerant diffractive designs that
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can all-optically perform arbitrarily selected permutation
operations, and experimentally demonstrated, for the first
time, a diffractive permutation network that operates at
THzpart of the spectrum.Diffractivepermutationnetworks
might find various applications in, e.g., security, image
encryption, and data processing, alongwith telecommuni-
cations; especially with the carrier frequencies in wireless
communications approaching THz-bands, the presented
diffractive permutation networks can potentially serve as
channel routing and interconnection panels in wireless
networks.

Keywords: diffractive deep neural networks; diffractive
permutation networks; optical computing; optical inter-
connects; optical machine learning; optical networks.

1 Introduction
Permutation is one of the basic computational opera-
tions that has played a key role in numerous areas
of engineering, e.g., computing [1], communications [2],
encryption [3], data storage [4], remote sensing [5], and
data processing [6]. Historically, electronic integrated cir-
cuits have been the established implementation medium
for the permutation operation and other space-variant
linear transformations, while the research on optical
computing has been mainly focused on using the Fourier
transform approximation of thin lenses covering vari-
ous applications in space-invariant transformations, e.g.,
convolution/correlation. On the other hand, as photonic
switching devices and optical waveguide technology have
become themainstream communication tools on high-end
applications, e.g., fiber optic networks, supercomputers,
anddata centers, various approacheshavebeendeveloped
toward all-optical implementation of permutation opera-
tion and other space-variant transformations based on,
e.g., Mach–Zehnder interferometers [7], optical switches
[8], photonic crystals [9], holographically recorded optical
elements [10–12], off-axis lenslet arrays [13, 14], and
arrays of periodic grating-microlens doublets [15]. The
development of compact, low-power optical permutation
and interconnection devices can have significant impact
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on next-generation communication systems, e.g., 6G net-
works [16, 17], as well as other applications such as optical
data storage [18] and image encrypting cameras [19–21].

With the widespread availability of high-end graphics
processingunits (GPU)andthemassivelygrowingamounts
of data, the past decade has witnessed major advances
in deep learning, dominating the field of digital infor-
mation processing for various engineering applications
including, e.g., image segmentation and classification
[22–25], natural language processing [26, 27], among
others [28]. The statistical inference and function approx-
imation capabilities of deep neural networks have also
been exploited to produce state-of-the-art performance
for computational inverse problems in many imaging and
sensing applications including, e.g., microscopy [29–35],
quantitative phase imaging [36–41], and others [42–51].
Beyond these data processing tasks, deep learning can
also provide task-specific solutions to challenging inverse
optical designproblems for numerous applications includ-
ing nanophotonics [52, 53], metamaterials [54], imaging,
and sensing [55–60]. However, as the success and the
applications of deep learning grow further, the electronic
parallel computing platforms, e.g., GPUs, hosting deep
neural networks and other machine learning algorithms
have started to bring some limitations due to their power-
and bandwidth-hungry operation. Moreover, the pace of
the advances in computational capacity of the integrated
circuits has fallen behind the exponential increase pre-
dicted by the Moore’s law [61]. These factors have fueled
a tremendous amount of effort toward the development
of optical machine learning schemes and other photonic
computing devices that can partially reduce the computa-
tional burden on the electronics leading to power-efficient,
massively parallel, high-speed machine learning systems.
While most of the arising optical computing techniques
rely on integrated photonic devices and systems compati-
ble with the integrated waveguide technology [62–68], an
alternative option toward exploiting photons for machine
learning and the related computing tasks is to use com-
plex modulation media and free-space light propagation
and diffraction, which is particularly suitable for visual
computing applications where the information is already
carriedby theopticalwaves (e.g., ofa sceneor targetobject)
in free space [69].

Motivated by these pressing needs, Diffractive Deep
NeuralNetworks (D2NN) [70, 71]haveemergedasanoptical
machine learning framework that utilizes deep learning to
engineer light–matter interactions over a series of diffrac-
tive surfaces so that a desired statistical inference or deter-
ministic computing task is realized all-optically as the light

waves propagate through structured surfaces. According
to this framework, the physical parameters determining
the phase and/or amplitude of light over each indepen-
dently controllable unit, i.e., the “diffractive neuron,”
are updated through the stochastic gradient descent and
error-backpropagation algorithmsbased ona loss function
tailored specifically for a given task. The weights of the
connections between the diffractive neurons/features on
successive layers, on the other hand, are dictated by the
lightdiffraction in freespace.Once thedeep learning-based
training, which is a one-time effort, is completed using a
computer, the resulting transmissive/reflective diffractive
layers are fabricatedusing, e.g., lithographyor 3Dprinting,
to physically form the diffractive network that completes
a given inference or computational task at the speed of
light using entirely passive modulation surfaces, offering
a task-specific, power-efficient, and fast optical machine
learning platform.

Based on the D2NN framework, here we demonstrate
diffractive optical network designs that were trained
to all-optically perform a given permutation operation
between the optical intensities at the input and output
fields-of-view, capable of handling hundreds of thousands
of interconnections with diffraction limited resolution. We
quantified the success of the presented diffractive optical
networks in approximating a given, randomly selected
permutation operation as a function of the number of
diffractive neurons and transmissive layers used in the
diffractive network design. We also laid the foundations
toward practical implementations of diffractive permuta-
tion networks by investigating the impact of various physi-
cal error sources, e.g., lateral and axial misalignments and
unwanted in-plane layer rotations, on thequality/accuracy
of the optically realized interconnection weights and the
permutation operation. Moreover, we showed that the
diffractive optical permutation networks can be trained
to be resilient against possible misalignments as well
as imperfections in the diffractive layer fabrication and
assembly. Finally, we present the first proof-of-concept
experimental demonstration of diffractive permutation
networks by all-optically achieving a permutation matrix
of size 25 × 25, effectively realizing 625 interconnections
based on 3D-printed diffractive layers operating at the THz
part of the spectrum.

The presented diffractive optical permutation net-
works can readily find applications in THz-band commu-
nication systems serving as communication channel patch
panels; furthermore, the underlying methods and design
principlescanbebroadlyextended tooperateatotherparts
of the electromagnetic spectrum, including the visible and
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IR wavelengths, by scaling each diffractive feature size
proportional to thewavelengthof light [72] andcanbeused
for image encryption in security cameras [21] and optical
data storage systems, among other applications [73–76].

2 Results
Figure 1 illustrates the presented free-space permutation
interconnect concept designed around diffractive optical
networks using theD2NN framework. As shown in Figure 1,
the presented permutation interconnect scheme does not
use any standard optical components such as lenses,
and instead relies on a series of passive, phase-only
diffractive surfaces. Due to the passive nature of these
layers, the diffractive optical network shown in Figure 1
does not consume any power except for the illumination
light, providing a power-efficient permutation operation
in a compact footprint of ∼600𝜆 along the longitudinal
axis, which could be further squeezed as needed. The
5-layer diffractive optical permutation network design
shown in Figure 1was trained through supervised learning
to all-optically realize a desired permutation operation,
P, between the light intensity signals at the input and
output FOVs, eachwithNi = No = 400 (20× 20) individual
pixels of size 2𝜆 × 2𝜆. Stated differently, this permutation
operation controls in total of NiNo = 0.16 million optical
intensity connections.

The supervised nature of the training process of the
diffractive permutation network necessitates the use of a
setof input–output signalpairs (examples that satisfyP) to
compute a penalty term and the associated gradient-based
updates with respect to the physical parameters of each
diffractive neuron at every iteration. We set the optical
signal of interest at the input and the output of the
diffractive permutation scheme to be the light intensity,
and as a result, the deep learning-based evolution of
the presented diffractive permutation network shown in
Figure 1 was driven based on the mean-squared error
(MSE) (see Methods Section) between the ground-truth
and the all-optically synthesized output intensity patterns
at a given iteration. Since this loss function acts only
on the light intensity, the diffractive optical network can
enjoy an output phase-freedom in synthesizing the cor-
responding transformed optical intensity patterns within
the output field-of-view. The light intensity, I, is related
to the complex-valued field, U, through a nonlinear
operation, I = |U|2. If a pair of input–output complex
fields exists for a given diffractive network, i.e., {U in,Uout}
and {U′

in,U
′
out}, then the input field U′′

in = 𝛼Uin + 𝛽U′
in will

create the output field U′′
out = 𝛼Uout + 𝛽U′

out at the output

plane. In terms of the associated intensities, however,
this direct linear extension does not hold since ||𝛼Uout

||2 +|||𝛽U′
out

|||2 ≠ |||U′′
out

|||2, making it challenging (in terms of the
data generalization capability) to design diffractive optical
networks for achieving a general purpose intensity-to-
intensity transformation such as a permutation operation.
To overcome this generalization challenge, we trained
our diffractive permutation networks using ∼4.7 million
randomly generated input/output intensity patterns that
satisfy the desired P, instead of a standard benchmark
image dataset (see the Methods).

After the training phase, we blindly tested each
diffractive permutation network with test inputs that were
never used during the training. Figure 2 illustrates 6
different randomly generated blind testing inputs along
with the corresponding all-optically permuted output light
intensities. In the first two randomly generated input
patterns shown in Figure 2A, there is light coming out of all
the input pixels/apertures at different levels of intensity.
In the next two test input patterns shown in Figure 2A,
on the other hand, nearly half of the input apertures
have nonzero light intensity and finally, the last two test
inputs contain only 10 and 11 pixels/apertures with light
propagating toward the 1st layer of the diffractive permu-
tation network. When tested on 20K randomly generated
blind testing input intensitypatternswithdifferent sparsity
levels, the 5-layer diffractive permutation network shown
in Figure 1 achieves 18.61 dB peak-signal-to-noise ratio
(PSNR), very well matching the ideal output response.
For this randomly generated 20K testing data, Figure 2B
also shows the distribution of PSNR as a function of
the number of input pixels with nonzero light intensity,
which reveals that the diffractive permutation network
can permute relatively sparser inputs with a higher output
image quality, achieving a PSNR of 25.82 dB.

In addition to randomly generated blind testing
inputs, we further tested the diffractive permutation
network shown in Figure 1 on 18.75K EMNIST images;
note that this diffractive network was trained only using
randomly generated input/output intensity patterns that
satisfy P and the EMNIST images constitute not only
blind testing set but also a significant deviation from the
statistical distribution of the training images. The input
field-of-view contains the permuted EMNIST images (P−1)
and the diffractive network inverts that permutation by
all-optically performing P to recover the original images
at the output plane (see Figure 2). The performance of the
diffractive permutation network was quantified based on
bothPSNRandStructuralSimilarity IndexMeasure (SSIM).
With NL = 40K diffractive neurons on each layer, the
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Figure 1: The schematic of a 5-layer diffractive permutation network, all-optically realizing 0.16 million interconnects between an input and
output field-of-view. The presented diffractive permutation network was trained to optically realize an arbitrarily selected permutation
operation between the light intensities over Ni = 400 = 20 × 20 input and No = 400 = 20 × 20 output pixels, establishing NiNo = 0.16
million desired interconnections based on 5 phase-only diffractive layers, each containing 40K (200 × 200) diffractive neurons/features.
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Figure 2: Input–output intensity pairs generated by the diffractive permutation network shown in Figure 1. (A) The diffractive permutation
network shown in Figure 1 was tested on two different datasets. The first blind testing dataset contains 20K randomly generated inputs.
6 examples from this randomly created testing data are shown here for demonstrating input–output intensity pairs with low, moderate and
high signal sparsity levels. Beyond successfully permuting randomly generated intensity patterns, the performance of the diffractive
permutation network was also quantified using permuted EMNIST images. None of these test samples were used in the training phase.
(B) Output intensity image PSNR with respect to the ground truth intensity patterns as a function of the input signal sparsity in randomly
generated test dataset. (C) Same as (B), except for EMNIST test images.
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5-layer diffractive permutation network shown in Figure 1
provides 19.18 dB and 0.85 for PSNR and SSIM metrics,
respectively, demonstrating the generalization capability
of the diffractive network to new types of input image data
never seen during the training phase.

2.1 Impact of the number of diffractive
layers and features

Next, we investigate the performance of diffractive permu-
tation networks as a function of the number of diffractive
neurons trained within the system. Toward this goal, in
addition to the 5-layer design shown in Figure 1 that
has in total of N = 200K trainable diffractive features,
we trained diffractive permutation networks consisting of
4, 3, and 2 modulation surfaces. The physical design
parameters such as the size/width of the diffractive sur-
faces, layer-to-layer distances, and the extent of the input
and output fields-of-view were kept identical to the ones
in the 5-layer network design. In other words, these new
diffractive networks are designed and trained exactly in
the same way as the previous 5-layer network except they
contain fewer diffractive layers. Figure 3A and B provides
a quantitative comparison between these 4 diffractive
permutation networks. While Figure 3A illustrates the
mean PSNR and SSIM values achieved by each diffractive
network for recovering EMNIST images, Figure 3B demon-
strates the mean-squared-error (MSE) between the desired
permutation operation and its optically realized version
(PD2NN) as a function of the number of diffractive layers
utilized in these designs (see Supplementary Figure S1
and the Methods Section on the estimation of PD2NN).
According to the permutation operator error shown in
Figure 3B, the performance improvement of the system
increases drastically with the additional diffractive layers
up to the 4-layer design that represents a critical point
in the sense that the inclusion of a 5th diffractive surface
brings a relatively small improvement. The reason behind
this behavior is the fact that the number of diffractive
features, N, in the 4-layer diffractive permutation network
matches the space-bandwidthproduct set by our input and
outputFOVs, i.e.,NiNo =400×400= 160K. Inotherwords,
Figure 3B reveals that when the number of phase-only
diffractive modulation units N matches or exceeds NiNo,
the diffractive optical network can achieve a given linear
transformation between the input and output intensities
with a very low error, i.e.,PD2NN ≈ P; for example, theMSE
between PD2NN and P in the case of a 4-layer design was
found to be 6.63 × 10−5. For N < NiNo, the error between
PD2NN and P increases accordingly, as shown in Figure 3B.

The benefit of having N ≥ NiNo is further revealed
in the increased generalization capability of the diffrac-
tive network as shown in Figure 3A. Since the EMNIST
images were not used during the training, they represent
completely new types of input intensity patterns for the
presented diffractive optical networks. The SSIM (PSNR)
values achieved by the 4-layer diffractive network is found
as 0.75 (16.41 dB) for the optical recovery of the permuted
EMNIST images. These numbers are significantly higher
compared to the performance of the 3-layer and 2-layer
diffractive designs that can attain SSIM (PSNR) values
of 0.46 (12.91 dB) and 0.30 (12.08 dB) for the same task;
furthermore, the 5-layer diffractive network design shown
in Figure 1 outperforms the others by achieving 0.85
(19.18 dB) for the same performance metrics. The
visual comparison of the input–output intensity patterns
depicted in Figure 3C further supports this conclusion,
where the noise due to the crosstalk between intercon-
nection channels decreases proportional to the number of
diffractive layers in the system.

2.2 Vaccination of diffractive permutation
networks

With sufficiently large number of phase-only diffractive
neurons/features, the diffractive networks can optically
realize permutation operations with, e.g., 0.16 million
channels between the input and output pixels as shown
in Figure 3. In fact, the number of interconnects that can
be optically implemented through diffractive networks can
go far beyond 0.16 million, given that the size/width of the
diffractive surfaces and thenumberof diffractive layers can
be increased further depending on the fabrication tech-
nology and the optomechanical constraints of the system.
In addition, as the number of diffractive layers increases
in a diffractive network architecture, their forward model
can better generalize to new, unseen data as shown in
Figure 3A.

On the other hand, deeper diffractive optical network
designs are more susceptible to misalignments that are
caused by the limitations of the optomechanical assembly
and/or the fabrication technology that is utilized. It was
shown that diffractive optical networks trained for statis-
tical inference tasks, e.g., all-optical object classification,
can be vaccinated against misalignments and other physi-
cal error sources, when the factors creating these nonideal
conditions were incorporated into the training forward
model, whichwas termed as vaccinated-D2NNs or v-D2NNs
[77]. Specifically, v-D2NN expands on the original D2NN
framework by modeling possible error sources as random
variablesand integrating themaspartof the trainingmodel
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Figure 3: The impact of the number of diffractive layers on the approximation accuracy of D2NN for a given intensity permutation operation.
(A) The average SSIM and PSNR values achieved by the diffractive permutation network designs based on L= 2, L= 3, L= 4 and L= 5
diffractive layers, containing 200 × 200, i.e., 40K, phase-only diffractive neurons/features per layer for the task of optically recovering
permuted EMNIST images. (B) The transformation error between the desired intensity permutation (P) and its optically realized counterpart
(PD2NN) for the diffractive networks with L= 2, L= 3, L= 4 and L= 5 diffractive layers. The transformation error decreases as a function of the
number of layers in the diffractive network architecture. The L= 4-layer diffractive permutation network design represents a critical point as
it matches the space-bandwidth product requirement of the desired permutation operation, i.e., N = NiNo = 4 × 40K = 160K, and further
increasing the number of layers to L= 5 brings only a minor improvement. (C) Examples of EMNIST test images demonstrating the
performance of the diffractive permutation networks as a function of L.

so that the deep learning-based evolution of the diffractive
surfaces is guided toward solutions that are resilient to
nonideal physical conditions and/or fabrication errors.
Toward practical applications of diffractive permutation
networks, we quantified the impact of optomechanical
errors and applied the v-D2NN framework to devise robust

solutions that can achieve a given interconnect operation
despite fabrication tolerances.

In our numerical study depicted in Figure 4, we
considered 4 different misalignment components repre-
senting the 3D misalignment vector of the lth diffractive
layer,

(
Dx

l,Dy
l,Dz

l) and their in-plane rotation around the
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Figure 4: The sensitivity of the diffractive permutation networks against various levels of physical misalignments (A) SSIM values achieved
by 5-layer diffractive permutation networks with and without vaccination. (B) Transformation errors between the desired 100 × 100
permutation operation (P) and its optically synthesized counterpart (PD2NN) at different levels of misalignments denoted by 𝑣test. (C) The
layers of a nonvaccinated diffractive permutation network, i.e., 𝑣tr = 0, along with the examples of EMNIST test images recovered optically
through the diffractive permutation operation. (D) Same as (C), except for a vaccinated diffractive permutation network based on 𝑣tr = 0.25.
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optical axis denoted as D𝜃
l. Each of these 4 misalign-

ment componentswere defined as independent, uniformly
distributed random variables, D∗

l ∼ U(−Δ∗,Δ∗), with Δ∗

defined as a function of a common auxiliary parameter,
𝑣. The lateral misalignments parameters, Δx and Δy,
determining the range of Dx

l and Dy
l, respectively, were

set to be 0.67𝜆v, i.e., Dx
l ∼ U(−0.67𝜆𝑣,0.67𝜆𝑣) and Dy

l ∼
U(−0.67𝜆𝑣,0.67𝜆𝑣), where 𝜆 denotes the wavelength of
the illumination light. Similarly,Δz andΔ𝜃 weredefinedas
24𝜆v and 4◦𝑣. For instance, if we take 𝑣 = 0.5, this means
each diffractive layer can independently/randomly shift
in both x and y axes within a range of (−0.335𝜆,0.335𝜆).
In addition, their location over the z direction and their
in-plane orientation can randomly change within the
ranges of (−12𝜆, 12𝜆) and (−2◦, 2◦), respectively (see the
Methods Section for more details).

To better highlight the impact of these misalignments
and demonstrate the efficacy of the v-D2NN framework,
we trained a new nonvaccinated, i.e., 𝑣tr = 0, diffractive
permutation network that can all-optically realize a given
permutation matrix, P, representing 10K intensity inter-
connections between 100 input and 100 output pixels of
size4𝜆×4𝜆. Theerror-free trainingmodelof thisdiffractive
network with 𝑣tr = 0 implicitly assumes that when the
resulting diffractive network is fabricated, the system
conditions will exactly match the ideal settings regarding
the 3D locations of the layers and their in-plane orien-
tations. With an architecture identical to the one shown
in Figure 1, containing N = 200K ≫ NiNo diffractive neu-
rons, this diffractive network can all-optically approximate
the permutation matrix, P, with an MSE of 1.45 × 10−6
in the absence of any misalignment errors, i.e., 𝑣test = 0
(see the green curve in Figure 4B). However, when there
is some discrepancy between the training and testing
conditions, i.e., 𝑣test > 0, the optically implemented for-
ward transformation, PD2NN , starts to deviate from the
desired operation P. For instance, at 𝑣test = 0.125, the
transformation error, ‖PD2NN − P‖, can be computed as
3.1 × 10−3. This negative impact of the physical misalign-
ments on the performance of a nonvaccinated diffractive
network can also be seen in Figure 4A (green curve), which
demonstrates the SSIM values achieved by this diffractive
network for recovering permuted EMNIST images under
different levels of misalignments. The high-quality of the
image recovery (see Figure 4C) at 𝑣test = 0 quantified
with an SSIM of 0.99 deteriorates under the presence of
misalignments, highlighted by the SSIM value falling to
0.49 and 0.30 at 𝑣test = 0.125 and 𝑣test = 0.25, respectively.

Unlike the nonvaccinated design, the vaccinated
diffractive permutation networks can maintain their

approximation capacity and accuracy under erroneous
testing conditions as shown in Figure 4A and B. For
instance, the SSIM value of 0.49 attained by the nonvacci-
nateddiffractive network for themisalignment uncertainty
set by 𝑣test = 0.125 increases to 0.88 in the case of a
diffractive permutation network trained with 𝑣tr = 0.25
(red curve in Figure 4A). The difference between the image
recovery performances of the vaccinated and the nonva-
ccinated diffractive network designs increases further as
the misalignment levels increase during the blind testing.
While the nonvaccinated diffractive network can only
achieve SSIM values of 0.3 and 0.19 at 𝑣test = 0.25 and
𝑣test = 0.375, respectively, the output images synthesized
by thevaccinateddesign (𝑣tr = 0.25) reveals SSIMvaluesof
0.8 at 𝑣test = 0.25 and 0.64 at 𝑣test = 0.375 (see Figure 4D).
A similar conclusion can also be drawn from Figure 4B,
demonstrating the MSE values between the desired per-
mutation matrix, P, and its optically realized counterpart,
PD2NN . The transformation errors, ‖PD2NN − P‖, of the
vaccinated diffractive network (𝑣tr = 0.25) at 𝑣test = 0.125
and at 𝑣test = 0.25 were computed as 5.15 × 10−4 and
1.2 × 10−3, respectively, which are 5–10 times smaller
compared to the MSE values provided by the nonvacci-
nated diffractive design at the same misalignment levels.
Supplementary Figure S2 further illustrates the error maps
between P and PD2NN realized by the nonvaccinated and
vaccinated diffractive permutation networks at different
misalignment levels.

The compromise for this misalignment robustness
comes in the form of a reduction in the peak perfor-
mance. While the nonvaccinated diffractive network can
solely focus on realizing the given permutation operation
with the highest quality and approximation accuracy, the
vaccinated diffractive network designs partially allocate
their degrees-of-freedom to building up resilience against
physicalmisalignments. For example,while the peakSSIM
achieved by the nonvaccinated diffractive network is 0.99,
it is0.88 for thediffractivepermutationnetworkvaccinated
with 𝑣tr = 0.25. The key difference, on the other hand, is
that the better performance of the nonvaccinated diffrac-
tive network is sensitive to the physical implementation
errors, while the vaccinated diffractive permutation net-
works can realize the desired input–output interconnects
over a larger range of fabrication errors or tolerances.
A comparison between the diffractive layer patterns of
the nonvaccinated and vaccinated diffractive permutation
networks shown in Figure 4C and D, respectively, also
reveals that the vaccination strategy results in smoother
light modulation patterns; in other words, the material
thickness values over the neighboring diffractive neurons
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partially lose their independence and become correlated,
causinga reduction in thenumberof independentdegrees-
of-freedom in the system.

2.3 Experimental demonstration of a
diffractive permutation network

To experimentally demonstrate the success of the pre-
sented diffractive permutation interconnects, we designed
a 3-layer diffractive permutation network achieving the
desired (randomlygenerated) intensity shufflingoperation
with Ni = No = 5 × 5, optically synthesizing 625 connec-
tions between the input andoutput FOVs; this networkwas
designed tooperate at 0.4THz, corresponding to∼0.75mm
in wavelength. During the training, the forward model
of this diffractive permutation network was vaccinated
with 𝑣tr = 0.5 against the 4 error sources as detailed in
Section 2.2 including the 3D location of each diffractive
layer and the in-plane rotation angle around the optical
axis. In addition to these misalignment components, we
also vaccinated this diffractive network model against
unwanted material thickness variations that could arise
due to the limited lateral and axial resolution of our 3D
printer (see the Methods Section for details). To compen-
sate for the reduction in the degrees-of-freedom due to the
vaccination scheme, the number of phase-only diffractive
features in the permutation network was selected to be
NL = 10K diffractive neurons per layer. Therefore, each
diffractive layer shown in Figure 5A contains 100 × 100
phase-only diffractive neurons of size ∼0.67𝜆 × 0.67𝜆.
Compared to the diffractive surfaces shown in Figures 1–4,
the layers of our experimental system were set to be
2-times smaller in both the x and y directions to keep
the layer-to-layer distances smaller while maintaining
the level of optical connectivity between the successive
diffractive surfaces (see Figure 5B). Figure 5C and D
illustrates the 3D printed diffractive permutation network
and the schematic of our experimental setup (see the
Methods Section for details).

Figure 6A illustrates the targeted 25 × 25 permutation
matrix (P) that is randomly generated and the numerically
predicted PD2NN along with the absolute difference map
between these two matrices. According to the numerical
forward model of the trained diffractive network shown in
Figure5, the transformationerrorbetween theP andPD2NN ,
i.e., ‖PD2NN − P‖ is equal to 5.99 × 10−4 under error-free
conditions, i.e., 𝑣test = 0. Furthermore, the forward model
of the trained diffractive permutation network shown in
Figure 5 provides 17.87 dB PSNR on average for the test
letters “U,” “C,” “L,” and “A,” as depicted in Figure 6B.
A visual comparison between the numerically predicted

and the experimentallymeasured output images of these 4
input letters (whichwerenever seenby thenetworkbefore)
demonstrates theaccuracyof the forward trainingand test-
ing models as well as the success of the presented diffrac-
tive permutation network design. Interestingly, the PSNR
of the experimentally measured images was observed
to be higher, 19.54 dB, compared to the numerically
predicted value, 17.87 dB. Our numerical study reported in
Figure 4 suggests that this can be explained based on the
vaccination rangeusedduring the trainingand theamount
physical error in the system testing. For instance, the
SSIM value achieved by the vaccinated diffractive network
trained with 𝑣tr = 0.5 (yellow curve) at relatively lower
physical misalignment levels, e.g., 𝑣test = 0.125, is higher
compared to its performance under the ideal conditions,
i.e., 𝑣test = 0.0, as depicted in Figure 4A.

3 Discussion
Beyond optomechanical error sources and fabrication
tolerances, another factor that might potentially hinder
the utilization of diffractive permutation networks in prac-
tical applications is the output diffraction efficiency. For
instance, the diffraction efficiency of the 5-layer network
shown in Figure 1 is∼0.004%whichmight be very low for
some applications. On the other hand, this can be signifi-
cantly increased by using an additional loss term, penal-
izing the poor diffraction efficiency of the network (see
the Methods Section for details). Supplementary Figure S3
demonstrates5-layerdiffractivenetworks thataredesigned
to optically realize 0.16 million interconnections between
the input and output FOVs with increased diffraction effi-
ciencies, and compares their performance in terms of SSIM
values achieved. The training of these diffractive network
models is based on a loss function in the form of a linear
combination of two different penalty terms,′ = + 𝛾e,
wheree is the diffraction efficiency related penalty term
promoting efficient solutions (see the Methods Section).
As a general trend, the diffraction efficiency of the under-
lying diffractive network model increases as a function of
the weight (𝛾) of the efficiency penalty term in the loss
function. However, since the number of diffractive neu-
rons, hence, the degrees-of-freedom in these diffractive
network models is very close to NiNo, the diffraction
efficiencyeitherdoesnot improvebeyondacertainvalueor
the evolution of the diffractive layers starts to solely focus
on the efficiency instead of the desired permutation oper-
ation resulting in low performance designs. This unstable
behavior can be observed specifically when 0.235 < 𝛾 <

0.24. On the other hand, as in the case of vaccinated
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Figure 5: Experimental demonstration of a diffractive permutation network. (A) The material thickness profiles of the diffractive surfaces of
the fabricated diffractive permutation network. (B) The schematic of the experimental architecture illustrating the forward optical model of
the diffractive permutation network. (C) 3D printed diffractive permutation network operating at THz part of the spectrum. (D) The schematic
of our experimental system.
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Figure 6: Experimental results. (A) (left) The desired 25 × 25 permutation matrix, P, (middle) the optically realized permutation operation
predicted by the numerical forward model, PD2NN, and (right) the absolute error map between the two matrices. (B) Comparison between the
numerically predicted and the experimentally measured output images for the task of recovering intensity patterns describing the letters
‘‘U,’’ ‘‘C,’’ ‘‘L,’’ and ‘‘A’’.

diffractive networkmodels, if the diffractive network archi-
tecture contains N ≫ NiNo diffractive neurons, then this
instability vanishes, providing significant improvements
in the output diffraction efficiency without sacrificing the
performance of the all-optical permutation operation. For
instance, the 3D printed diffractive permutation network
depicted in Figure 6 was trained based on ′ with 𝛾 = 0.15
and it provides 2.45% output diffraction efficiency, despite
the fact that89.37%of the incidentpowerat the inputplane

is lost due to the absorption of the 3D printing material.
With weakly absorbing transparent materials used as part
of the diffractive network fabrication, a significantly larger
output efficiency can be achieved.

Also note that, although we solely focused on diffrac-
tive network designs composed of dielectric optical mod-
ulation surfaces, in principle, some of these layers can
be replaced with metasurfaces/metamaterials. While the
use of can provide some additional degrees of freedom,
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including, for example, the engineering of dispersion,
there are some challenges to overcome in realizing
metamaterial-based diffractive networks. In the presence
of fabrication errors and imperfections, the scattered light
fields might deviate from the predictions of the numerical
forwardmodel. Thesenonidealwavesgeneratedbyameta-
surface would then excite unwanted diffraction modes
over the subsequent layers generating an “avalanche”
within the diffractive volume, accumulating substantial
field errors, especially for deeper network designs with
L ≥ 2. In addition, the physical models of phase and/or
amplitudemodulation ofmeta-atoms are, in general, valid
for waves covering a relatively small numerical aperture
(NA). As a result, a high NA diffractive network design
that utilizes the entire bandwidth of the propagation
medium (NA = 1, for air) would be challenging, as the
modulation response of themeta-units might deviate from
their ideal small angle responses, introducing errors to
the forward model. Although it is possible to restrict a
diffractivenetworkdesign toworkwitha lowerNA, itwould
increase the overall footprint of the system and reduce the
space-bandwidth product that can be processed by the
diffractive network.

These challenges, in general, are negligible for dielec-
tric diffractive networks composed of 𝜆/2 features on a
substrate, as also highlighted by the close match between
thenumerically predicted images and their experimentally
measured counterparts shown in Figure 6 and our former
work [21, 70, 74, 76, 77]. In our optical forward model,
the diffractive layers are assumed to be thin modulation
surfaces, i.e., there is only a single scattering event con-
verting an incidentwavefield to an outgoing one after each
diffractive layer. Practically, though, there are additional
scattered fields that are ignored in our model, especially
when there is a substantial material thickness variation
between adjacent pixels. However, in our designs, we do
not observe a sharp material thickness transition between
neighboring pixels. This is mainly due to the nature of our
training process. Specifically, the presented diffractive net-
works are trained through error-backpropagation, which
computes the variable updates by taking the gradient of
the loss functionwith respect to thematerial thicknessover
each diffractive unit. In such a process, it is highly unlikely
that the gradients of two adjacent pixels (𝜆/2 apart from
each other) deviate significantly from each other, which
effectively causes a smoothening effect on the diffractive
surface height profiles as they are being optimized through
deep learning. This smoothening behavior is even more

pronounced in the vaccinated diffractive network designs
due to the random lateral translation of the diffractive
layers as part of the training forwardmodel. Therefore, the
impact of side scattering or field shadowing due to height
discontinuities across a given diffractive layer design is
negligible. In addition, the back-reflected waves can also
be ignored, as these are, in general, weak processes unless
they are specifically enhanced using, e.g., metamaterials
or other special structures. Therefore, the optical forward
model of dielectric diffractive networks can be accurately
represented within the scalar diffraction theory without
needing vectorial modeling of light fields or considering
weaker multi-reflections. Finally, the evanescent waves
andthevectorialfieldsassociatedwith themcanbeentirely
ignored since each successive diffractive layer is axially
positioned>𝜆 away from the previous layer.

In summary, we showed that the diffractive networks
can optically implement intensity permutation operations
between their input and output apertures based on phase-
only light modulation surfaces with N ≥ NiNo diffractive
neurons. Due to the nonlinear nature of the intensity
operation, it is crucial to use training input intensity
patterns with different levels of sparsity to prevent any
type of data-specific overfitting during the training phase.
Diffractive permutation networks with N > NiNo demon-
strate increased generalization capability, synthesizing
moreaccurateoutputswith‖PD2NN − P‖ ≈ 0.ByusingN >

NiNo, one can also design misalignment and fabrication
error insensitive, power-efficient diffractive permutation
networks, which could play a major role in practical
applications, e.g., 6G wireless networks, computational
cameras, etc. Although this study demonstrated diffractive
optical networks realizing permutation operations with
0.16 million interconnects, with Ni = No = 20 × 20, these
systems are highly scalable to even larger Ni,No combina-
tions depending on the availability of training computer
hardware.Since the trainingofadiffractiveopticalnetwork
is a one-time effort, one can use a computing platform
with a significantly larger random-access memory (RAM)
to design much bigger diffractive networks. Alternatively,
the forward trainingmodel of adiffractivenetwork canalso
bedistributedamongmultipleGPUs forparallel computing
with increased memory capacity paving the way to signif-
icantly larger permutation operations to be implemented
all-optically. Finally, the incorporation of dynamic spatial
lightmodulators to replace some of the diffractive layers in
a given design can be used to reconfigure, on demand, the
all-optically performed diffractive transformation.
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4 Methods

4.1 Experimental setup

According to the schematic diagram of our experimental setup shown
in Figure 5D, the THz wave incident on the input FOV of the
diffractive network was generated using a horn antenna attached
to the sourceWR2.2 modulator amplifier/multiplier chain (AMC) from
Virginia Diode Inc. (VDI). A 10 dBm RF input signal at 11.111 GHz
(fRF1) at the input of the AMC was multiplied 36 times to generate
a continuous-wave (CW) radiation at 0.4 THz, corresponding to
∼0.75mm inwavelength. The output of the AMCwasmodulated with
1 kHz square wave to resolve low-noise output data through lock-in
detection. Sincewedidnotuse any collimatingoptics inour setup, the
distance between the input plane of the 3D-printed diffractive optical
networkandtheexitapertureof thehornantennawasset tobe∼60cm
approximating a uniform plane wave over the 40𝜆 × 40𝜆 input FOV.
At the output plane of the diffractive optical network, the diffracted
THz light was collected using a single-pixel Mixer/AMC from Virginia
Diode Inc. (VDI). During the measurements, the detector received a
10 dBm sinusoidal signal at 11.083 GHz serving as a local oscillator
for mixing, and the down-converted signal was at 1 GHz. The 40𝜆 ×
40𝜆 output FOV was scanned by placing the single-pixel detector on
an XY stage that was built by combining two linear motorized stages
(Thorlabs NRT100). At each scan location, the down-converted signal
coming from the single-pixel detector was fed to low-noise amplifiers
(Mini-Circuits ZRL-1150-LN+) with a gain of 80 dBm and a 1 GHz
(+/−10 MHz) bandpass filter (KL Electronics 3C40-1000/T10-O/O)
that erases the noise components coming from unwanted frequency
bands. Following the amplification and filtering, themeasured signal
passed through a tunable attenuator (HP 8495B) and a low-noise
power detector (Mini-Circuits ZX47-60). Finally, the output voltage
valuewas generated by a lock-in amplifier (StanfordResearch SR830).
Themodulation signal was used as the reference signal for the lock-in
amplifier and accordingly, we performed a calibration to convert the
lock-in amplifier readings at each scan location to linear scale. During
our experiments, the scanning step size at the output plane was set to
be ∼𝜆 in x and y directions. The smallest pixel of the experimentally
targeted permutation grid, i.e., the desired resolution of the diffractive
permutation operation was taken as 8𝜆 × 8𝜆 during the training,
corresponding to 5 × 5 discrete input and output signals. Therefore,
the output signal measured for each input object was integrated over
a region of 8𝜆× 8𝜆 per pixel, resulting in themeasured images shown
in Figure 6B.

A 3D printer, Objet30 Pro, from Stratasys Ltd., was used to
fabricate the layers of the diffractive permutation network shown
in Figure 5C as well as the layer holders. The active modulation
area of our 3D printed diffractive layers was 5 × 5 cm (∼66.66𝜆
× ∼66.66𝜆) containing 100 × 100, i.e., 10K, diffractive neurons.
These modulation surfaces were printed as insets surrounded by a
uniform slab of printing material with a thickness of 2.5 mm and the
total size of each printed layer including these uniform regions was
6.2× 6.2 cm. Following the 3D printing, these additional surrounding
regions were coated with aluminum to block the propagation of the
light over these areas minimizing the contamination of the output
signal with unwanted scattered light.

4.2 Training forward model of diffractive permutation
networks

4.2.1 Optical forward model: The material thickness, h, was
selected as the physical parameter controlling the complex-valued
transmittance values of the diffractive layers of our design. Based
on the complex-valued refractive index of the diffractive material,
𝜏 = n+ j𝜅, the corresponding transmission coefficient of a diffractive
neuron located on the lth layer at a coordinate of (xq, yq, zl) is defined
as,

t
(
xq, yq, zl

)
= exp

(
−2𝜋𝜅h

(
xq, yq, zl

)
𝜆

)

× exp
(
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(
xq, yq, zl

)
𝜆

)
(1)

where nm = 1 denotes the refractive index of the propagation
medium (air) between the layers. The real and imaginary parts of
the 3D printing material were measured experimentally using a THz
spectroscopy system, and they were revealed as n = 1.7227 and
𝜅 = 0.031 at 0.4 THz.

The optical forward model of the presented diffractive networks
relies on the Rayleigh–Sommerfeld theory of scalar diffraction to
represent the propagation of light waves between the successive
layers. According to this diffraction formulation, the free space can
be interpreted as a linear, shift-invariant operator with the impulse
response,
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where r =
√
x2 + y2 + z2. Based on Eq. (2), qth diffractive neuron

on the lth layer, at (xq, yq, zl), can be interpreted as the source of a
secondary wave generating the field at (x, y, z) in the form of,
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The parameter rlq in Eq. (3) is expressed as√(
x − xq

)2 + (
y − yq

)2 + (z − zl)2. When each diffractive neuron on
layer l generates the field described by Eq. (3), the light field incident
on the pth diffractive neuron on the (l+ 1)th layer at (xp, yp, zl+1) is
the linear superposition of the all the secondary waves generated by
the previous layer l, i.e.,∑

q
Al
q𝑤

l
q
(
xp, yp, zl+1

)
, whereAl

q is the complex

amplitude of the wave field right after the qth neuron of the lth
layer. This field is modulated by the multiplicative complex-valued
transmittance of the diffractive unit at (xp, yp, zl+1), creating the
modulated field t
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modulated field, a new secondary wave,
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is generated.Theoutlinedsuccessivemodulationandsecondarywave
generation processes occur until the waves propagating through the
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diffractive network reach to the output plane. Although, the forward
optical model described by Eqs. (1)–(4) is given over a continuous
3D coordinate system, during our deep learning-based training of the
presented diffractive permutation networks, all the wave fields and
the modulation surfaces were represented based on their discrete
counterparts with a spatial sampling rate of ∼0.67𝜆 on both x and y
axes, that is also equal to the size of a diffractive neuron.

4.2.2 Physical architecture of the diffractive permutation networks
and training loss functions: The size of the output and input FOVsof
thepresenteddiffractivepermutationnetworkswerebothset tobe40𝝀
× 40𝜆, defining a unit magnification optical permutation operation.
Note that the unit magnification is not a necessary condition for the
success of the forward operation of diffractive optical interconnects
but rather a design choice. Without loss of generality, the output
FOV can be defined centered around the origin, (0,0), i.e., − 20𝜆
< x, y < 20𝜆. The dimensions of the diffractive layers was taken as
133.3 𝜆× 133.3𝜆 for the diffractive permutation networks presented in
Figures 1–4 and Supplementary Figure S3, and in all these diffractive
networkarchitectures, the layer-to-layerdistanceswere takenas 120𝜆.
The axial distance between the 1st diffractive layer and the input FOV
was set to be 53.3𝜆 that is also equal to the axial distance from the
last diffractive layer to the output plane, preserving the symmetry of
the system on the longitudinal axis. In the case of our experimentally
validated diffractive design (Figure 5), on the other hand, the active
modulation surface of the fabricated diffractive layers extends 66.7𝜆
on both x and y directions. Accordingly, the layer-to-layer distances
were taken as 60𝜆 while the remaining distances were kept equal to
53.3𝜆.

During the deep learning-based training of all of these diffractive
permutation networks, the wave fields and the propagation functions
depicted in Eqs. (2)–(4) were sampled at a rate of ∼0.67𝜆 that is also
equal to thesizeof the smallestdiffractiveunitson themodulationsur-
faces constituting the presented diffractive networks. At this spatial
sampling rate, the input and output intensity patterns were repre-
sented as 2D discrete vectors of size 60 × 60 denoted by Iin[m, n] and
Iout[m, n], respectively, with m = 1, 2, 3,… , 60 and n = 1, 2, 3,… , 60.
The underlying complex-valued wave fields can be written as
Uin[m, n] =

√
Iin[m, n]e j∅in[m,n] andUout[m, n] =

√
Iout[m, n]e j∅out[m,n]. In

our forward model, we assumed that the input light has constant
phase front, i.e., ∅in[m, n] is taken as an arbitrary constant within
the input field-of-view. In alternative implementations, without loss
of generality, the diffractive permutation network can be trained
with any arbitrary function of ∅in[m, n], achieving the same output
accuracy levels ‖PD2NN − P‖ ≈ 0 using N ≥ NiNo.

While the light fields, the diffractive layers, and the impulse
response of the free space were all sampled at a rate of ∼0.67𝜆, the
spatial grid/pixel size of a given desired permutation operation was
set to be larger. Specifically, the permutation pixel size was taken as
2𝜆 × 2𝜆 for the diffractive networks shown in Figures 1–3. On the
other hand, the input and output pixel size was chosen as 4𝜆× 4𝜆 for
the vaccinated and nonvaccinated diffractive permutation networks
shown in Figure 4, and finally, the pixel size was set to be 8𝜆 × 8𝜆
for the fabricated diffractive permutation network model depicted in
Figure 5.

To train the presented diffractive permutation networks, a
structural loss function, , in the form of MSE was used.

 = 1
S

S∑
s=1

||PIin[s]− 𝜎Iout[s]||2, (5)

In Eq. (5), Iin[s] and Iout[s] denote the lexicographically
ordered vectorized counterparts of the input intensity pattern, i.e.,
vec(Iin[q, p]), and the output intensity pattern, i.e., 𝑣ec(Iout[q, p]),
and P represents the desired permutation matrix to be performed
all-optically. As depicted in Eq. (5), the output intensity pattern Iout[s]
or Iout[q, p] was scaled by a constant 𝜎 that was calculated at each
training iteration as,

𝜎 =
1
S

S∑
s=1

PIin[s]Iout[s]

1
S

S∑
s=1

Iout[s]2
. (6)

Note that the presented diffractive permutation networks pre-
serve the relative intensity levels. Stated differently, our training
forward model aims to keep the intensity levels over the output and
input pixels the same up to a single multiplicative constant, 𝜎.

To improve the diffraction efficiency of diffractive permutation
networks, we defined another loss function,′, that is a linear combi-
nationof twopenalty terms,′ = + 𝛾e,wherecorresponds to the
structural loss defined in Eq. (5). eis the penalty term that promotes
higher diffraction efficiency at the output of diffractive networks, and
it was defined as, e = e−𝜂 , where,

𝜂 =

S∑
s=1

Iout[s]
S∑
s=1

Iin[s]
× 100⋅ (7)

The diffractive permutation networks presented in Figures 1–4
were trained based on ′ with 𝛾 = 0; however, the experimentally
demonstrated diffractive permutation network model was trained
with 𝛾 = 0.15, resulting in an output diffraction efficiency of 2.45%,
which includes amaterial absorption loss of Supplementary Figure S3
further demonstrates the diffraction efficiency and the SSIM values
provided by various diffractive permutation network models trained
with different 𝛾 values.

The supervised deep learning-based training of the presented
diffractive permutation networks evaluates the loss function ′ for
a batch of randomly generated input patterns, computes the mean
gradient, and updates the learnable, auxiliary variables, ha, that
determine the material thickness over each diffractive neuron, h,
through the following relation,

h(ha) =
sin(ha)+ 1

2
(hm − hb)+ hb (8)

where hm and hb denote the maximummodulation thickness and the
base material thickness, respectively. For all the diffractive permuta-
tion networks presented in Figures 1–4 and Supplementary Figure S3,
hm was taken as 2𝜆. In the design of the 3D-printed diffractive
permutation network, however, hm was set to be 1.66𝜆 to restrict
the material thickness contrast between the neighboring diffractive
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features. The value of hb was taken as 0.66𝜆 for all the presented
designs including the fabricated diffractive network.

4.2.3 Computation of PD2NN, optical transformation errors and
performance quality metrics: For a given diffractive permutation
network design trained to optically implement a permutation matrix
P of size Ni × No, there are two different ways to compute the
permutation operation predicted by its numerical forwardmodel. The
first way is to propagateN different randomly generated independent
inputs with N ≥ NiNo and solve a linear system of equations for
revealing the entries of PD2NN . Alternatively, each input pixel at the
input FOV can be turned on sequentially and the output intensity
pattern synthesized by the diffractive optical permutation network as
a response to each pixel provides one unique column of PD2NN . These
two procedures, in general, result in two different PD2NN matrices that
closely resemble each other. We opted to use the latter procedure
due to its simplicity, which turn on each input pixel one at a
time and records the corresponding output intensity pattern, which,
after vectorization, represents a column of PD2NN . Following the
calculation of PD2NN predicted by the forward model of a trained
diffractive permutation network, it was scaled with a multiplicative
constant, 𝜎P, to account for the optical losses:

𝜎P =

1
NiNo

Ni∑
ni

No∑
no
PD2NN [ni, no]P[ni, no]

1
NiNo

Ni∑
ni

No∑
no
PD2NN [ni, no]2

. (9)

The all-optical transformation error, ‖P − PD2NN‖2, can be com-
puted based on,

‖P − PD2NN‖2 = 1
NiNo

Ni∑
ni

No∑
no

||𝜎PPD2NN [ni, no]
− P[ni, no]||2⋅ (10)

Denoting the lexicographically ordered vectorized version of a
2D input intensitypatternwith Iin[s], theground truthoutput intensity
can be found by PIin[s]. The PSNR between this ground-truth vector
and the output vector synthesized by the forward optical operation of
a given, trained diffractive network, Iout[s], can be calculated as,

PSNR = 20log10

⎛⎜⎜⎜⎜⎝
1√∑

s
||PIin[s]− 𝜎Iout[s]||2

⎞⎟⎟⎟⎟⎠
, (11)

where 𝜎 is the multiplicative constant defined in Eq. (6). The SSIM
values were calculated based on the built-in function in TensorFlow,
i.e., tf.image.ssim, where the two inputs were 2D versions of PIin[s]
and Iout[s], representing theground-truth imageandthepermuted,all-
optical output signal, respectively. All the parameters of tf.image.ssim
were taken equal to default values, except that the size of theGaussian
filterwasset tobe5×5, insteadof 11× 11, and thewidthof theGaussian
filter was set to be 0.75.

4.2.4 Vaccination of diffractive permutation networks: v-D2NN
frameworkaims todesigndiffractiveopticalnetworks thatare resilient
againstphysical error sources, e.g.,misalignments, bymodeling these
factors as random variables and incorporating them into the forward
training model. In the training forward model of the vaccinated
diffractive networks shown in Figure 4, 4 physical error components

weremodeled representing themisalignment of each diffractive layer
with respect to their ideal location and orientation/angle. The first
3 components represent the statistical variations in the location
of each diffractive layer in 3D space. Let the ideal location of a
diffractive layer, l, be denoted by the vector Xl = (xl, yl, zl), then
at each training iteration i, v-D2NN framework perturbs Xl with a
randomdisplacement vector,Dl,i =

(
Dx

l,i,Dy
l,i,Dz

l,i). The components
of this 3D displacement vector were defined as uniformly distributed,
independent random variables, i.e.,

Dx
l,i ∼ U(−Δx,Δx) (12a)

Dy
l,i ∼ U(−Δy,Δy) (12b)

Dz
l,i ∼ U(−Δy,Δy) (12c)

During the training, for each batch of input images, the 3D
displacement vector Dl,i is updated and accordingly, the location of
the layer l is set to beXl,i=Xl+Dl,i, buildingup robustness tophysical
misalignments.

Beyond the displacement of diffractive layers, the physical for-
wardmodel of a diffractive network is also susceptible to variations in
the orientation of the diffractive layers. Ideally, one should include all
3 rotational components, yaw, pitch, and roll; however, in this study,
we only considered the yaw component since in our experimental
systems, the pitch and the roll can be controlledwith a high precision.
The random angle representing the rotation of a diffractive layer l
around the optical axis was defined as D𝜃

l,i ∼ U(−Δ𝜃,Δ𝜃). With 3
shift components depicted in Eq. (12) and the statistical yaw variation
modeled through D𝜃

l,i, the vaccinated diffractive networks shown in
Figure 4were trained to build resilience against these 4misalignment
components. The values of Δx, Δy, Δz, and Δ𝜽 determining the
misalignment tolerance range were defined as a function a common
variable v, i.e., 𝛥x = 𝛥y = 0.67𝜆v, 𝛥z = 24𝜆v, and 𝛥𝜃 = 4◦.

For the design of the experimentally validated diffractive permu-
tation network, on top of these 4 optomechanical error components
(with v= 0.5), we alsomodeled fabrication errors in the form of statis-
tical variations of the material thickness over each diffractive neuron
(h). Hence, at a given iteration, i, the material thickness values over
each diffractive unit h(ha), defined in Eq. (8), was perturbed through
hi(ha) = h(ha)+ Dh

i,whereDh
i ∼ U(−0.025hm,0.025hm). Stateddiffer-

ently, the fabricateddiffractive layers shown inFigure 5weredesigned
to be resilient against physical errors on thematerial thickness values
over the diffractive neurons within a range [−0.0415𝜆,0.0415𝜆].

4.2.5 Training details: The deep learning-based training of the
diffractive permutation networks was implemented using Python
(v3.6.5) and TensorFlow (v1.15.0, Google Inc.). The backpropagation
updates were calculated using the Adam optimizer [78], and its
parameters were taken as the default values in TensorFlow and kept
identical in each model. The learning rates of the diffractive optical
networks were set to be 0.001. The training batch size was taken as 75
during the deep learning-based training of the presented diffractive
permutation networks. For the training of the diffractive permutation
networks, we generated ∼4.7 million random intensity patterns,
providing us 93,750 iterations/error-backpropagation updates per
epoch. The training of a 5-layer diffractive permutation network with
40K diffractive neurons per layer for 5 epochs using this randomly
created training dataset takes approximately 4 days using a computer
with a GeForce GTX 1080 Ti Graphical Processing Unit (GPU, Nvidia
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Inc.) and Intel® Core™ i7-8700 Central Processing Unit (CPU, Intel
Inc.) with 64 GB of RAM, running Windows 10 operating system
(Microsoft).
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